#include #include #include #include #include #include #include #include #include #include #include #include #define SEGREGATED_WITNESS_FLAG 0x1 int bitcoin_tx_add_output(struct bitcoin_tx *tx, const u8 *script, struct amount_sat *amount) { size_t i = tx->wtx->num_outputs; struct wally_tx_output *output; assert(i < tx->wtx->outputs_allocation_len); assert(tx->wtx != NULL); wally_tx_output_init_alloc(amount->satoshis /* Raw: low-level helper */, script, tal_bytelen(script), &output); wally_tx_add_output(tx->wtx, output); wally_tx_output_free(output); return i; } int bitcoin_tx_add_input(struct bitcoin_tx *tx, const struct bitcoin_txid *txid, u32 outnum, u32 sequence, const struct amount_sat *amount, u8 *script) { size_t i = tx->wtx->num_inputs; struct wally_tx_input *input; assert(i < tx->wtx->inputs_allocation_len); assert(tx->wtx != NULL); wally_tx_input_init_alloc(txid->shad.sha.u.u8, sizeof(struct bitcoin_txid), outnum, sequence, script, tal_bytelen(script), NULL /* Empty witness stack */, &input); wally_tx_add_input(tx->wtx, input); wally_tx_input_free(input); /* Now store the input amount if we know it, so we can sign later */ tx->input_amounts[i] = tal_free(tx->input_amounts[i]); tx->input_amounts[i] = tal_dup(tx, struct amount_sat, amount); return i; } bool bitcoin_tx_check(const struct bitcoin_tx *tx) { u8 *newtx; size_t written; if (wally_tx_get_length(tx->wtx, WALLY_TX_FLAG_USE_WITNESS, &written) != WALLY_OK) return false; newtx = tal_arr(tmpctx, u8, written); if (wally_tx_to_bytes(tx->wtx, WALLY_TX_FLAG_USE_WITNESS, newtx, written, &written) != WALLY_OK) return false; if (written != tal_bytelen(newtx)) return false; return true; } void bitcoin_tx_output_set_amount(struct bitcoin_tx *tx, int outnum, struct amount_sat *amount) { assert(outnum < tx->wtx->num_outputs); tx->wtx->outputs[outnum].satoshi = amount->satoshis; /* Raw: low-level helper */ } const u8 *bitcoin_tx_output_get_script(const tal_t *ctx, const struct bitcoin_tx *tx, int outnum) { const struct wally_tx_output *output; u8 *res; assert(outnum < tx->wtx->num_outputs); output = &tx->wtx->outputs[outnum]; res = tal_arr(ctx, u8, output->script_len); memcpy(res, output->script, output->script_len); return res; } struct amount_sat bitcoin_tx_output_get_amount(const struct bitcoin_tx *tx, int outnum) { struct amount_sat amount; assert(outnum < tx->wtx->num_outputs); amount.satoshis = tx->wtx->outputs[outnum].satoshi; /* Raw: helper */ return amount; } void bitcoin_tx_input_set_witness(struct bitcoin_tx *tx, int innum, u8 **witness) { struct wally_tx_witness_stack *stack = NULL; size_t stack_size = tal_count(witness); /* Free any lingering witness */ if (witness) { wally_tx_witness_stack_init_alloc(stack_size, &stack); for (size_t i = 0; i < stack_size; i++) wally_tx_witness_stack_add(stack, witness[i], tal_bytelen(witness[i])); } wally_tx_set_input_witness(tx->wtx, innum, stack); if (stack) wally_tx_witness_stack_free(stack); tal_free(witness); } void bitcoin_tx_input_set_script(struct bitcoin_tx *tx, int innum, u8 *script) { wally_tx_set_input_script(tx->wtx, innum, script, tal_bytelen(script)); } const u8 *bitcoin_tx_input_get_witness(const tal_t *ctx, const struct bitcoin_tx *tx, int innum, int witnum) { const u8 *witness_item; struct wally_tx_witness_item *item; assert(innum < tx->wtx->num_inputs); assert(witnum < tx->wtx->inputs[innum].witness->num_items); item = &tx->wtx->inputs[innum].witness->items[witnum]; witness_item = tal_dup_arr(ctx, u8, item->witness, item->witness_len, 0); return witness_item; } void bitcoin_tx_input_get_txid(const struct bitcoin_tx *tx, int innum, struct bitcoin_txid *out) { assert(innum < tx->wtx->num_inputs); assert(sizeof(struct bitcoin_txid) == sizeof(tx->wtx->inputs[innum].txhash)); memcpy(out, tx->wtx->inputs[innum].txhash, sizeof(struct bitcoin_txid)); } /* BIP144: * If the witness is empty, the old serialization format should be used. */ static bool uses_witness(const struct bitcoin_tx *tx) { size_t i; for (i = 0; i < tx->wtx->num_inputs; i++) { if (tx->wtx->inputs[i].witness) return true; } return false; } /* BIP 141: The witness is a serialization of all witness data of the * transaction. Each txin is associated with a witness field. A * witness field starts with a var_int to indicate the number of stack * items for the txin. */ static void push_witnesses(const struct bitcoin_tx *tx, void (*push)(const void *, size_t, void *), void *pushp) { for (size_t i = 0; i < tx->wtx->num_inputs; i++) { struct wally_tx_witness_stack *witness = tx->wtx->inputs[i].witness; /* Not every input needs a witness. */ if (!witness) { push_varint(0, push, pushp); continue; } push_varint(witness->num_items, push, pushp); for (size_t j = 0; j < witness->num_items; j++) { size_t witlen = witness->items[j].witness_len; const u8 *wit = witness->items[j].witness; push_varint(witlen, push, pushp); push(wit, witlen, pushp); } } } /* For signing, we ignore input scripts on other inputs, and pretend * the current input has a certain script: this is indicated by a * non-NULL override_script. * * For this (and other signing weirdness like SIGHASH_SINGLE), we * also need the current input being signed; that's in input_num. * We also need sighash_type. */ static void push_tx(const struct bitcoin_tx *tx, const u8 *override_script, size_t input_num, void (*push)(const void *, size_t, void *), void *pushp, bool bip144) { int res; size_t len, written; u8 *serialized;; u8 flag = 0; if (bip144 && uses_witness(tx)) flag |= WALLY_TX_FLAG_USE_WITNESS; wally_tx_get_length(tx->wtx, flag, &len); serialized = tal_arr(tmpctx, u8, len); res = wally_tx_to_bytes(tx->wtx, flag, serialized, len, &written); assert(res == WALLY_OK && len == written); push(serialized, len, pushp); tal_free(serialized); } static void push_sha(const void *data, size_t len, void *shactx_) { struct sha256_ctx *ctx = shactx_; sha256_update(ctx, memcheck(data, len), len); } static void push_linearize(const void *data, size_t len, void *pptr_) { u8 **pptr = pptr_; size_t oldsize = tal_count(*pptr); tal_resize(pptr, oldsize + len); memcpy(*pptr + oldsize, memcheck(data, len), len); } u8 *linearize_tx(const tal_t *ctx, const struct bitcoin_tx *tx) { u8 *arr = tal_arr(ctx, u8, 0); push_tx(tx, NULL, 0, push_linearize, &arr, true); return arr; } static void push_measure(const void *data UNUSED, size_t len, void *lenp) { *(size_t *)lenp += len; } size_t measure_tx_weight(const struct bitcoin_tx *tx) { size_t non_witness_len = 0, witness_len = 0; push_tx(tx, NULL, 0, push_measure, &non_witness_len, false); if (uses_witness(tx)) { push_witnesses(tx, push_measure, &witness_len); /* Include BIP 144 marker and flag bytes in witness length */ witness_len += 2; } /* Normal bytes weigh 4 times more than Witness bytes */ return non_witness_len * 4 + witness_len; } void bitcoin_txid(const struct bitcoin_tx *tx, struct bitcoin_txid *txid) { struct sha256_ctx ctx = SHA256_INIT; /* For TXID, we never use extended form. */ push_tx(tx, NULL, 0, push_sha, &ctx, false); sha256_double_done(&ctx, &txid->shad); } /* Use the bitcoin_tx destructor to also free the wally_tx */ static void bitcoin_tx_destroy(struct bitcoin_tx *tx) { wally_tx_free(tx->wtx); } struct bitcoin_tx *bitcoin_tx(const tal_t *ctx, varint_t input_count, varint_t output_count) { struct bitcoin_tx *tx = tal(ctx, struct bitcoin_tx); wally_tx_init_alloc(WALLY_TX_VERSION_2, 0, input_count, output_count, &tx->wtx); tal_add_destructor(tx, bitcoin_tx_destroy); tx->input_amounts = tal_arrz(tx, struct amount_sat*, input_count); tx->wtx->locktime = 0; tx->wtx->version = 2; return tx; } struct bitcoin_tx *pull_bitcoin_tx(const tal_t *ctx, const u8 **cursor, size_t *max) { size_t wsize; struct bitcoin_tx *tx = tal(ctx, struct bitcoin_tx); if (wally_tx_from_bytes(*cursor, *max, 0, &tx->wtx) != WALLY_OK) { *cursor = 0; return tal_free(tx); } tal_add_destructor(tx, bitcoin_tx_destroy); wally_tx_get_length(tx->wtx, WALLY_TX_FLAG_USE_WITNESS, &wsize); /* We don't know the input amounts yet, so set them all to NULL */ tx->input_amounts = tal_arrz(tx, struct amount_sat *, tx->wtx->inputs_allocation_len); *cursor += wsize; *max -= wsize; return tx; } struct bitcoin_tx *bitcoin_tx_from_hex(const tal_t *ctx, const char *hex, size_t hexlen) { const char *end; u8 *linear_tx; const u8 *p; struct bitcoin_tx *tx; size_t len; end = memchr(hex, '\n', hexlen); if (!end) end = hex + hexlen; len = hex_data_size(end - hex); p = linear_tx = tal_arr(ctx, u8, len); if (!hex_decode(hex, end - hex, linear_tx, len)) goto fail; tx = pull_bitcoin_tx(ctx, &p, &len); if (!tx) goto fail; if (len) goto fail_free_tx; tal_free(linear_tx); return tx; fail_free_tx: tal_free(tx); fail: tal_free(linear_tx); return NULL; } /* . Bitcoind represents hashes as little-endian for RPC. */ static void reverse_bytes(u8 *arr, size_t len) { unsigned int i; for (i = 0; i < len / 2; i++) { unsigned char tmp = arr[i]; arr[i] = arr[len - 1 - i]; arr[len - 1 - i] = tmp; } } bool bitcoin_txid_from_hex(const char *hexstr, size_t hexstr_len, struct bitcoin_txid *txid) { if (!hex_decode(hexstr, hexstr_len, txid, sizeof(*txid))) return false; reverse_bytes(txid->shad.sha.u.u8, sizeof(txid->shad.sha.u.u8)); return true; } bool bitcoin_txid_to_hex(const struct bitcoin_txid *txid, char *hexstr, size_t hexstr_len) { struct sha256_double rev = txid->shad; reverse_bytes(rev.sha.u.u8, sizeof(rev.sha.u.u8)); return hex_encode(&rev, sizeof(rev), hexstr, hexstr_len); } static char *fmt_bitcoin_tx(const tal_t *ctx, const struct bitcoin_tx *tx) { u8 *lin = linearize_tx(ctx, tx); char *s = tal_hex(ctx, lin); tal_free(lin); return s; } static char *fmt_bitcoin_txid(const tal_t *ctx, const struct bitcoin_txid *txid) { char *hexstr = tal_arr(ctx, char, hex_str_size(sizeof(*txid))); bitcoin_txid_to_hex(txid, hexstr, hex_str_size(sizeof(*txid))); return hexstr; } REGISTER_TYPE_TO_STRING(bitcoin_tx, fmt_bitcoin_tx); REGISTER_TYPE_TO_STRING(bitcoin_txid, fmt_bitcoin_txid);