#include "privkey.h" #include "pubkey.h" #include "script.h" #include "shadouble.h" #include "signature.h" #include "tx.h" #include #include #include #include #include #include #undef DEBUG #ifdef DEBUG # include # include #define SHA_FMT \ "%02x%02x%02x%02x%02x%02x%02x%02x" \ "%02x%02x%02x%02x%02x%02x%02x%02x" \ "%02x%02x%02x%02x%02x%02x%02x%02x" \ "%02x%02x%02x%02x%02x%02x%02x%02x" #define SHA_VALS(e) \ e[0], e[1], e[2], e[3], e[4], e[5], e[6], e[7], \ e[8], e[9], e[10], e[11], e[12], e[13], e[14], e[15], \ e[16], e[17], e[18], e[19], e[20], e[21], e[22], e[23], \ e[24], e[25], e[25], e[26], e[28], e[29], e[30], e[31] static void dump_tx(const char *msg, const struct bitcoin_tx *tx, size_t inputnum, const u8 *script, const struct pubkey *key, const struct sha256_double *h) { size_t i, j; warnx("%s tx version %u locktime %#x:", msg, tx->wtx->version, tx->wtx->locktime); for (i = 0; i < tx->wtx->num_inputs; i++) { warnx("input[%zu].txid = "SHA_FMT, i, SHA_VALS(tx->wtx->inputs[i].txhash)); warnx("input[%zu].index = %u", i, tx->wtx->inputs[i].index); } for (i = 0; i < tx->wtx->num_outputs; i++) { warnx("output[%zu].amount = %llu", i, (long long)tx->wtx->outputs[i].satoshi); warnx("output[%zu].script = %zu", i, tx->wtx->outputs[i].script_len); for (j = 0; j < tx->wtx->outputs[i].script_len; j++) fprintf(stderr, "%02x", tx->wtx->outputs[i].script[j]); fprintf(stderr, "\n"); } warnx("input[%zu].script = %zu", inputnum, tal_count(script)); for (i = 0; i < tal_count(script); i++) fprintf(stderr, "%02x", script[i]); if (key) { fprintf(stderr, "\nPubkey: "); for (i = 0; i < sizeof(key->pubkey); i++) fprintf(stderr, "%02x", ((u8 *)&key->pubkey)[i]); fprintf(stderr, "\n"); } if (h) { fprintf(stderr, "\nHash: "); for (i = 0; i < sizeof(h->sha.u.u8); i++) fprintf(stderr, "%02x", h->sha.u.u8[i]); fprintf(stderr, "\n"); } } #else static void dump_tx(const char *msg UNUSED, const struct bitcoin_tx *tx UNUSED, size_t inputnum UNUSED, const u8 *script UNUSED, const struct pubkey *key UNUSED, const struct sha256_double *h UNUSED) { } #endif /* Taken from https://github.com/bitcoin/bitcoin/blob/master/src/key.cpp */ /* Check that the sig has a low R value and will be less than 71 bytes */ static bool sig_has_low_r(const secp256k1_ecdsa_signature* sig) { unsigned char compact_sig[64]; secp256k1_ecdsa_signature_serialize_compact(secp256k1_ctx, compact_sig, sig); /* In DER serialization, all values are interpreted as big-endian, signed * integers. The highest bit in the integer indicates its signed-ness; 0 is * positive, 1 is negative. When the value is interpreted as a negative * integer, it must be converted to a positive value by prepending a 0x00 * byte so that the highest bit is 0. We can avoid this prepending by * ensuring that our highest bit is always 0, and thus we must check that * the first byte is less than 0x80. */ return compact_sig[0] < 0x80; } void sign_hash(const struct privkey *privkey, const struct sha256_double *h, secp256k1_ecdsa_signature *s) { bool ok; unsigned char extra_entropy[32] = {0}; /* Grind for low R */ do { ok = secp256k1_ecdsa_sign(secp256k1_ctx, s, h->sha.u.u8, privkey->secret.data, NULL, extra_entropy); ((u32 *)extra_entropy)[0]++; } while (!sig_has_low_r(s)); assert(ok); } void bitcoin_tx_hash_for_sig(const struct bitcoin_tx *tx, unsigned int in, const u8 *script, enum sighash_type sighash_type, struct sha256_double *dest) { int ret; u8 value[9]; u64 satoshis = tx->input_amounts[in]->satoshis /* Raw: sig-helper */; int flags = WALLY_TX_FLAG_USE_WITNESS; if (is_elements(chainparams)) { ret = wally_tx_confidential_value_from_satoshi(satoshis, value, sizeof(value)); assert(ret == WALLY_OK); ret = wally_tx_get_elements_signature_hash( tx->wtx, in, script, tal_bytelen(script), value, sizeof(value), sighash_type, flags, dest->sha.u.u8, sizeof(*dest)); assert(ret == WALLY_OK); } else { ret = wally_tx_get_btc_signature_hash( tx->wtx, in, script, tal_bytelen(script), satoshis, sighash_type, flags, dest->sha.u.u8, sizeof(*dest)); assert(ret == WALLY_OK); } } void sign_tx_input(const struct bitcoin_tx *tx, unsigned int in, const u8 *subscript, const u8 *witness_script, const struct privkey *privkey, const struct pubkey *key, enum sighash_type sighash_type, struct bitcoin_signature *sig) { struct sha256_double hash; bool use_segwit = witness_script != NULL; const u8 *script = use_segwit ? witness_script : subscript; assert(sighash_type_valid(sighash_type)); sig->sighash_type = sighash_type; bitcoin_tx_hash_for_sig(tx, in, script, sighash_type, &hash); dump_tx("Signing", tx, in, subscript, key, &hash); sign_hash(privkey, &hash, &sig->s); } bool check_signed_hash(const struct sha256_double *hash, const secp256k1_ecdsa_signature *signature, const struct pubkey *key) { int ret; ret = secp256k1_ecdsa_verify(secp256k1_ctx, signature, hash->sha.u.u8, &key->pubkey); return ret == 1; } bool check_tx_sig(const struct bitcoin_tx *tx, size_t input_num, const u8 *redeemscript, const u8 *witness_script, const struct pubkey *key, const struct bitcoin_signature *sig) { struct sha256_double hash; bool use_segwit = witness_script != NULL; const u8 *script = use_segwit ? witness_script : redeemscript; bool ret; /* We only support a limited subset of sighash types. */ if (sig->sighash_type != SIGHASH_ALL) { if (!witness_script) return false; if (sig->sighash_type != (SIGHASH_SINGLE|SIGHASH_ANYONECANPAY)) return false; } assert(input_num < tx->wtx->num_inputs); dump_tx("check_tx_sig", tx, input_num, script, key, &hash); bitcoin_tx_hash_for_sig(tx, input_num, script, sig->sighash_type, &hash); ret = check_signed_hash(&hash, &sig->s, key); if (!ret) dump_tx("Sig failed", tx, input_num, redeemscript, key, &hash); return ret; } /* Stolen direct from bitcoin/src/script/sign.cpp: // Copyright (c) 2009-2010 Satoshi Nakamoto // Copyright (c) 2009-2014 The Bitcoin Core developers // Distributed under the MIT software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. */ static bool IsValidSignatureEncoding(const unsigned char sig[], size_t len) { // Format: 0x30 [total-length] 0x02 [R-length] [R] 0x02 [S-length] [S] [sighash] // * total-length: 1-byte length descriptor of everything that follows, // excluding the sighash byte. // * R-length: 1-byte length descriptor of the R value that follows. // * R: arbitrary-length big-endian encoded R value. It must use the shortest // possible encoding for a positive integers (which means no null bytes at // the start, except a single one when the next byte has its highest bit set). // * S-length: 1-byte length descriptor of the S value that follows. // * S: arbitrary-length big-endian encoded S value. The same rules apply. // * sighash: 1-byte value indicating what data is hashed (not part of the DER // signature) // Minimum and maximum size constraints. if (len < 9) return false; if (len > 73) return false; // A signature is of type 0x30 (compound). if (sig[0] != 0x30) return false; // Make sure the length covers the entire signature. if (sig[1] != len - 3) return false; // Extract the length of the R element. unsigned int lenR = sig[3]; // Make sure the length of the S element is still inside the signature. if (5 + lenR >= len) return false; // Extract the length of the S element. unsigned int lenS = sig[5 + lenR]; // Verify that the length of the signature matches the sum of the length // of the elements. if ((size_t)lenR + (size_t)lenS + 7 != len) return false; // Check whether the R element is an integer. if (sig[2] != 0x02) return false; // Zero-length integers are not allowed for R. if (lenR == 0) return false; // Negative numbers are not allowed for R. if (sig[4] & 0x80) return false; // Null bytes at the start of R are not allowed, unless R would // otherwise be interpreted as a negative number. if (lenR > 1 && (sig[4] == 0x00) && !(sig[5] & 0x80)) return false; // Check whether the S element is an integer. if (sig[lenR + 4] != 0x02) return false; // Zero-length integers are not allowed for S. if (lenS == 0) return false; // Negative numbers are not allowed for S. if (sig[lenR + 6] & 0x80) return false; // Null bytes at the start of S are not allowed, unless S would otherwise be // interpreted as a negative number. if (lenS > 1 && (sig[lenR + 6] == 0x00) && !(sig[lenR + 7] & 0x80)) return false; return true; } size_t signature_to_der(u8 der[73], const struct bitcoin_signature *sig) { size_t len = 72; secp256k1_ecdsa_signature_serialize_der(secp256k1_ctx, der, &len, &sig->s); /* Append sighash type */ der[len++] = sig->sighash_type; /* IsValidSignatureEncoding() expect extra byte for sighash */ assert(IsValidSignatureEncoding(memcheck(der, len), len)); return len; } bool signature_from_der(const u8 *der, size_t len, struct bitcoin_signature *sig) { if (len < 1) return false; if (!secp256k1_ecdsa_signature_parse_der(secp256k1_ctx, &sig->s, der, len-1)) return false; sig->sighash_type = der[len-1]; if (!sighash_type_valid(sig->sighash_type)) return false; return true; } static char *signature_to_hexstr(const tal_t *ctx, const secp256k1_ecdsa_signature *sig) { u8 der[72]; size_t len = 72; secp256k1_ecdsa_signature_serialize_der(secp256k1_ctx, der, &len, sig); return tal_hexstr(ctx, der, len); } REGISTER_TYPE_TO_STRING(secp256k1_ecdsa_signature, signature_to_hexstr); static char *bitcoin_signature_to_hexstr(const tal_t *ctx, const struct bitcoin_signature *sig) { u8 der[73]; size_t len = signature_to_der(der, sig); return tal_hexstr(ctx, der, len); } REGISTER_TYPE_TO_STRING(bitcoin_signature, bitcoin_signature_to_hexstr); void fromwire_bitcoin_signature(const u8 **cursor, size_t *max, struct bitcoin_signature *sig) { fromwire_secp256k1_ecdsa_signature(cursor, max, &sig->s); sig->sighash_type = fromwire_u8(cursor, max); if (!sighash_type_valid(sig->sighash_type)) fromwire_fail(cursor, max); } void towire_bitcoin_signature(u8 **pptr, const struct bitcoin_signature *sig) { assert(sighash_type_valid(sig->sighash_type)); towire_secp256k1_ecdsa_signature(pptr, &sig->s); towire_u8(pptr, sig->sighash_type); }