#include "config.h" #include #include #include #include #include #include #include #include #include #include #include /* # Optimal payments * * In this module we reduce the routing optimization problem to a linear * cost optimization problem and find a solution using MCF algorithms. * The optimization of the routing itself doesn't need a precise numerical * solution, since we can be happy near optimal results; e.g. paying 100 msat or * 101 msat for fees doesn't make any difference if we wish to deliver 1M sats. * On the other hand, we are now also considering Pickhard's * [1] model to improve payment reliability, * hence our optimization moves to a 2D space: either we like to maximize the * probability of success of a payment or minimize the routing fees, or * alternatively we construct a function of the two that gives a good compromise. * * Therefore from now own, the definition of optimal is a matter of choice. * To simplify the API of this module, we think the best way to state the * problem is: * * Find a routing solution that pays the least of fees while keeping * the probability of success above a certain value `min_probability`. * * * # Fee Cost * * Routing fees is non-linear function of the payment flow x, that's true even * without the base fee: * * fee_msat = base_msat + floor(millionths*x_msat / 10^6) * * We approximate this fee into a linear function by computing a slope `c_fee` such * that: * * fee_microsat = c_fee * x_sat * * Function `linear_fee_cost` computes `c_fee` based on the base and * proportional fees of a channel. * The final product if microsat because if only * the proportional fee was considered we can have c_fee = millionths. * Moving to costs based in msats means we have to either truncate payments * below 1ksats or estimate as 0 cost for channels with less than 1000ppm. * * TODO(eduardo): shall we build a linear cost function in msats? * * # Probability cost * * The probability of success P of the payment is the product of the prob. of * success of forwarding parts of the payment over all routing channels. This * problem is separable if we log it, and since we would like to increase P, * then we can seek to minimize -log(P), and that's our prob. cost function [1]. * * - log P = sum_{i} - log P_i * * The probability of success `P_i` of sending some flow `x` on a channel with * liquidity l in the range a<=l a * = 1. ; for x <= a * * Notice that unlike the similar formula in [1], the one we propose does not * contain the quantization shot noise for counting states. The formula remains * valid independently of the liquidity units (sats or msats). * * The cost associated to probability P is then -k log P, where k is some * constant. For k=1 we get the following table: * * prob | cost * ----------- * 0.01 | 4.6 * 0.02 | 3.9 * 0.05 | 3.0 * 0.10 | 2.3 * 0.20 | 1.6 * 0.50 | 0.69 * 0.80 | 0.22 * 0.90 | 0.10 * 0.95 | 0.05 * 0.98 | 0.02 * 0.99 | 0.01 * * Clearly -log P(x) is non-linear; we try to linearize it piecewise: * split the channel into 4 arcs representing 4 liquidity regions: * * arc_0 -> [0, a) * arc_1 -> [a, a+(b-a)*f1) * arc_2 -> [a+(b-a)*f1, a+(b-a)*f2) * arc_3 -> [a+(b-a)*f2, a+(b-a)*f3) * * where f1 = 0.5, f2 = 0.8, f3 = 0.95; * We fill arc_0's capacity with complete certainty P=1, then if more flow is * needed we start filling the capacity in arc_1 until the total probability * of success reaches P=0.5, then arc_2 until P=1-0.8=0.2, and finally arc_3 until * P=1-0.95=0.05. We don't go further than 5% prob. of success per channel. * TODO(eduardo): this channel linearization is hard coded into * `CHANNEL_PIVOTS`, maybe we can parametrize this to take values from the config file. * * With this choice, the slope of the linear cost function becomes: * * m_0 = 0 * m_1 = 1.38 k /(b-a) * m_2 = 3.05 k /(b-a) * m_3 = 9.24 k /(b-a) * * Notice that one of the assumptions in [2] for the MCF problem is that flows * and the slope of the costs functions are integer numbers. The only way we * have at hand to make it so, is to choose a universal value of `k` that scales * up the slopes so that floor(m_i) is not zero for every arc. * * # Combine fee and prob. costs * * We attempt to solve the original problem of finding the solution that * pays the least fees while keeping the prob. of success above a certain value, * by constructing a cost function which is a linear combination of fee and * prob. costs. * TODO(eduardo): investigate how this procedure is justified, * possibly with the use of Lagrange optimization theory. * * At first, prob. and fee costs live in different dimensions, they cannot be * summed, it's like comparing apples and oranges. * However we propose to scale the prob. cost by a global factor k that * translates into the monetization of prob. cost. * * k/1000, for instance, becomes the equivalent monetary cost * of increasing the probability of success by 0.1% for P~100%. * * The input parameter `prob_cost_factor` in the function `minflow` is defined * as the PPM from the delivery amount `T` we are *willing to pay* to increase the * prob. of success by 0.1%: * * k_microsat = floor(1000*prob_cost_factor * T_sat) * * Is this enough to make integer prob. cost per unit flow? * For `prob_cost_factor=10`; i.e. we pay 10ppm for increasing the prob. by * 0.1%, we get that * * -> any arc with (b-a) > 10000 T, will have zero prob. cost, which is * reasonable because even if all the flow passes through that arc, we get * a 1.3 T/(b-a) ~ 0.01% prob. of failure at most. * * -> if (b-a) ~ 10000 T, then the arc will have unit cost, or just that we * pay 1 microsat for every sat we send through this arc. * * -> it would be desirable to have a high proportional fee when (b-a)~T, * because prob. of failure start to become very high. * In this case we get to pay 10000 microsats for every sat. * * Once `k` is fixed then we can combine the linear prob. and fee costs, both * are in monetary units. * * Note: with costs in microsats, because slopes represent ppm and flows are in * sats, then our integer bounds with 64 bits are such that we can move as many * as 10'000 BTC without overflow: * * 10^6 (max ppm) * 10^8 (sats per BTC) * 10^4 = 10^18 * * # References * * [1] Pickhardt and Richter, https://arxiv.org/abs/2107.05322 * [2] R.K. Ahuja, T.L. Magnanti, and J.B. Orlin. Network Flows: * Theory, Algorithms, and Applications. Prentice Hall, 1993. * * * TODO(eduardo) it would be interesting to see: * how much do we pay for reliability? * Cost_fee(most reliable solution) - Cost_fee(cheapest solution) * * TODO(eduardo): it would be interesting to see: * how likely is the most reliable path with respect to the cheapest? * Prob(reliable)/Prob(cheapest) = Exp(Cost_prob(cheapest)-Cost_prob(reliable)) * * */ #define PARTS_BITS 2 #define CHANNEL_PARTS (1 << PARTS_BITS) // These are the probability intervals we use to decompose a channel into linear // cost function arcs. static const double CHANNEL_PIVOTS[]={0,0.5,0.8,0.95}; // how many bits for linearization parts plus 1 bit for the direction of the // channel plus 1 bit for the dual representation. static const size_t ARC_ADDITIONAL_BITS = PARTS_BITS + 2; static const s64 INFINITE = INT64_MAX; static const u32 INVALID_INDEX=0xffffffff; static const s64 MU_MAX = 128; /* Let's try this encoding of arcs: * Each channel `c` has two possible directions identified by a bit * `half` or `!half`, and each one of them has to be * decomposed into 4 liquidity parts in order to * linearize the cost function, but also to solve MCF * problem we need to keep track of flows in the * residual network hence we need for each directed arc * in the network there must be another arc in the * opposite direction refered to as it's dual. In total * 1+2+1 additional bits of information: * * (chan_idx)(half)(part)(dual) * * That means, for each channel we need to store the * information of 16 arcs. If we implement a convex-cost * solver then we can reduce that number to size(half)size(dual)=4. * * In the adjacency of a `node` we are going to store * the outgoing arcs. If we ever need to loop over the * incoming arcs then we will define a reverse adjacency * API. * Then for each outgoing channel `(c,half)` there will * be 4 parts for the actual residual capacity, hence * with the dual bit set to 0: * * (c,half,0,0) * (c,half,1,0) * (c,half,2,0) * (c,half,3,0) * * and also we need to consider the dual arcs * corresponding to the channel direction `(c,!half)` * (the dual has reverse direction): * * (c,!half,0,1) * (c,!half,1,1) * (c,!half,2,1) * (c,!half,3,1) * * These are the 8 outgoing arcs relative to `node` and * associated with channel `c`. The incoming arcs will * be: * * (c,!half,0,0) * (c,!half,1,0) * (c,!half,2,0) * (c,!half,3,0) * * (c,half,0,1) * (c,half,1,1) * (c,half,2,1) * (c,half,3,1) * * but they will be stored as outgoing arcs on the peer * node `next`. * * I hope this will clarify my future self when I forget. * * */ typedef union { struct{ u32 dual: 1; u32 part: PARTS_BITS; u32 chandir: 1; u32 chanidx: (32-1-PARTS_BITS-1); }; u32 idx; } arc_t; #define MAX(x, y) (((x) > (y)) ? (x) : (y)) #define MIN(x, y) (((x) < (y)) ? (x) : (y)) struct pay_parameters { /* The gossmap we are using */ struct gossmap *gossmap; const struct gossmap_node *source; const struct gossmap_node *target; /* Extra information we intuited about the channels */ struct chan_extra_map *chan_extra_map; /* Optional bitarray of disabled channels. */ const bitmap *disabled; // how much we pay struct amount_msat amount; // channel linearization parameters double cap_fraction[CHANNEL_PARTS], cost_fraction[CHANNEL_PARTS]; struct amount_msat max_fee; double min_probability; double delay_feefactor; double base_fee_penalty; u32 prob_cost_factor; }; /* Representation of the linear MCF network. * This contains the topology of the extended network (after linearization and * addition of arc duality). * This contains also the arc probability and linear fee cost, as well as * capacity; these quantities remain constant during MCF execution. */ struct linear_network { u32 *arc_tail_node; // notice that a tail node is not needed, // because the tail of arc is the head of dual(arc) arc_t *node_adjacency_next_arc; arc_t *node_adjacency_first_arc; // probability and fee cost associated to an arc s64 *arc_prob_cost, *arc_fee_cost; s64 *capacity; size_t max_num_arcs,max_num_nodes; }; /* This is the structure that keeps track of the network properties while we * seek for a solution. */ struct residual_network { /* residual capacity on arcs */ s64 *cap; /* some combination of prob. cost and fee cost on arcs */ s64 *cost; /* potential function on nodes */ s64 *potential; }; /* Helper function. * Given an arc idx, return the dual's idx in the residual network. */ static arc_t arc_dual(arc_t arc) { arc.dual ^= 1; return arc; } /* Helper function. */ static bool arc_is_dual(const arc_t arc) { return arc.dual == 1; } /* Helper function. * Given an arc of the network (not residual) give me the flow. */ static s64 get_arc_flow( const struct residual_network *network, const arc_t arc) { assert(!arc_is_dual(arc)); assert(arc_dual(arc).idx < tal_count(network->cap)); return network->cap[ arc_dual(arc).idx ]; } /* Helper function. * Given an arc idx, return the node from which this arc emanates in the residual network. */ static u32 arc_tail(const struct linear_network *linear_network, const arc_t arc) { assert(arc.idx < tal_count(linear_network->arc_tail_node)); return linear_network->arc_tail_node[ arc.idx ]; } /* Helper function. * Given an arc idx, return the node that this arc is pointing to in the residual network. */ static u32 arc_head(const struct linear_network *linear_network, const arc_t arc) { const arc_t dual = arc_dual(arc); assert(dual.idx < tal_count(linear_network->arc_tail_node)); return linear_network->arc_tail_node[dual.idx]; } /* Helper function. * Given node idx `node`, return the idx of the first arc whose tail is `node`. * */ static arc_t node_adjacency_begin( const struct linear_network * linear_network, const u32 node) { assert(node < tal_count(linear_network->node_adjacency_first_arc)); return linear_network->node_adjacency_first_arc[node]; } /* Helper function. * Is this the end of the adjacency list. */ static bool node_adjacency_end(const arc_t arc) { return arc.idx == INVALID_INDEX; } /* Helper function. * Given node idx `node` and `arc`, returns the idx of the next arc whose tail is `node`. */ static arc_t node_adjacency_next( const struct linear_network *linear_network, const arc_t arc) { assert(arc.idx < tal_count(linear_network->node_adjacency_next_arc)); return linear_network->node_adjacency_next_arc[arc.idx]; } /* Helper function. * Given a channel index, we should be able to deduce the arc id. */ static arc_t channel_idx_to_arc( const u32 chan_idx, int half, int part, int dual) { arc_t arc; arc.dual=dual; arc.part=part; arc.chandir=half; arc.chanidx = chan_idx; /* check that it doesn't overflow */ assert(arc.chanidx == chan_idx); return arc; } // TODO(eduardo): unit test this /* Split a directed channel into parts with linear cost function. */ static void linearize_channel( const struct pay_parameters *params, const struct gossmap_chan *c, const int dir, s64 *capacity, s64 *cost) { struct chan_extra_half *extra_half = get_chan_extra_half_by_chan( params->gossmap, params->chan_extra_map, c, dir); if(!extra_half) { debug_err("%s (line %d) unexpected, extra_half is NULL", __PRETTY_FUNCTION__, __LINE__); } s64 h = extra_half->htlc_total.millisatoshis/1000; /* Raw: linearize_channel */ s64 a = extra_half->known_min.millisatoshis/1000, /* Raw: linearize_channel */ b = 1 + extra_half->known_max.millisatoshis/1000; /* Raw: linearize_channel */ /* If HTLCs add up to more than the known_max it means we have a * completely wrong knowledge. */ // assert(ha it doesn't mean automatically that our * known_min should have been updated, because we reserve this HTLC * after sendpay behind the scenes it might happen that sendpay failed * because of insufficient funds we haven't noticed yet. */ // assert(h<=a); /* We reduce this channel capacity because HTLC are reserving liquidity. */ a -= h; b -= h; a = MAX(a,0); b = MAX(a+1,b); capacity[0]=a; cost[0]=0; for(size_t i=1;icap_fraction[i]*(b-a); cost[i] = params->cost_fraction[i] *params->amount.millisatoshis /* Raw: linearize_channel */ *params->prob_cost_factor*1.0/(b-a); } } static void alloc_residual_netork( const struct linear_network * linear_network, struct residual_network* residual_network) { const size_t max_num_arcs = linear_network->max_num_arcs; const size_t max_num_nodes = linear_network->max_num_nodes; residual_network->cap = tal_arrz(residual_network,s64,max_num_arcs); residual_network->cost = tal_arrz(residual_network,s64,max_num_arcs); residual_network->potential = tal_arrz(residual_network,s64,max_num_nodes); } static void init_residual_network( const struct linear_network * linear_network, struct residual_network* residual_network) { const size_t max_num_arcs = linear_network->max_num_arcs; const size_t max_num_nodes = linear_network->max_num_nodes; for(u32 idx=0;idxcap[arc.idx]=linear_network->capacity[arc.idx]; residual_network->cap[dual.idx]=0; residual_network->cost[arc.idx]=residual_network->cost[dual.idx]=0; } for(u32 i=0;ipotential[i]=0; } } static void combine_cost_function( const struct linear_network* linear_network, struct residual_network *residual_network, s64 mu) { for(u32 arc_idx=0;arc_idxmax_num_arcs;++arc_idx) { arc_t arc = (arc_t){.idx=arc_idx}; if(arc_tail(linear_network,arc)==INVALID_INDEX) continue; const s64 pcost = linear_network->arc_prob_cost[arc_idx], fcost = linear_network->arc_fee_cost[arc_idx]; const s64 combined = pcost==INFINITE || fcost==INFINITE ? INFINITE : mu*fcost + (MU_MAX-1-mu)*pcost; residual_network->cost[arc_idx] = mu==0 ? pcost : (mu==(MU_MAX-1) ? fcost : combined); } } static void linear_network_add_adjacenct_arc( struct linear_network *linear_network, const u32 node_idx, const arc_t arc) { assert(arc.idx < tal_count(linear_network->arc_tail_node)); linear_network->arc_tail_node[arc.idx] = node_idx; assert(node_idx < tal_count(linear_network->node_adjacency_first_arc)); const arc_t first_arc = linear_network->node_adjacency_first_arc[node_idx]; assert(arc.idx < tal_count(linear_network->node_adjacency_next_arc)); linear_network->node_adjacency_next_arc[arc.idx]=first_arc; assert(node_idx < tal_count(linear_network->node_adjacency_first_arc)); linear_network->node_adjacency_first_arc[node_idx]=arc; } static void init_linear_network( const struct pay_parameters *params, struct linear_network *linear_network) { const size_t max_num_chans = gossmap_max_chan_idx(params->gossmap); const size_t max_num_arcs = max_num_chans << ARC_ADDITIONAL_BITS; const size_t max_num_nodes = gossmap_max_node_idx(params->gossmap); linear_network->max_num_arcs = max_num_arcs; linear_network->max_num_nodes = max_num_nodes; linear_network->arc_tail_node = tal_arr(linear_network,u32,max_num_arcs); for(size_t i=0;iarc_tail_node);++i) linear_network->arc_tail_node[i]=INVALID_INDEX; linear_network->node_adjacency_next_arc = tal_arr(linear_network,arc_t,max_num_arcs); for(size_t i=0;inode_adjacency_next_arc);++i) linear_network->node_adjacency_next_arc[i].idx=INVALID_INDEX; linear_network->node_adjacency_first_arc = tal_arr(linear_network,arc_t,max_num_nodes); for(size_t i=0;inode_adjacency_first_arc);++i) linear_network->node_adjacency_first_arc[i].idx=INVALID_INDEX; linear_network->arc_prob_cost = tal_arr(linear_network,s64,max_num_arcs); for(size_t i=0;iarc_prob_cost);++i) linear_network->arc_prob_cost[i]=INFINITE; linear_network->arc_fee_cost = tal_arr(linear_network,s64,max_num_arcs); for(size_t i=0;iarc_fee_cost);++i) linear_network->arc_fee_cost[i]=INFINITE; linear_network->capacity = tal_arrz(linear_network,s64,max_num_arcs); for(struct gossmap_node *node = gossmap_first_node(params->gossmap); node; node=gossmap_next_node(params->gossmap,node)) { const u32 node_id = gossmap_node_idx(params->gossmap,node); for(size_t j=0;jnum_chans;++j) { int half; const struct gossmap_chan *c = gossmap_nth_chan(params->gossmap, node, j, &half); if (!gossmap_chan_set(c,half)) continue; const u32 chan_id = gossmap_chan_idx(params->gossmap, c); if (params->disabled && bitmap_test_bit(params->disabled,chan_id)) continue; const struct gossmap_node *next = gossmap_nth_node(params->gossmap, c,!half); const u32 next_id = gossmap_node_idx(params->gossmap,next); if(node_id==next_id) continue; // `cost` is the word normally used to denote cost per // unit of flow in the context of MCF. s64 prob_cost[CHANNEL_PARTS], capacity[CHANNEL_PARTS]; // split this channel direction to obtain the arcs // that are outgoing to `node` linearize_channel(params,c,half,capacity,prob_cost); const s64 fee_cost = linear_fee_cost(c,half, params->base_fee_penalty, params->delay_feefactor); // let's subscribe the 4 parts of the channel direction // (c,half), the dual of these guys will be subscribed // when the `i` hits the `next` node. for(size_t k=0;kcapacity[arc.idx] = capacity[k]; linear_network->arc_prob_cost[arc.idx] = prob_cost[k]; linear_network->arc_fee_cost[arc.idx] = fee_cost; // + the respective dual arc_t dual = arc_dual(arc); linear_network_add_adjacenct_arc(linear_network,next_id,dual); linear_network->capacity[dual.idx] = 0; linear_network->arc_prob_cost[dual.idx] = -prob_cost[k]; linear_network->arc_fee_cost[dual.idx] = -fee_cost; } } } } /* Simple queue to traverse the network. */ struct queue_data { u32 idx; struct lqueue_link ql; }; // TODO(eduardo): unit test this /* Finds an admissible path from source to target, traversing arcs in the * residual network with capacity greater than 0. * The path is encoded into prev, which contains the idx of the arcs that are * traversed. * Returns RENEPAY_ERR_OK if the path exists. */ static int find_admissible_path( const struct linear_network *linear_network, const struct residual_network *residual_network, const u32 source, const u32 target, arc_t *prev) { tal_t *this_ctx = tal(tmpctx,tal_t); int ret = RENEPAY_ERR_NOFEASIBLEFLOW; for(size_t i=0;iidx = source; lqueue_enqueue(&myqueue,qdata); while(!lqueue_empty(&myqueue)) { qdata = lqueue_dequeue(&myqueue); u32 cur = qdata->idx; tal_free(qdata); if(cur==target) { ret = RENEPAY_ERR_OK; break; } for(arc_t arc = node_adjacency_begin(linear_network,cur); !node_adjacency_end(arc); arc = node_adjacency_next(linear_network,arc)) { // check if this arc is traversable if(residual_network->cap[arc.idx] <= 0) continue; u32 next = arc_head(linear_network,arc); assert(next < tal_count(prev)); // if that node has been seen previously if(prev[next].idx!=INVALID_INDEX) continue; prev[next] = arc; qdata = tal(tmpctx,struct queue_data); qdata->idx = next; lqueue_enqueue(&myqueue,qdata); } } tal_free(this_ctx); return ret; } /* Get the max amount of flow one can send from source to target along the path * encoded in `prev`. */ static s64 get_augmenting_flow( const struct linear_network* linear_network, const struct residual_network *residual_network, const u32 source, const u32 target, const arc_t *prev) { s64 flow = INFINITE; u32 cur = target; while(cur!=source) { assert(curcap[arc.idx]); // we are traversing in the opposite direction to the flow, // hence the next node is at the tail of the arc. cur = arc_tail(linear_network,arc); } assert(flow0); return flow; } /* Augment a `flow` amount along the path defined by `prev`.*/ static void augment_flow( const struct linear_network *linear_network, struct residual_network *residual_network, const u32 source, const u32 target, const arc_t *prev, s64 flow) { u32 cur = target; while(cur!=source) { assert(cur < tal_count(prev)); const arc_t arc = prev[cur]; const arc_t dual = arc_dual(arc); assert(arc.idx < tal_count(residual_network->cap)); assert(dual.idx < tal_count(residual_network->cap)); residual_network->cap[arc.idx] -= flow; residual_network->cap[dual.idx] += flow; assert(residual_network->cap[arc.idx] >=0 ); // we are traversing in the opposite direction to the flow, // hence the next node is at the tail of the arc. cur = arc_tail(linear_network,arc); } } // TODO(eduardo): unit test this /* Finds any flow that satisfy the capacity and balance constraints of the * uncertainty network. For the balance function condition we have: * balance(source) = - balance(target) = amount * balance(node) = 0 , for every other node * Returns an error code if no feasible flow is found. * * 13/04/2023 This implementation uses a simple augmenting path approach. * */ static int find_feasible_flow( const struct linear_network *linear_network, struct residual_network *residual_network, const u32 source, const u32 target, s64 amount) { assert(amount>=0); tal_t *this_ctx = tal(tmpctx,tal_t); int ret = RENEPAY_ERR_OK; /* path information * prev: is the id of the arc that lead to the node. */ arc_t *prev = tal_arr(this_ctx,arc_t,linear_network->max_num_nodes); while(amount>0) { // find a path from source to target int err = find_admissible_path( linear_network, residual_network,source,target,prev); if(err!=RENEPAY_ERR_OK) { ret = RENEPAY_ERR_NOFEASIBLEFLOW; break; } // traverse the path and see how much flow we can send s64 delta = get_augmenting_flow(linear_network, residual_network, source,target,prev); // commit that flow to the path delta = MIN(amount,delta); assert(delta>0 && delta<=amount); augment_flow(linear_network,residual_network,source,target,prev,delta); amount -= delta; } tal_free(this_ctx); return ret; } // TODO(eduardo): unit test this /* Similar to `find_admissible_path` but use Dijkstra to optimize the distance * label. Stops when the target is hit. */ static int find_optimal_path( struct dijkstra *dijkstra, const struct linear_network *linear_network, const struct residual_network* residual_network, const u32 source, const u32 target, arc_t *prev) { tal_t *this_ctx = tal(tmpctx,tal_t); int ret = RENEPAY_ERR_NOFEASIBLEFLOW; bitmap *visited = tal_arrz(this_ctx, bitmap, BITMAP_NWORDS(linear_network->max_num_nodes)); for(size_t i=0;icap[arc.idx] <= 0) continue; u32 next = arc_head(linear_network,arc); s64 cij = residual_network->cost[arc.idx] - residual_network->potential[cur] + residual_network->potential[next]; // Dijkstra only works with non-negative weights assert(cij>=0); if(distance[next]<=distance[cur]+cij) continue; dijkstra_update(dijkstra,next,distance[cur]+cij); prev[next]=arc; } } tal_free(this_ctx); return ret; } /* Set zero flow in the residual network. */ static void zero_flow( const struct linear_network *linear_network, struct residual_network *residual_network) { for(u32 node=0;nodemax_num_nodes;++node) { residual_network->potential[node]=0; for(arc_t arc=node_adjacency_begin(linear_network,node); !node_adjacency_end(arc); arc = node_adjacency_next(linear_network,arc)) { if(arc_is_dual(arc))continue; arc_t dual = arc_dual(arc); residual_network->cap[arc.idx] = linear_network->capacity[arc.idx]; residual_network->cap[dual.idx] = 0; } } } // TODO(eduardo): unit test this /* Starting from a feasible flow (satisfies the balance and capacity * constraints), find a solution that minimizes the network->cost function. * * TODO(eduardo) The MCF must be called several times until we get a good * compromise between fees and probabilities. Instead of re-computing the MCF at * each step, we might use the previous flow result, which is not optimal in the * current iteration but I might be not too far from the truth. * It comes to mind to use cycle cancelling. */ static int optimize_mcf( struct dijkstra *dijkstra, const struct linear_network *linear_network, struct residual_network *residual_network, const u32 source, const u32 target, const s64 amount) { assert(amount>=0); tal_t *this_ctx = tal(tmpctx,tal_t); int ret = RENEPAY_ERR_OK; zero_flow(linear_network,residual_network); arc_t *prev = tal_arr(this_ctx,arc_t,linear_network->max_num_nodes); const s64 *const distance = dijkstra_distance_data(dijkstra); s64 remaining_amount = amount; while(remaining_amount>0) { int err = find_optimal_path(dijkstra,linear_network,residual_network,source,target,prev); if(err!=RENEPAY_ERR_OK) { // unexpected error ret = RENEPAY_ERR_NOFEASIBLEFLOW; break; } // traverse the path and see how much flow we can send s64 delta = get_augmenting_flow(linear_network,residual_network,source,target,prev); // commit that flow to the path delta = MIN(remaining_amount,delta); assert(delta>0 && delta<=remaining_amount); augment_flow(linear_network,residual_network,source,target,prev,delta); remaining_amount -= delta; // update potentials for(u32 n=0;nmax_num_nodes;++n) { // see page 323 of Ahuja-Magnanti-Orlin residual_network->potential[n] -= MIN(distance[target],distance[n]); /* Notice: * if node i is permanently labeled we have * d_i<=d_t * which implies * MIN(d_i,d_t) = d_i * if node i is temporarily labeled we have * d_i>=d_t * which implies * MIN(d_i,d_t) = d_t * */ } } tal_free(this_ctx); return ret; } // flow on directed channels struct chan_flow { s64 half[2]; }; /* Search in the network a path of positive flow until we reach a node with * positive balance. */ static u32 find_positive_balance( const struct gossmap *gossmap, const struct chan_flow *chan_flow, const u32 start_idx, const s64 *balance, const struct gossmap_chan **prev_chan, int *prev_dir, u32 *prev_idx) { u32 final_idx = start_idx; /* TODO(eduardo) * This is guaranteed to halt if there are no directed flow cycles. * There souldn't be any. In fact if cost is strickly * positive, then flow cycles do not exist at all in the * MCF solution. But if cost is allowed to be zero for * some arcs, then we might have flow cyles in the final * solution. We must somehow ensure that the MCF * algorithm does not come up with spurious flow cycles. */ while(balance[final_idx]<=0) { // printf("%s: node = %d\n",__PRETTY_FUNCTION__,final_idx); u32 updated_idx=INVALID_INDEX; struct gossmap_node *cur = gossmap_node_byidx(gossmap,final_idx); for(size_t i=0;inum_chans;++i) { int dir; const struct gossmap_chan *c = gossmap_nth_chan(gossmap, cur,i,&dir); if (!gossmap_chan_set(c,dir)) continue; const u32 c_idx = gossmap_chan_idx(gossmap,c); // follow the flow if(chan_flow[c_idx].half[dir]>0) { const struct gossmap_node *next = gossmap_nth_node(gossmap,c,!dir); u32 next_idx = gossmap_node_idx(gossmap,next); prev_dir[next_idx] = dir; prev_chan[next_idx] = c; prev_idx[next_idx] = final_idx; updated_idx = next_idx; break; } } assert(updated_idx!=INVALID_INDEX); assert(updated_idx!=final_idx); final_idx = updated_idx; } return final_idx; } struct list_data { struct list_node list; struct flow *flow_path; }; /* Given a flow in the residual network, build a set of payment flows in the * gossmap that corresponds to this flow. */ static struct flow ** get_flow_paths( const tal_t *ctx, const struct gossmap *gossmap, // chan_extra_map cannot be const because we use it to keep // track of htlcs and in_flight sats. struct chan_extra_map *chan_extra_map, const struct linear_network *linear_network, const struct residual_network *residual_network, // how many msats in excess we paid for not having msat accuracy // in the MCF solver struct amount_msat excess) { assert(amount_msat_less(excess, AMOUNT_MSAT(1000))); tal_t *this_ctx = tal(tmpctx,tal_t); const size_t max_num_chans = gossmap_max_chan_idx(gossmap); struct chan_flow *chan_flow = tal_arrz(this_ctx,struct chan_flow,max_num_chans); const size_t max_num_nodes = gossmap_max_node_idx(gossmap); s64 *balance = tal_arrz(this_ctx,s64,max_num_nodes); const struct gossmap_chan **prev_chan = tal_arr(this_ctx,const struct gossmap_chan *,max_num_nodes); int *prev_dir = tal_arr(this_ctx,int,max_num_nodes); u32 *prev_idx = tal_arr(this_ctx,u32,max_num_nodes); // Convert the arc based residual network flow into a flow in the // directed channel network. // Compute balance on the nodes. for(u32 n = 0;npath = tal_arr(fp,const struct gossmap_chan *,length); fp->dirs = tal_arr(fp,int,length); balance[node_idx] += delta; balance[final_idx]-= delta; // walk backwards, substract flow for(u32 cur_idx = final_idx; cur_idx!=node_idx; cur_idx=prev_idx[cur_idx]) { assert(cur_idx!=INVALID_INDEX); const int dir = prev_dir[cur_idx]; const struct gossmap_chan *const c = prev_chan[cur_idx]; const u32 c_idx = gossmap_chan_idx(gossmap,c); length--; fp->path[length]=c; fp->dirs[length]=dir; // notice: fp->path and fp->dirs have the path // in the correct order. chan_flow[c_idx].half[prev_dir[cur_idx]]-=delta; } assert(delta>0); // substract the excess of msats for not having msat // accuracy struct amount_msat delivered = amount_msat(delta*1000); if(!amount_msat_sub(&delivered,delivered,excess)) { debug_err("%s (line %d) unable to substract excess.", __PRETTY_FUNCTION__, __LINE__); } excess = amount_msat(0); // complete the flow path by adding real fees and // probabilities. flow_complete(fp,gossmap,chan_extra_map,delivered); // add fp to flows tal_arr_expand(&flows, fp); } } /* Stablish ownership. */ for(int i=0;i= min_probability; bool B_prob_pass = B_prob >= min_probability; // all bounds are met if(A_fee_pass && B_fee_pass && A_prob_pass && B_prob_pass) { // prefer lower fees goto fees_or_prob; } // prefer the solution that satisfies both bounds if(!(A_fee_pass && A_prob_pass) && (B_fee_pass && B_prob_pass)) { return false; } // prefer the solution that satisfies both bounds if((A_fee_pass && A_prob_pass) && !(B_fee_pass && B_prob_pass)) { return true; } // no solution satisfies both bounds // bound on fee is met if(A_fee_pass && B_fee_pass) { // pick the highest prob. return A_prob > B_prob; } // bound on prob. is met if(A_prob_pass && B_prob_pass) { goto fees_or_prob; } // prefer the solution that satisfies the bound on fees if(A_fee_pass && !B_fee_pass) { return true; } if(B_fee_pass && !A_fee_pass) { return false; } // none of them satisfy the fee bound // prefer the solution that satisfies the bound on prob. if(A_prob_pass && !B_prob_pass) { return true; } if(B_prob_pass && !A_prob_pass) { return true; } // no bound whatsoever is satisfied fees_or_prob: // fees are the same, wins the highest prob. if(amount_msat_eq(A_fee,B_fee)) { return A_prob > B_prob; } // go for fees return amount_msat_less_eq(A_fee,B_fee); } // TODO(eduardo): choose some default values for the minflow parameters /* eduardo: I think it should be clear that this module deals with linear * flows, ie. base fees are not considered. Hence a flow along a path is * described with a sequence of directed channels and one amount. * In the `pay_flow` module there are dedicated routes to compute the actual * amount to be forward on each hop. * * TODO(eduardo): notice that we don't pay fees to forward payments with local * channels and we can tell with absolute certainty the liquidity on them. * Check that local channels have fee costs = 0 and bounds with certainty (min=max). */ // TODO(eduardo): we should LOG_DBG the process of finding the MCF while // adjusting the frugality factor. struct flow** minflow( const tal_t *ctx, struct gossmap *gossmap, const struct gossmap_node *source, const struct gossmap_node *target, struct chan_extra_map *chan_extra_map, const bitmap *disabled, struct amount_msat amount, struct amount_msat max_fee, double min_probability, double delay_feefactor, double base_fee_penalty, u32 prob_cost_factor ) { tal_t *this_ctx = tal(tmpctx,tal_t); struct pay_parameters *params = tal(this_ctx,struct pay_parameters); struct dijkstra *dijkstra; params->gossmap = gossmap; params->source = source; params->target = target; params->chan_extra_map = chan_extra_map; params->disabled = disabled; assert(!disabled || tal_bytelen(disabled) == bitmap_sizeof(gossmap_max_chan_idx(gossmap))); params->amount = amount; // template the channel partition into linear arcs params->cap_fraction[0]=0; params->cost_fraction[0]=0; for(size_t i =1;icap_fraction[i]=CHANNEL_PIVOTS[i]-CHANNEL_PIVOTS[i-1]; params->cost_fraction[i]= log((1-CHANNEL_PIVOTS[i-1])/(1-CHANNEL_PIVOTS[i])) /params->cap_fraction[i]; // printf("channel part: %ld, fraction: %lf, cost_fraction: %lf\n", // i,params->cap_fraction[i],params->cost_fraction[i]); } params->max_fee = max_fee; params->min_probability = min_probability; params->delay_feefactor = delay_feefactor; params->base_fee_penalty = base_fee_penalty; params->prob_cost_factor = prob_cost_factor; // build the uncertainty network with linearization and residual arcs struct linear_network *linear_network= tal(this_ctx,struct linear_network); init_linear_network(params,linear_network); struct residual_network *residual_network = tal(this_ctx,struct residual_network); alloc_residual_netork(linear_network,residual_network); dijkstra = dijkstra_new(this_ctx, gossmap_max_node_idx(params->gossmap)); const u32 target_idx = gossmap_node_idx(params->gossmap,target); const u32 source_idx = gossmap_node_idx(params->gossmap,source); init_residual_network(linear_network,residual_network); struct amount_msat best_fee; double best_prob_success; struct flow **best_flow_paths = NULL; /* TODO(eduardo): * Some MCF algorithms' performance depend on the size of maxflow. If we * were to work in units of msats we 1. risking overflow when computing * costs and 2. we risk a performance overhead for no good reason. * * Working in units of sats was my first choice, but maybe working in * units of 10, or 100 sats could be even better. * * IDEA: define the size of our precision as some parameter got at * runtime that depends on the size of the payment and adjust the MCF * accordingly. * For example if we are trying to pay 1M sats our precision could be * set to 1000sat, then channels that had capacity for 3M sats become 3k * flow units. */ const u64 pay_amount_msats = params->amount.millisatoshis % 1000; /* Raw: minflow */ const u64 pay_amount_sats = params->amount.millisatoshis/1000 /* Raw: minflow */ + (pay_amount_msats ? 1 : 0); const struct amount_msat excess = amount_msat(pay_amount_msats ? 1000 - pay_amount_msats : 0); int err = find_feasible_flow(linear_network,residual_network,source_idx,target_idx, pay_amount_sats); if(err!=RENEPAY_ERR_OK) { // there is no flow that satisfy the constraints, we stop here goto finish; } // first flow found best_flow_paths = get_flow_paths(ctx,params->gossmap,params->chan_extra_map, linear_network,residual_network, excess); best_prob_success = flow_set_probability(best_flow_paths, params->gossmap, params->chan_extra_map); best_fee = flow_set_fee(best_flow_paths); // binary search for a value of `mu` that fits our fee and prob. // constraints. // mu=0 corresponds to only probabilities // mu=MU_MAX-1 corresponds to only fee s64 mu_left = 0, mu_right = MU_MAX; while(mu_leftgossmap,params->chan_extra_map, linear_network,residual_network, excess); double prob_success = flow_set_probability( flow_paths, params->gossmap, params->chan_extra_map); struct amount_msat fee = flow_set_fee(flow_paths); /* Is this better than the previous one? */ if(!best_flow_paths || is_better(params->max_fee,params->min_probability, fee,prob_success, best_fee, best_prob_success)) { struct flow **tmp = best_flow_paths; best_flow_paths = tal_steal(ctx,flow_paths); tal_free(tmp); best_fee = fee; best_prob_success=prob_success; flow_paths = NULL; } /* I don't like this candidate. */ else tal_free(flow_paths); if(amount_msat_greater(fee,params->max_fee)) { // too expensive mu_left = mu+1; }else if(prob_success < params->min_probability) { // too unlikely mu_right = mu; }else { // with mu constraints are satisfied, now let's optimize // the fees mu_left = mu+1; } } finish: tal_free(this_ctx); return best_flow_paths; }