#include "signature.h" #include "shadouble.h" #include "bitcoin_tx.h" #include "pubkey.h" #include "bitcoin_script.h" #include #include #include #include struct signature *sign_hash(const tal_t *ctx, EC_KEY *private_key, const struct sha256_double *h) { ECDSA_SIG *sig; int len; struct signature *s; sig = ECDSA_do_sign(h->sha.u.u8, sizeof(*h), private_key); if (!sig) return NULL; /* See https://github.com/sipa/bitcoin/commit/a81cd9680. * There can only be one signature with an even S, so make sure we * get that one. */ if (BN_is_odd(sig->s)) { const EC_GROUP *group; BIGNUM order; BN_init(&order); group = EC_KEY_get0_group(private_key); EC_GROUP_get_order(group, &order, NULL); BN_sub(sig->s, &order, sig->s); BN_free(&order); assert(!BN_is_odd(sig->s)); } s = talz(ctx, struct signature); /* Pack r and s into signature, 32 bytes each. */ len = BN_num_bytes(sig->r); assert(len <= sizeof(s->r)); BN_bn2bin(sig->r, s->r + sizeof(s->r) - len); len = BN_num_bytes(sig->s); assert(len <= sizeof(s->s)); BN_bn2bin(sig->s, s->s + sizeof(s->s) - len); ECDSA_SIG_free(sig); return s; } /* Only does SIGHASH_ALL */ static void sha256_tx_one_input(struct bitcoin_tx *tx, size_t input_num, const u8 *script, size_t script_len, struct sha256_double *hash) { struct sha256_ctx ctx = SHA256_INIT; size_t i; assert(input_num < tx->input_count); /* You must have all inputs zeroed to start. */ for (i = 0; i < tx->input_count; i++) assert(tx->input[i].script_length == 0); tx->input[input_num].script_length = script_len; tx->input[input_num].script = cast_const(u8 *, script); sha256_init(&ctx); sha256_tx(&ctx, tx); sha256_le32(&ctx, SIGHASH_ALL); sha256_double_done(&ctx, hash); /* Reset it for next time. */ tx->input[input_num].script_length = 0; tx->input[input_num].script = NULL; } struct signature *sign_tx_input(const tal_t *ctx, struct bitcoin_tx *tx, unsigned int in, const u8 *subscript, size_t subscript_len, EC_KEY *privkey) { struct sha256_double hash; sha256_tx_one_input(tx, in, subscript, subscript_len, &hash); return sign_hash(ctx, privkey, &hash); } static bool check_signed_hash(const struct sha256_double *hash, const struct signature *signature, const struct pubkey *key) { bool ok = false; BIGNUM r, s; ECDSA_SIG sig = { &r, &s }; EC_KEY *eckey = EC_KEY_new_by_curve_name(NID_secp256k1); const unsigned char *k = key->key; /* S must be even: https://github.com/sipa/bitcoin/commit/a81cd9680 */ assert((signature->s[31] & 1) == 0); /* Unpack public key. */ if (!o2i_ECPublicKey(&eckey, &k, pubkey_len(key))) goto out; /* Unpack signature. */ BN_init(&r); BN_init(&s); if (!BN_bin2bn(signature->r, sizeof(signature->r), &r) || !BN_bin2bn(signature->s, sizeof(signature->s), &s)) goto free_bns; /* Now verify hash with public key and signature. */ switch (ECDSA_do_verify(hash->sha.u.u8, sizeof(hash->sha.u), &sig, eckey)) { case 0: /* Invalid signature */ goto free_bns; case -1: /* Malformed or other error. */ goto free_bns; } ok = true; free_bns: BN_free(&r); BN_free(&s); out: EC_KEY_free(eckey); return ok; } bool check_2of2_sig(struct bitcoin_tx *tx, size_t input_num, const struct bitcoin_tx_output *output, const struct pubkey *key1, const struct pubkey *key2, const struct signature *sig1, const struct signature *sig2) { struct sha256_double hash; assert(input_num < tx->input_count); assert(is_p2sh(output->script, output->script_length)); sha256_tx_one_input(tx, input_num, output->script, output->script_length, &hash); return check_signed_hash(&hash, sig1, key1) && check_signed_hash(&hash, sig2, key2); } Signature *signature_to_proto(const tal_t *ctx, const struct signature *sig) { Signature *pb = tal(ctx, Signature); signature__init(pb); assert((sig->s[31] & 1) == 0); /* Kill me now... */ memcpy(&pb->r1, sig->r, 8); memcpy(&pb->r2, sig->r + 8, 8); memcpy(&pb->r3, sig->r + 16, 8); memcpy(&pb->r4, sig->r + 24, 8); memcpy(&pb->s1, sig->s, 8); memcpy(&pb->s2, sig->s + 8, 8); memcpy(&pb->s3, sig->s + 16, 8); memcpy(&pb->s4, sig->s + 24, 8); return pb; } bool proto_to_signature(const Signature *pb, struct signature *sig) { /* Kill me again. */ memcpy(sig->r, &pb->r1, 8); memcpy(sig->r + 8, &pb->r2, 8); memcpy(sig->r + 16, &pb->r3, 8); memcpy(sig->r + 24, &pb->r4, 8); memcpy(sig->s, &pb->s1, 8); memcpy(sig->s + 8, &pb->s2, 8); memcpy(sig->s + 16, &pb->s3, 8); memcpy(sig->s + 24, &pb->s4, 8); /* S must be even */ return (sig->s[31] & 1) == 0; }