/* Test for state machine. */ #include #include #include #include #include #include #include #include #include #include #include "version.h" static bool record_input_mapping(int b); #define MAPPING_INPUTS(b) \ do { if (record_input_mapping(b)) return false; } while(0) #include "state.h" #include "gen_state_names.h" static bool quick = false; static bool dot_simplify = false; static bool dot_enable = false; static bool dot_include_abnormal = false; static bool dot_include_errors = false; static bool include_nops = false; static enum state_input *mapping_inputs; static bool do_decline; struct htlc { bool to_them; unsigned int id; }; struct htlc_progress { struct htlc htlc; /* id == -1 if none in progress. */ bool adding; /* otherwise, removing. */ }; struct htlc_spend_watch { unsigned int id; enum state_input done; }; /* Beyond this we consider cases equal for traverse loop detection. */ #define CAP_HTLCS 1 /* How many HTLCs to negotiate. */ #define MAX_HTLCS 2 /* But we can have many different malleated commit txs. */ #define HTLC_ARRSIZE 20 /* No padding, for fast compare and hashing. */ struct core_state { /* What bitcoin/timeout notifications are we subscribed to? */ uint64_t event_notifies; enum state state; enum state deferred_state; enum state_input current_command; enum state_input deferred_pkt; enum state_input outputs[4]; uint8_t num_outputs; bool pkt_inputs; bool cmd_inputs; /* Here down need to be generated from other fields */ bool has_current_htlc; uint8_t capped_htlcs_to_them; uint8_t capped_htlcs_to_us; uint8_t capped_htlc_spends_to_them; uint8_t capped_htlc_spends_to_us; uint8_t capped_live_htlcs_to_them; uint8_t capped_live_htlcs_to_us; bool valid; uint8_t pad[5]; }; struct state_data { struct core_state core; /* To store HTLC numbers. */ unsigned int pkt_data[4]; /* id == -1 if none currently. */ struct htlc_progress current_htlc; unsigned int num_htlcs_to_them, num_htlcs_to_us; struct htlc htlcs_to_them[MAX_HTLCS], htlcs_to_us[MAX_HTLCS]; unsigned int num_live_htlcs_to_them, num_live_htlcs_to_us; struct htlc live_htlcs_to_them[HTLC_ARRSIZE], live_htlcs_to_us[HTLC_ARRSIZE]; unsigned int num_htlc_spends_to_them, num_htlc_spends_to_us; struct htlc htlc_spends_to_us[HTLC_ARRSIZE], htlc_spends_to_them[HTLC_ARRSIZE]; unsigned int num_rvals_known; unsigned int rvals_known[HTLC_ARRSIZE]; const char *error; /* ID. */ const char *name; /* The other peer's sdata. */ struct state_data *peer; }; /* To recontruct errors. */ struct trail { struct trail *next; const char *problem; const char *name; enum state_input input; struct state_data before, after; int htlc_id; const char *pkt_sent; }; struct situation { union { struct core_state s; uint32_t u32[sizeof(struct core_state)/sizeof(uint32_t)]; } a, b; }; static const struct situation *situation_keyof(const struct situation *situation) { return situation; } /* After 2, we stop looping. */ static unsigned int cap(unsigned int val) { return val > CAP_HTLCS ? CAP_HTLCS : val; } static size_t situation_hash(const struct situation *situation) { BUILD_ASSERT(sizeof(situation->a.u32) == sizeof(situation->a.s)); return hash(situation->a.u32, ARRAY_SIZE(situation->a.u32), 0); } static bool situation_eq(const struct situation *a, const struct situation *b) { /* No padding */ BUILD_ASSERT(sizeof(a->a.s) == (sizeof(a->a.s.event_notifies) + sizeof(a->a.s.state) + sizeof(a->a.s.deferred_state) + sizeof(a->a.s.current_command) + sizeof(a->a.s.deferred_pkt) + sizeof(a->a.s.outputs) + sizeof(a->a.s.num_outputs) + sizeof(a->a.s.pkt_inputs) + sizeof(a->a.s.cmd_inputs) + sizeof(a->a.s.has_current_htlc) + sizeof(a->a.s.capped_htlcs_to_us) + sizeof(a->a.s.capped_htlcs_to_them) + sizeof(a->a.s.capped_htlc_spends_to_us) + sizeof(a->a.s.capped_htlc_spends_to_them) + sizeof(a->a.s.capped_live_htlcs_to_us) + sizeof(a->a.s.capped_live_htlcs_to_them) + sizeof(a->a.s.valid) + sizeof(a->a.s.pad))); return structeq(&a->a.s, &b->a.s) && structeq(&a->b.s, &b->b.s); } struct dot_edge { const char *oldstate, *newstate; enum state_input i; const char *pkt; }; static const struct dot_edge *dot_edge_keyof(const struct dot_edge *dot_edge) { return dot_edge; } static size_t dot_edge_hash(const struct dot_edge *d) { uint32_t pkthash; if (d->pkt) pkthash = hash(d->pkt, strlen(d->pkt), d->i); else pkthash = d->i; return hash_pointer(d->oldstate, hash_pointer(d->newstate, pkthash)); } static bool dot_edge_eq(const struct dot_edge *a, const struct dot_edge *b) { return a->oldstate == b->oldstate && a->newstate == b->newstate && a->i == b->i && ((a->pkt == NULL && b->pkt == NULL) || streq(a->pkt, b->pkt)); } HTABLE_DEFINE_TYPE(struct dot_edge, dot_edge_keyof, dot_edge_hash, dot_edge_eq, edge_hash); HTABLE_DEFINE_TYPE(struct situation, situation_keyof, situation_hash, situation_eq, sithash); struct hist { /* All the different state combinations. */ struct sithash sithash; /* The different inputs. */ enum state_input **inputs_per_state; /* The different outputs. */ enum state_input *outputs; /* Edges for the dot graph, if any. */ struct edge_hash edges; /* For dumping states. */ struct state_dump { enum state_input input; enum state next; enum state_input pkt; } **state_dump; }; static const char *state_name(enum state s) { size_t i; for (i = 0; enum_state_names[i].name; i++) if (enum_state_names[i].v == s) return enum_state_names[i].name; return "unknown"; } static const char *input_name(enum state_input in) { size_t i; for (i = 0; enum_state_input_names[i].name; i++) if (enum_state_input_names[i].v == in) return enum_state_input_names[i].name; return "unknown"; } static enum state_input input_by_name(const char *name) { size_t i; for (i = 0; enum_state_input_names[i].name; i++) { if (!strstarts(name, enum_state_input_names[i].name)) continue; if (name[strlen(enum_state_input_names[i].name)] == '\0' || name[strlen(enum_state_input_names[i].name)] == ':') return enum_state_input_names[i].v; } abort(); } /* We don't bother with lifetime issues */ static Pkt *set_errpkt(const tal_t *ctx, const Pkt *pkt) { return (Pkt *)pkt; } static Pkt *new_pkt(const tal_t *ctx, enum state_input i) { return (Pkt *)input_name(i); } static unsigned int htlc_id_from_pkt(const Pkt *pkt) { const char *s = strstr((const char *)pkt, ": HTLC #"); return s ? atoi(s + strlen(": HTLC #")) : -1U; } static Pkt *htlc_pkt(const tal_t *ctx, const char *prefix, unsigned int id) { return (Pkt *)tal_fmt(ctx, "%s: HTLC #%u", prefix, id); } static unsigned int htlc_id_from_tx(const struct bitcoin_tx *tx) { const char *s = strstr((const char *)tx, "HTLC #"); return atoi(s + strlen("HTLC #")); } static struct bitcoin_tx *htlc_tx(const tal_t *ctx, const char *prefix, unsigned int id) { return (struct bitcoin_tx *)tal_fmt(ctx, "%s HTLC #%u", prefix, id); } static struct htlc *find_any_htlc(const struct htlc *htlcs, size_t num, unsigned id) { unsigned int i; for (i = 0; i < num; i++) if (htlcs[i].id == id) return (struct htlc *)htlcs + i; return NULL; } static struct htlc *find_htlc(const struct state_data *sdata, unsigned id) { const struct htlc *h; h = find_any_htlc(sdata->htlcs_to_us, sdata->num_htlcs_to_us, id); if (!h) h = find_any_htlc(sdata->htlcs_to_them, sdata->num_htlcs_to_them, id); return (struct htlc *)h; } static struct htlc *find_live_htlc(const struct state_data *sdata, unsigned id) { const struct htlc *h; h = find_any_htlc(sdata->live_htlcs_to_us, sdata->num_live_htlcs_to_us, id); if (!h) h = find_any_htlc(sdata->live_htlcs_to_them, sdata->num_live_htlcs_to_them, id); return (struct htlc *)h; } static struct htlc *find_htlc_spend(const struct state_data *sdata, unsigned id) { const struct htlc *h; h = find_any_htlc(sdata->htlc_spends_to_us, sdata->num_htlc_spends_to_us, id); if (!h) h = find_any_htlc(sdata->htlc_spends_to_them, sdata->num_htlc_spends_to_them, id); return (struct htlc *)h; } Pkt *pkt_open(const tal_t *ctx, const struct state_data *sdata) { return new_pkt(ctx, PKT_OPEN); } Pkt *pkt_anchor(const tal_t *ctx, const struct state_data *sdata) { return new_pkt(ctx, PKT_OPEN_ANCHOR); } Pkt *pkt_open_commit_sig(const tal_t *ctx, const struct state_data *sdata) { return new_pkt(ctx, PKT_OPEN_COMMIT_SIG); } Pkt *pkt_open_complete(const tal_t *ctx, const struct state_data *sdata) { return new_pkt(ctx, PKT_OPEN_COMPLETE); } Pkt *pkt_htlc_update(const tal_t *ctx, const struct state_data *sdata, const struct htlc_progress *htlc_prog) { return htlc_pkt(ctx, "PKT_UPDATE_ADD_HTLC", htlc_prog->htlc.id); } Pkt *pkt_htlc_fulfill(const tal_t *ctx, const struct state_data *sdata, const struct htlc_progress *htlc_prog) { return htlc_pkt(ctx, "PKT_UPDATE_FULFILL_HTLC", htlc_prog->htlc.id); } Pkt *pkt_htlc_timedout(const tal_t *ctx, const struct state_data *sdata, const struct htlc_progress *htlc_prog) { return htlc_pkt(ctx, "PKT_UPDATE_TIMEDOUT_HTLC", htlc_prog->htlc.id); } Pkt *pkt_htlc_routefail(const tal_t *ctx, const struct state_data *sdata, const struct htlc_progress *htlc_prog) { return htlc_pkt(ctx, "PKT_UPDATE_ROUTEFAIL_HTLC", htlc_prog->htlc.id); } Pkt *pkt_update_accept(const tal_t *ctx, const struct state_data *sdata) { return new_pkt(ctx, PKT_UPDATE_ACCEPT); } Pkt *pkt_update_signature(const tal_t *ctx, const struct state_data *sdata) { return new_pkt(ctx, PKT_UPDATE_SIGNATURE); } Pkt *pkt_update_complete(const tal_t *ctx, const struct state_data *sdata) { return new_pkt(ctx, PKT_UPDATE_COMPLETE); } Pkt *pkt_err(const tal_t *ctx, const char *msg) { return (Pkt *)tal_fmt(ctx, "PKT_ERROR: %s", msg); } Pkt *pkt_close(const tal_t *ctx, const struct state_data *sdata) { return new_pkt(ctx, PKT_CLOSE); } Pkt *pkt_close_complete(const tal_t *ctx, const struct state_data *sdata) { return new_pkt(ctx, PKT_CLOSE_COMPLETE); } Pkt *pkt_close_ack(const tal_t *ctx, const struct state_data *sdata) { return new_pkt(ctx, PKT_CLOSE_ACK); } Pkt *unexpected_pkt(const tal_t *ctx, enum state_input input) { return pkt_err(ctx, "Unexpected pkt"); } Pkt *accept_pkt_open(struct state_effect *effect, const struct state_data *sdata, const Pkt *pkt) { return NULL; } Pkt *accept_pkt_anchor(struct state_effect *effect, const struct state_data *sdata, const Pkt *pkt) { return NULL; } Pkt *accept_pkt_open_commit_sig(struct state_effect *effect, const struct state_data *sdata, const Pkt *pkt) { return NULL; } Pkt *accept_pkt_htlc_update(struct state_effect *effect, const struct state_data *sdata, const Pkt *pkt, Pkt **decline, struct htlc_progress **htlcprog) { if (do_decline) *decline = new_pkt(effect, PKT_UPDATE_DECLINE_HTLC); else { *decline = NULL; *htlcprog = tal(effect, struct htlc_progress); /* If they propose it, it's to us. */ (*htlcprog)->htlc.to_them = false; (*htlcprog)->htlc.id = htlc_id_from_pkt(pkt); (*htlcprog)->adding = true; } return NULL; } Pkt *accept_pkt_htlc_routefail(struct state_effect *effect, const struct state_data *sdata, const Pkt *pkt, struct htlc_progress **htlcprog) { unsigned int id = htlc_id_from_pkt(pkt); const struct htlc *h = find_htlc(sdata, id); /* The shouldn't fail unless it's to them */ assert(h->to_them); *htlcprog = tal(effect, struct htlc_progress); (*htlcprog)->htlc = *h; (*htlcprog)->adding = false; return NULL; } Pkt *accept_pkt_htlc_timedout(struct state_effect *effect, const struct state_data *sdata, const Pkt *pkt, struct htlc_progress **htlcprog) { unsigned int id = htlc_id_from_pkt(pkt); const struct htlc *h = find_htlc(sdata, id); /* The shouldn't timeout unless it's to us */ assert(!h->to_them); *htlcprog = tal(effect, struct htlc_progress); (*htlcprog)->htlc = *h; (*htlcprog)->adding = false; return NULL; } Pkt *accept_pkt_htlc_fulfill(struct state_effect *effect, const struct state_data *sdata, const Pkt *pkt, struct htlc_progress **htlcprog) { unsigned int id = htlc_id_from_pkt(pkt); const struct htlc *h = find_htlc(sdata, id); /* The shouldn't complete unless it's to them */ assert(h->to_them); *htlcprog = tal(effect, struct htlc_progress); (*htlcprog)->htlc = *h; (*htlcprog)->adding = false; return NULL; } Pkt *accept_pkt_update_accept(struct state_effect *effect, const struct state_data *sdata, const Pkt *pkt, struct signature **sig) { *sig = (struct signature *)tal_strdup(effect, "from PKT_UPDATE_ACCEPT"); return NULL; } Pkt *accept_pkt_update_complete(struct state_effect *effect, const struct state_data *sdata, const Pkt *pkt) { return NULL; } Pkt *accept_pkt_update_signature(struct state_effect *effect, const struct state_data *sdata, const Pkt *pkt, struct signature **sig) { *sig = (struct signature *)tal_strdup(effect, "from PKT_UPDATE_SIGNATURE"); return NULL; } Pkt *accept_pkt_close(struct state_effect *effect, const struct state_data *sdata, const Pkt *pkt) { return NULL; } Pkt *accept_pkt_close_complete(struct state_effect *effect, const struct state_data *sdata, const Pkt *pkt) { return NULL; } Pkt *accept_pkt_simultaneous_close(struct state_effect *effect, const struct state_data *sdata, const Pkt *pkt) { return NULL; } Pkt *accept_pkt_close_ack(struct state_effect *effect, const struct state_data *sdata, const Pkt *pkt) { return NULL; } static struct bitcoin_tx *bitcoin_tx(const char *str) { return (struct bitcoin_tx *)str; } static bool bitcoin_tx_is(const struct bitcoin_tx *btx, const char *str) { return streq((const char *)btx, str); } struct bitcoin_tx *bitcoin_anchor(const tal_t *ctx, const struct state_data *sdata) { return bitcoin_tx("anchor"); } static bool have_event(uint64_t events, enum state_input input) { return events & (1ULL << input); } static bool add_event_(uint64_t *events, enum state_input input) { /* This is how they say "no event please" */ if (input == INPUT_NONE) return true; assert(input < 64); if (have_event(*events, input)) return false; *events |= (1ULL << input); return true; } static bool remove_event_(uint64_t *events, enum state_input input) { /* This is how they say "no event please" */ if (input == INPUT_NONE) return true; assert(input < 64); if (!have_event(*events, input)) return false; *events &= ~(1ULL << input); return true; } static void remove_event(uint64_t *events, enum state_input input) { #ifdef NDEBUG #error "Don't run tests with NDEBUG" #endif assert(remove_event_(events, input)); } static void add_event(uint64_t *events, enum state_input input) { #ifdef NDEBUG #error "Don't run tests with NDEBUG" #endif assert(add_event_(events, input)); } struct watch { uint64_t events; }; struct watch *bitcoin_watch_anchor(const tal_t *ctx, const struct state_data *sdata, enum state_input depthok, enum state_input timeout, enum state_input unspent, enum state_input theyspent, enum state_input otherspent) { struct watch *watch = talz(ctx, struct watch); add_event(&watch->events, depthok); add_event(&watch->events, timeout); add_event(&watch->events, unspent); add_event(&watch->events, theyspent); add_event(&watch->events, otherspent); /* We assume these values in activate_event. */ assert(timeout == BITCOIN_ANCHOR_TIMEOUT || timeout == INPUT_NONE); assert(depthok == BITCOIN_ANCHOR_DEPTHOK); return watch; } struct watch *bitcoin_unwatch_anchor_depth(const tal_t *ctx, const struct state_data *sdata, enum state_input depthok, enum state_input timeout) { struct watch *watch = talz(ctx, struct watch); add_event(&watch->events, depthok); add_event(&watch->events, timeout); return watch; } /* Wait for our commit to be spendable. */ struct watch *bitcoin_watch_delayed(const struct state_effect *effect, const struct bitcoin_tx *tx, enum state_input canspend) { struct watch *watch = talz(effect, struct watch); assert(bitcoin_tx_is(tx, "our commit")); add_event(&watch->events, canspend); return watch; } /* Wait for commit to be very deeply buried (so we no longer need to * even watch) */ struct watch *bitcoin_watch(const struct state_effect *effect, const struct bitcoin_tx *tx, enum state_input done) { struct watch *watch = talz(effect, struct watch); if (done == BITCOIN_STEAL_DONE) assert(bitcoin_tx_is(tx, "steal")); else if (done == BITCOIN_SPEND_THEIRS_DONE) assert(bitcoin_tx_is(tx, "spend their commit")); else if (done == BITCOIN_SPEND_OURS_DONE) assert(bitcoin_tx_is(tx, "spend our commit")); else errx(1, "Unknown watch effect %s", input_name(done)); add_event(&watch->events, done); return watch; } /* Other side should drop close tx; watch for it. */ struct watch *bitcoin_watch_close(const tal_t *ctx, const struct state_data *sdata, enum state_input done) { struct watch *watch = talz(ctx, struct watch); add_event(&watch->events, done); return watch; } struct bitcoin_tx *bitcoin_close(const tal_t *ctx, const struct state_data *sdata) { return bitcoin_tx("close"); } struct bitcoin_tx *bitcoin_spend_ours(const tal_t *ctx, const struct state_data *sdata) { return bitcoin_tx("spend our commit"); } struct bitcoin_tx *bitcoin_spend_theirs(const tal_t *ctx, const struct state_data *sdata, const struct bitcoin_event *btc) { return bitcoin_tx("spend their commit"); } struct bitcoin_tx *bitcoin_steal(const tal_t *ctx, const struct state_data *sdata, struct bitcoin_event *btc) { /* FIXME: Test this failing! */ return bitcoin_tx("steal"); } struct bitcoin_tx *bitcoin_commit(const tal_t *ctx, const struct state_data *sdata) { return bitcoin_tx("our commit"); } /* Create a HTLC refund collection */ struct bitcoin_tx *bitcoin_htlc_timeout(const tal_t *ctx, const struct state_data *sdata, const struct htlc *htlc) { return htlc_tx(ctx, "htlc timeout", htlc->id); } /* Create a HTLC collection */ struct bitcoin_tx *bitcoin_htlc_spend(const tal_t *ctx, const struct state_data *sdata, const struct htlc *htlc) { return htlc_tx(ctx, "htlc fulfill", htlc->id); } bool committed_to_htlcs(const struct state_data *sdata) { return sdata->num_htlcs_to_them != 0 || sdata->num_htlcs_to_us != 0; } struct htlc_watch { enum state_input tous_timeout; enum state_input tothem_spent; enum state_input tothem_timeout; unsigned int num_htlcs_to_us, num_htlcs_to_them; struct htlc htlcs_to_us[MAX_HTLCS], htlcs_to_them[MAX_HTLCS]; }; struct htlc_unwatch { unsigned int id; enum state_input all_done; }; struct htlc_watch *htlc_outputs_our_commit(const tal_t *ctx, const struct state_data *sdata, const struct bitcoin_tx *tx, enum state_input tous_timeout, enum state_input tothem_spent, enum state_input tothem_timeout) { struct htlc_watch *w = tal(ctx, struct htlc_watch); /* We assume these. */ assert(tous_timeout == BITCOIN_HTLC_TOUS_TIMEOUT); assert(tothem_spent == BITCOIN_HTLC_TOTHEM_SPENT); assert(tothem_timeout == BITCOIN_HTLC_TOTHEM_TIMEOUT); w->tous_timeout = tous_timeout; w->tothem_spent = tothem_spent; w->tothem_timeout = tothem_timeout; w->num_htlcs_to_us = sdata->num_htlcs_to_us; w->num_htlcs_to_them = sdata->num_htlcs_to_them; BUILD_ASSERT(sizeof(sdata->htlcs_to_us) == sizeof(w->htlcs_to_us)); BUILD_ASSERT(sizeof(sdata->htlcs_to_them) == sizeof(w->htlcs_to_them)); memcpy(w->htlcs_to_us, sdata->htlcs_to_us, sizeof(sdata->htlcs_to_us)); memcpy(w->htlcs_to_them, sdata->htlcs_to_them, sizeof(sdata->htlcs_to_them)); if (!w->num_htlcs_to_us && !w->num_htlcs_to_them) return tal_free(w); return w; } struct htlc_watch *htlc_outputs_their_commit(const tal_t *ctx, const struct state_data *sdata, const struct bitcoin_event *tx, enum state_input tous_timeout, enum state_input tothem_spent, enum state_input tothem_timeout) { struct htlc_watch *w = tal(ctx, struct htlc_watch); unsigned int i; /* We assume these. */ assert(tous_timeout == BITCOIN_HTLC_TOUS_TIMEOUT); assert(tothem_spent == BITCOIN_HTLC_TOTHEM_SPENT); assert(tothem_timeout == BITCOIN_HTLC_TOTHEM_TIMEOUT); w->tous_timeout = tous_timeout; w->tothem_spent = tothem_spent; w->tothem_timeout = tothem_timeout; /* It's what our peer thinks is current... */ w->num_htlcs_to_us = sdata->peer->num_htlcs_to_them; w->num_htlcs_to_them = sdata->peer->num_htlcs_to_us; BUILD_ASSERT(sizeof(sdata->peer->htlcs_to_them) == sizeof(w->htlcs_to_us)); BUILD_ASSERT(sizeof(sdata->peer->htlcs_to_us) == sizeof(w->htlcs_to_them)); memcpy(w->htlcs_to_us, sdata->peer->htlcs_to_them, sizeof(w->htlcs_to_us)); memcpy(w->htlcs_to_them, sdata->peer->htlcs_to_us, sizeof(w->htlcs_to_them)); if (!w->num_htlcs_to_us && !w->num_htlcs_to_them) return tal_free(w); /* Reverse perspective, mark rvalue unknown */ for (i = 0; i < w->num_htlcs_to_us; i++) { assert(w->htlcs_to_us[i].to_them); w->htlcs_to_us[i].to_them = false; } for (i = 0; i < w->num_htlcs_to_them; i++) { assert(!w->htlcs_to_them[i].to_them); w->htlcs_to_them[i].to_them = true; } return w; } struct htlc_unwatch *htlc_unwatch(const tal_t *ctx, const struct htlc *htlc, enum state_input all_done) { struct htlc_unwatch *w = tal(ctx, struct htlc_unwatch); w->id = htlc->id; assert(w->id != -1U); w->all_done = all_done; return w; } struct htlc_unwatch *htlc_unwatch_all(const tal_t *ctx, const struct state_data *sdata) { struct htlc_unwatch *w = tal(ctx, struct htlc_unwatch); w->id = -1U; return w; } struct htlc_spend_watch *htlc_spend_watch(const tal_t *ctx, const struct bitcoin_tx *tx, const struct command *cmd, enum state_input done) { struct htlc_spend_watch *w = tal(ctx, struct htlc_spend_watch); w->id = htlc_id_from_tx(tx); w->done = done; return w; } struct htlc_spend_watch *htlc_spend_unwatch(const tal_t *ctx, const struct htlc *htlc, enum state_input all_done) { struct htlc_spend_watch *w = tal(ctx, struct htlc_spend_watch); w->id = htlc->id; w->done = all_done; return w; } struct htlc_rval { unsigned int id; }; struct htlc_rval *r_value_from_cmd(const tal_t *ctx, const struct state_data *sdata, const struct htlc *htlc) { struct htlc_rval *r = tal(ctx, struct htlc_rval); r->id = htlc->id; return r; } struct htlc_rval *bitcoin_r_value(const tal_t *ctx, const struct htlc *htlc) { struct htlc_rval *r = tal(ctx, struct htlc_rval); r->id = htlc->id; return r; } struct htlc_rval *r_value_from_pkt(const tal_t *ctx, const Pkt *pkt) { struct htlc_rval *r = tal(ctx, struct htlc_rval); r->id = htlc_id_from_pkt(pkt); return r; } #include "state.c" #include #include static void sdata_init(struct state_data *sdata, struct state_data *other, enum state_input initstate, const char *name) { sdata->core.state = initstate; sdata->core.num_outputs = 1; sdata->current_htlc.htlc.id = -1; sdata->num_htlcs_to_us = 0; sdata->num_htlcs_to_them = 0; sdata->num_live_htlcs_to_us = 0; sdata->num_live_htlcs_to_them = 0; sdata->num_htlc_spends_to_us = 0; sdata->num_htlc_spends_to_them = 0; sdata->num_rvals_known = 0; memset(sdata->core.pad, 0, sizeof(sdata->core.pad)); sdata->error = NULL; memset(sdata->core.outputs, 0, sizeof(sdata->core.outputs)); sdata->core.deferred_pkt = INPUT_NONE; sdata->core.deferred_state = STATE_MAX; sdata->core.outputs[0] = INPUT_NONE; sdata->pkt_data[0] = -1; sdata->core.current_command = INPUT_NONE; sdata->core.event_notifies = 0; sdata->core.pkt_inputs = true; sdata->core.cmd_inputs = true; sdata->name = name; sdata->peer = other; } static void copy_peers(struct state_data *dst, struct state_data *peer, const struct state_data *src) { *dst = *src; *peer = *src->peer; dst->peer = peer; peer->peer = dst; } /* Recursion! */ static struct trail *run_peer(const struct state_data *sdata, bool normalpath, bool errorpath, size_t depth, struct hist *hist); static void update_core(struct core_state *core, const struct state_data *sdata) { core->has_current_htlc = sdata->current_htlc.htlc.id != -1; core->capped_htlcs_to_us = cap(sdata->num_htlcs_to_us); core->capped_htlcs_to_them = cap(sdata->num_htlcs_to_them); core->capped_live_htlcs_to_us = cap(sdata->num_live_htlcs_to_us); core->capped_live_htlcs_to_them = cap(sdata->num_live_htlcs_to_them); core->capped_htlc_spends_to_us = cap(sdata->num_htlc_spends_to_us); core->capped_htlc_spends_to_them = cap(sdata->num_htlc_spends_to_them); core->valid = true; } /* Returns false if we've been here before. */ static bool sithash_update(struct sithash *sithash, const struct state_data *sdata) { struct situation sit; if (streq(sdata->name, "A")) { sit.a.s = sdata->core; update_core(&sit.a.s, sdata); /* If we're still talking to peer, their state matters. */ if (sdata->core.pkt_inputs || sdata->peer->core.pkt_inputs) { sit.b.s = sdata->peer->core; update_core(&sit.b.s, sdata->peer); } else memset(&sit.b.s, 0, sizeof(sit.b.s)); } else { sit.b.s = sdata->core; update_core(&sit.b.s, sdata); /* If we're still talking to peer, their state matters. */ if (sdata->core.pkt_inputs || sdata->peer->core.pkt_inputs) { sit.a.s = sdata->peer->core; update_core(&sit.a.s, sdata->peer); } else memset(&sit.a.s, 0, sizeof(sit.a.s)); } if (sithash_get(sithash, &sit)) return false; sithash_add(sithash, tal_dup(NULL, struct situation, &sit)); return true; } static struct trail *add_trail(enum state_input input, const union input *idata, const struct state_data *before, const struct state_data *after, const struct state_effect *effects, struct trail *next) { struct trail *t = tal(NULL, struct trail); t->name = before->name; t->problem = next ? next->problem : NULL; t->next = tal_steal(t, next); t->input = input; t->before = *before; t->after = *after; if (input == CMD_SEND_HTLC_FULFILL || input == INPUT_RVALUE || input == BITCOIN_HTLC_TOTHEM_TIMEOUT || input == BITCOIN_HTLC_TOTHEM_SPENT || input == BITCOIN_HTLC_TOUS_TIMEOUT || input == BITCOIN_HTLC_FULFILL_SPEND_DONE || input == BITCOIN_HTLC_RETURN_SPEND_DONE) t->htlc_id = idata->htlc->id; else if (input == PKT_UPDATE_ADD_HTLC) t->htlc_id = htlc_id_from_pkt(idata->pkt); else t->htlc_id = -1; t->pkt_sent = (const char *)effects->send; return t; } static struct trail *new_trail(enum state_input input, const union input *idata, const struct state_data *before, const struct state_data *after, const struct state_effect *effects, const char *problem) { struct trail *t = add_trail(input, idata, before, after, effects, NULL); t->problem = problem; return t; } static bool is_current_command(const struct state_data *sdata, enum state_input cmd) { if (cmd == CMD_SEND_UPDATE_ANY) { return is_current_command(sdata, CMD_SEND_HTLC_UPDATE) || is_current_command(sdata, CMD_SEND_HTLC_FULFILL) || is_current_command(sdata, CMD_SEND_HTLC_TIMEDOUT) || is_current_command(sdata, CMD_SEND_HTLC_ROUTEFAIL); } return sdata->core.current_command == cmd; } static void add_htlc(struct htlc *to_us, unsigned int *num_to_us, struct htlc *to_them, unsigned int *num_to_them, size_t arrsize, const struct htlc *h) { struct htlc *arr; unsigned int *n; if (h->to_them) { arr = to_them; n = num_to_them; } else { arr = to_us; n = num_to_us; } assert(*n < arrsize); arr[(*n)++] = *h; } static void remove_htlc(struct htlc *to_us, unsigned int *num_to_us, struct htlc *to_them, unsigned int *num_to_them, size_t arrsize, const struct htlc *h) { size_t off; struct htlc *arr; unsigned int *n; if (h->to_them) { arr = to_them; n = num_to_them; } else { arr = to_us; n = num_to_us; } assert(*n <= arrsize); assert(h >= arr && h < arr + *n); off = h - arr; memmove(arr + off, arr + off + 1, (char *)(arr + *n) - (char *)(h + 1)); (*n)--; } static bool outstanding_htlc_watches(const struct state_data *sdata) { return sdata->num_live_htlcs_to_us || sdata->num_live_htlcs_to_them || sdata->num_htlc_spends_to_us || sdata->num_htlc_spends_to_them; } static bool rval_known(const struct state_data *sdata, unsigned int id) { unsigned int i; for (i = 0; i < sdata->num_rvals_known; i++) if (sdata->rvals_known[i] == id) return true; return false; } static const char *apply_effects(struct state_data *sdata, const struct state_effect *effect) { if (effect->send) { const char *pkt = (const char *)effect->send; /* Check for errors. */ if (strstarts(pkt, "ERROR_PKT:")) { /* Some are expected. */ if (!streq(pkt, "ERROR_PKT:Commit tx noticed") && !streq(pkt, "ERROR_PKT:Otherspend noticed") && !streq(pkt, "ERROR_PKT:Anchor timed out") && !streq(pkt, "ERROR_PKT:Close timed out") && !streq(pkt, "ERROR_PKT:Close forced due to HTLCs")) { return pkt; } } assert(sdata->core.num_outputs core.outputs)); sdata->core.outputs[sdata->core.num_outputs] = input_by_name(pkt); sdata->pkt_data[sdata->core.num_outputs++] = htlc_id_from_pkt(effect->send); } if (effect->watch) { /* We can have multiple steals or spendtheirs in flight, so make exceptions for BITCOIN_STEAL_DONE/BITCOIN_SPEND_THEIRS_DONE */ if (sdata->core.event_notifies & (1ULL << BITCOIN_STEAL_DONE) & effect->watch->events) remove_event(&effect->watch->events, BITCOIN_STEAL_DONE); if (sdata->core.event_notifies & (1ULL << BITCOIN_SPEND_THEIRS_DONE) & effect->watch->events) remove_event(&effect->watch->events, BITCOIN_SPEND_THEIRS_DONE); if (sdata->core.event_notifies & effect->watch->events) return "event set twice"; sdata->core.event_notifies |= effect->watch->events; } if (effect->unwatch) { if ((sdata->core.event_notifies & effect->unwatch->events) != effect->unwatch->events) return "unset event unwatched"; sdata->core.event_notifies &= ~effect->unwatch->events; } if (effect->defer != INPUT_NONE) { /* If it was current command, it is no longer. */ if (is_current_command(sdata, effect->defer)) sdata->core.current_command = INPUT_NONE; else if (input_is_pkt(effect->defer)) { /* Unlike commands, which we always resubmit, * we have to remember deferred packets. */ /* We assume only one deferrment! */ assert(sdata->core.deferred_pkt == INPUT_NONE || sdata->core.deferred_pkt == effect->defer); sdata->core.deferred_pkt = effect->defer; sdata->core.deferred_state = sdata->core.state; } } if (effect->complete != INPUT_NONE) { if (!is_current_command(sdata, effect->complete)) return tal_fmt(NULL, "Completed %s not %s", input_name(effect->complete), input_name(sdata->core.current_command)); sdata->core.current_command = INPUT_NONE; } if (effect->stop_packets) { if (!sdata->core.pkt_inputs) return "stop_packets twice"; sdata->core.pkt_inputs = false; /* Can no longer receive packet timeouts, either. */ remove_event_(&sdata->core.event_notifies, INPUT_CLOSE_COMPLETE_TIMEOUT); } if (effect->stop_commands) { if (!sdata->core.cmd_inputs) return "stop_commands twice"; if (sdata->core.current_command != INPUT_NONE) return tal_fmt(NULL, "stop_commands with pending command %s", input_name(sdata->core.current_command)); sdata->core.cmd_inputs = false; } if (effect->close_timeout != INPUT_NONE) { add_event(&sdata->core.event_notifies, effect->close_timeout); /* We assume this. */ assert(effect->close_timeout == INPUT_CLOSE_COMPLETE_TIMEOUT); } if (effect->in_error) { /* We should stop talking to them after error received. */ if (sdata->core.pkt_inputs) return "packets still open after error pkt"; } /* We can abandon and add a new one, if we're LOWPRIO */ if (effect->htlc_abandon) { if (sdata->current_htlc.htlc.id == -1) return "HTLC not in progress, can't abandon"; if (effect->htlc_fulfill) return "Complete and abandon?"; sdata->current_htlc.htlc.id = -1; } if (effect->htlc_in_progress) { if (sdata->current_htlc.htlc.id != -1) return "HTLC already in progress"; if (effect->htlc_fulfill) return "Complete in one step?"; sdata->current_htlc = *effect->htlc_in_progress; } if (effect->htlc_fulfill) { if (sdata->current_htlc.htlc.id == -1) return "HTLC not in progress, can't complete"; if (sdata->current_htlc.adding) { add_htlc(sdata->htlcs_to_us, &sdata->num_htlcs_to_us, sdata->htlcs_to_them, &sdata->num_htlcs_to_them, ARRAY_SIZE(sdata->htlcs_to_us), &sdata->current_htlc.htlc); } else { const struct htlc *h; h = find_htlc(sdata, sdata->current_htlc.htlc.id); if (!h) return "Removing nonexistent HTLC?"; if (h->to_them != sdata->current_htlc.htlc.to_them) return "Removing disagreed about to_them"; remove_htlc(sdata->htlcs_to_us, &sdata->num_htlcs_to_us, sdata->htlcs_to_them, &sdata->num_htlcs_to_them, ARRAY_SIZE(sdata->htlcs_to_us), h); } sdata->current_htlc.htlc.id = -1; } if (effect->r_value) { /* We set r_value when they spend an HTLC, so we can set this * multiple times (multiple commit txs) */ if (!rval_known(sdata, effect->r_value->id)) { if (sdata->num_rvals_known == ARRAY_SIZE(sdata->rvals_known)) return "Too many rvals"; sdata->rvals_known[sdata->num_rvals_known++] = effect->r_value->id; } } if (effect->watch_htlcs) { assert(sdata->num_live_htlcs_to_us + effect->watch_htlcs->num_htlcs_to_us <= ARRAY_SIZE(sdata->live_htlcs_to_us)); assert(sdata->num_live_htlcs_to_them + effect->watch_htlcs->num_htlcs_to_them <= ARRAY_SIZE(sdata->live_htlcs_to_them)); memcpy(sdata->live_htlcs_to_us + sdata->num_live_htlcs_to_us, effect->watch_htlcs->htlcs_to_us, effect->watch_htlcs->num_htlcs_to_us * sizeof(effect->watch_htlcs->htlcs_to_us[0])); memcpy(sdata->live_htlcs_to_them + sdata->num_live_htlcs_to_them, effect->watch_htlcs->htlcs_to_them, effect->watch_htlcs->num_htlcs_to_them * sizeof(effect->watch_htlcs->htlcs_to_them[0])); sdata->num_live_htlcs_to_us += effect->watch_htlcs->num_htlcs_to_us; sdata->num_live_htlcs_to_them += effect->watch_htlcs->num_htlcs_to_them; /* Can happen if we were finished, then new commit tx */ remove_event_(&sdata->core.event_notifies, INPUT_NO_MORE_HTLCS); } if (effect->watch_htlc_spend) { const struct htlc *h; h = find_live_htlc(sdata, effect->watch_htlc_spend->id); add_htlc(sdata->htlc_spends_to_us, &sdata->num_htlc_spends_to_us, sdata->htlc_spends_to_them, &sdata->num_htlc_spends_to_them, ARRAY_SIZE(sdata->htlc_spends_to_us), h); /* We assume this */ if (h->to_them) assert(effect->watch_htlc_spend->done == BITCOIN_HTLC_RETURN_SPEND_DONE); else assert(effect->watch_htlc_spend->done == BITCOIN_HTLC_FULFILL_SPEND_DONE); } if (effect->unwatch_htlc_spend) { const struct htlc *h; h = find_htlc_spend(sdata, effect->unwatch_htlc_spend->id); remove_htlc(sdata->htlc_spends_to_us, &sdata->num_htlc_spends_to_us, sdata->htlc_spends_to_them, &sdata->num_htlc_spends_to_them, ARRAY_SIZE(sdata->htlc_spends_to_us), h); if (!outstanding_htlc_watches(sdata)) { assert(effect->unwatch_htlc_spend->done == INPUT_NO_MORE_HTLCS); add_event(&sdata->core.event_notifies, effect->unwatch_htlc_spend->done); } } if (effect->unwatch_htlc) { /* Unwatch all? */ if (effect->unwatch_htlc->id == -1) { /* This can happen if we get in front of * INPUT_NO_MORE_HTLCS */ if (!outstanding_htlc_watches(sdata) && !have_event(sdata->core.event_notifies, INPUT_NO_MORE_HTLCS)) return "unwatching all with no htlcs?"; sdata->num_htlc_spends_to_us = 0; sdata->num_htlc_spends_to_them = 0; sdata->num_live_htlcs_to_us = 0; sdata->num_live_htlcs_to_them = 0; } else { const struct htlc *h; h = find_live_htlc(sdata, effect->unwatch_htlc->id); /* That can fail, when we see them spend (and * thus stop watching) after we've timed out, * then our return tx wins and gets buried. */ if (h) { remove_htlc(sdata->live_htlcs_to_us, &sdata->num_live_htlcs_to_us, sdata->live_htlcs_to_them, &sdata->num_live_htlcs_to_them, ARRAY_SIZE(sdata->live_htlcs_to_us), h); /* If that was last, fire INPUT_NO_MORE_HTLCS */ if (!outstanding_htlc_watches(sdata)) { assert(effect->unwatch_htlc->all_done == INPUT_NO_MORE_HTLCS); add_event(&sdata->core.event_notifies, effect->unwatch_htlc->all_done); } } } } return NULL; } static void eliminate_input(enum state_input **inputs, enum state_input in) { size_t i, n = tal_count(*inputs); for (i = 0; i < n; i++) { if ((*inputs)[i] != in) continue; if (i != n-1) (*inputs)[i] = (*inputs)[n-1]; tal_resize(inputs, n - 1); break; } } static bool find_output(const enum state_input *outputs, enum state_input out) { size_t n, i; n = tal_count(outputs); for (i = 0; i < n; i++) if (outputs[i] == out) return true; return false; } static void record_output(enum state_input **outputs, enum state_input out) { size_t n; if (find_output(*outputs, out)) return; n = tal_count(*outputs); tal_resize(outputs, n+1); (*outputs)[n] = out; } static void record_state(struct state_dump **sd, enum state_input input, enum state newstate, const char *pktstr) { size_t i, n = tal_count(*sd); enum state_input pkt; if (!pktstr) pkt = INPUT_NONE; else pkt = input_by_name(pktstr); for (i = 0; i < n; i++) { if ((*sd)[i].input != input) continue; if ((*sd)[i].next != newstate) continue; if ((*sd)[i].pkt != pkt) continue; /* Duplicate. */ return; } tal_resize(sd, n+1); (*sd)[n].input = input; (*sd)[n].next = newstate; (*sd)[n].pkt = pkt; } static bool error_path(enum state_input i, enum state src, enum state dst) { return state_is_error(dst) || i == PKT_ERROR; } static bool normal_path(enum state_input i, enum state src, enum state dst) { if (error_path(i, src, dst)) return false; /* Weird inputs. */ if (i == BITCOIN_ANCHOR_TIMEOUT || i == BITCOIN_ANCHOR_UNSPENT || i == BITCOIN_ANCHOR_THEIRSPEND || i == BITCOIN_ANCHOR_OTHERSPEND || i == BITCOIN_STEAL_DONE || i == PKT_UPDATE_DECLINE_HTLC || i == PKT_UPDATE_ROUTEFAIL_HTLC || i == PKT_UPDATE_TIMEDOUT_HTLC || i == INPUT_CLOSE_COMPLETE_TIMEOUT) return false; return true; } /* These clutter the graph, so only handle from normal state. */ static bool too_cluttered(enum state_input i, enum state src) { if (i == CMD_CLOSE || i == PKT_CLOSE || i == PKT_UPDATE_ADD_HTLC || i == PKT_UPDATE_FULFILL_HTLC) return src != STATE_NORMAL_LOWPRIO && src != STATE_NORMAL_HIGHPRIO; return false; } static void add_dot(struct edge_hash *hash, const char *oldstate, const char *newstate, enum state_input i, const Pkt *pkt) { struct dot_edge *d = tal(NULL, struct dot_edge); d->oldstate = oldstate; d->newstate = newstate; d->i = i; if (pkt) d->pkt = tal_strdup(d, (const char *)pkt); else d->pkt = NULL; if (edge_hash_get(hash, d)) tal_free(d); else edge_hash_add(hash, d); } static const char *simplify_state(enum state s) { /* Turn all high prio into low prio, and merge some open states */ switch (s) { case STATE_OPEN_WAITING_OURANCHOR: case STATE_OPEN_WAITING_THEIRANCHOR: return "STATE_OPEN_WAITING"; case STATE_OPEN_WAIT_FOR_COMPLETE_OURANCHOR: case STATE_OPEN_WAIT_FOR_COMPLETE_THEIRANCHOR: return "STATE_OPEN_WAIT_FOR_COMPLETE"; case STATE_NORMAL_LOWPRIO: case STATE_NORMAL_HIGHPRIO: return "STATE_NORMAL"; case STATE_WAIT_FOR_HTLC_ACCEPT_LOWPRIO: case STATE_WAIT_FOR_HTLC_ACCEPT_HIGHPRIO: return "STATE_WAIT_FOR_HTLC_ACCEPT"; case STATE_WAIT_FOR_UPDATE_COMPLETE_LOWPRIO: case STATE_WAIT_FOR_UPDATE_COMPLETE_HIGHPRIO: return "STATE_WAIT_FOR_UPDATE_COMPLETE"; case STATE_WAIT_FOR_UPDATE_SIG_LOWPRIO: case STATE_WAIT_FOR_UPDATE_SIG_HIGHPRIO: return "STATE_WAIT_FOR_UPDATE_SIG"; default: return state_name(s); } } static bool waiting_statepair(enum state a, enum state b) { if (a > b) return waiting_statepair(b, a); /* We don't need inputs if we're waiting for anchors. */ if (a == STATE_OPEN_WAITING_OURANCHOR) return true; if (b == STATE_OPEN_WAITING_THEIRANCHOR) return true; /* We don't need inputs at start of main loop. */ if (a == STATE_NORMAL_LOWPRIO && b == STATE_NORMAL_HIGHPRIO) return true; return false; } static bool has_packets(const struct state_data *sdata) { return sdata->core.deferred_pkt != INPUT_NONE || sdata->core.num_outputs != 0; } static struct trail *try_input(const struct state_data *sdata, enum state_input i, const union input *idata, bool normalpath, bool errorpath, size_t depth, struct hist *hist) { struct state_data copy, peer; struct trail *t; struct state_effect *effect = tal(NULL, struct state_effect); enum state newstate; const char *problem; state_effect_init(effect); eliminate_input(&hist->inputs_per_state[sdata->core.state], i); newstate = state(sdata->core.state, sdata, i, idata, effect); normalpath &= normal_path(i, sdata->core.state, newstate); errorpath |= error_path(i, sdata->core.state, newstate); if (dot_enable && (dot_include_abnormal || normalpath) && (dot_include_errors || !errorpath) && (dot_include_abnormal || !too_cluttered(i, sdata->core.state))) { const char *oldstr, *newstr; /* Simplify folds high and low prio, skip "STATE_" */ if (dot_simplify) { oldstr = simplify_state(sdata->core.state) + 6; newstr = simplify_state(newstate) + 6; } else { oldstr = state_name(sdata->core.state) + 6; newstr = state_name(newstate) + 6; } if (newstr != oldstr || include_nops) add_dot(&hist->edges, oldstr, newstr, i, effect->send); } copy_peers(©, &peer, sdata); copy.core.state = newstate; if (newstate == STATE_ERR_INTERNAL) return new_trail(i, idata, sdata, ©, effect, "Internal error"); if (strstarts(state_name(newstate), "STATE_UNUSED")) return new_trail(i, idata, sdata, ©, effect, "Unused state"); problem = apply_effects(©, effect); if (problem) return new_trail(i, idata, sdata, ©, effect, problem); /* Record any output. */ if (effect->send) { record_output(&hist->outputs, input_by_name((const char *)effect->send)); } if (hist->state_dump) { record_state(&hist->state_dump[sdata->core.state], i, newstate, (const char *)effect->send); } /* Have we been in this overall situation before? */ if (!sithash_update(&hist->sithash, ©)) { /* * We expect to loop if: * 1) We deferred, OR * 2) We get repeated BITCOIN_ANCHOR_OTHERSPEND/THEIRSPEND, OR * 3) We pass through NORMAL state. * * And if we're being quick, always stop. */ if (effect->defer != INPUT_NONE || newstate == STATE_NORMAL_LOWPRIO || newstate == STATE_NORMAL_HIGHPRIO || i == BITCOIN_ANCHOR_OTHERSPEND || i == BITCOIN_ANCHOR_THEIRSPEND || quick) { tal_free(effect); return NULL; } if (depth > STATE_MAX * 10) return new_trail(i, idata, sdata, ©, effect, "Loop"); } /* Don't continue if we reached a different error state. */ if (state_is_error(newstate)) { tal_free(effect); return NULL; } /* * If we're listening, someone should be talking (usually). */ if (copy.core.pkt_inputs && !has_packets(©) && !has_packets(&peer) && !waiting_statepair(copy.core.state, peer.core.state)) { return new_trail(i, idata, sdata, ©, effect, "Deadlock"); } /* Finished? */ if (newstate == STATE_CLOSED) { if (copy.core.pkt_inputs) return new_trail(i, idata, sdata, ©, effect, "CLOSED but taking packets?"); if (copy.core.cmd_inputs) return new_trail(i, idata, sdata, ©, effect, "CLOSED but taking commands?"); if (copy.core.current_command != INPUT_NONE) return new_trail(i, idata, sdata, ©, effect, input_name(copy.core.current_command)); if (copy.current_htlc.htlc.id != -1) return new_trail(i, idata, sdata, ©, effect, "CLOSED with htlc in progress?"); if (outstanding_htlc_watches(©)) return new_trail(i, idata, sdata, ©, effect, "CLOSED but watching HTLCs?"); tal_free(effect); return NULL; } /* Try inputs from here down. */ t = run_peer(©, normalpath, errorpath, depth+1, hist); /* Don't bother running other peer we can't communicate. */ if (!t && (copy.core.pkt_inputs || peer.core.pkt_inputs)) t = run_peer(&peer, normalpath, errorpath, depth+1, hist); if (!t) { tal_free(effect); return NULL; } return add_trail(i, idata, sdata, ©, effect, t); } static void sanity_check(const struct state_data *sdata) { if (sdata->core.state == STATE_NORMAL_LOWPRIO || sdata->core.state == STATE_NORMAL_HIGHPRIO) { /* Home state: expect commands to be finished. */ if (sdata->core.current_command != INPUT_NONE) errx(1, "Unexpected command %u in state %u", sdata->core.current_command, sdata->core.state); } } static void activate_event(struct state_data *sdata, enum state_input i) { /* Events are not independent. */ switch (i) { case BITCOIN_ANCHOR_DEPTHOK: /* Can't sent TIMEOUT (may not be set) */ remove_event_(&sdata->core.event_notifies, BITCOIN_ANCHOR_TIMEOUT); break; case BITCOIN_ANCHOR_TIMEOUT: /* Can't sent DEPTHOK */ remove_event(&sdata->core.event_notifies, BITCOIN_ANCHOR_DEPTHOK); break; /* And of the "done" cases means we won't give the others. */ case BITCOIN_SPEND_THEIRS_DONE: case BITCOIN_SPEND_OURS_DONE: case BITCOIN_STEAL_DONE: case BITCOIN_CLOSE_DONE: remove_event_(&sdata->core.event_notifies, BITCOIN_SPEND_OURS_DONE); remove_event_(&sdata->core.event_notifies, BITCOIN_SPEND_THEIRS_DONE); remove_event_(&sdata->core.event_notifies, BITCOIN_STEAL_DONE); remove_event_(&sdata->core.event_notifies, BITCOIN_CLOSE_DONE); remove_event_(&sdata->core.event_notifies, BITCOIN_ANCHOR_OURCOMMIT_DELAYPASSED); remove_event_(&sdata->core.event_notifies, BITCOIN_ANCHOR_THEIRSPEND); remove_event_(&sdata->core.event_notifies, BITCOIN_ANCHOR_OTHERSPEND); remove_event_(&sdata->core.event_notifies, BITCOIN_ANCHOR_UNSPENT); break; default: ; } } static bool can_refire(enum state_input i) { /* They could have lots of old HTLCS */ if (i == BITCOIN_ANCHOR_OTHERSPEND) return true; /* Signature malleability means any number of these */ if (i == BITCOIN_ANCHOR_THEIRSPEND) return true; /* They could have lots of htlcs. */ if (i == BITCOIN_HTLC_TOTHEM_SPENT || i == BITCOIN_HTLC_TOTHEM_TIMEOUT || i == BITCOIN_HTLC_TOUS_TIMEOUT) return true; /* We manually remove these if they're not watching any more spends */ if (i == BITCOIN_HTLC_RETURN_SPEND_DONE || i == BITCOIN_HTLC_FULFILL_SPEND_DONE) return true; return false; } static unsigned int next_htlc_id(void) { static unsigned int num; return ++num; } static struct trail *run_peer(const struct state_data *sdata, bool normalpath, bool errorpath, size_t depth, struct hist *hist) { struct state_data copy, peer; size_t i; uint64_t old_notifies; struct trail *t; union input *idata = tal(NULL, union input); sanity_check(sdata); /* We want to frob some things... */ copy_peers(©, &peer, sdata); /* Try the event notifiers */ old_notifies = copy.core.event_notifies; for (i = 0; i < 64; i++) { if (!have_event(copy.core.event_notifies, i)) continue; /* Don't re-fire most events */ if (!can_refire(i)) remove_event(©.core.event_notifies, i); activate_event(©, i); t = try_input(©, i, idata, normalpath, errorpath, depth, hist); if (t) return t; copy.core.event_notifies = old_notifies; } /* Try sending commands (unless in init state, closed or * already doing one). */ if (sdata->core.state != STATE_INIT_WITHANCHOR && sdata->core.state != STATE_INIT_NOANCHOR && sdata->core.cmd_inputs && sdata->core.current_command == INPUT_NONE) { unsigned int i; /* We can always send a close. */ copy.core.current_command = CMD_CLOSE; t = try_input(©, copy.core.current_command, idata, normalpath, errorpath, depth, hist); if (t) return t; /* Add a new HTLC if not at max. */ if (copy.num_htlcs_to_them < MAX_HTLCS) { copy.core.current_command = CMD_SEND_HTLC_UPDATE; idata->htlc_prog = tal(idata, struct htlc_progress); idata->htlc_prog->adding = true; idata->htlc_prog->htlc.to_them = true; idata->htlc_prog->htlc.id = next_htlc_id(); t = try_input(©, copy.core.current_command, idata, normalpath, errorpath, depth, hist); if (t) return t; idata->htlc_prog = tal_free(idata->htlc_prog); } /* We can complete or routefail an HTLC they offered */ for (i = 0; i < sdata->num_htlcs_to_us; i++) { idata->htlc_prog = tal(idata, struct htlc_progress); idata->htlc_prog->htlc = sdata->htlcs_to_us[i]; idata->htlc_prog->adding = false; /* Only send this once. */ if (!rval_known(sdata, idata->htlc_prog->htlc.id)) { copy.core.current_command = CMD_SEND_HTLC_FULFILL; t = try_input(©, copy.core.current_command, idata, normalpath, errorpath, depth, hist); if (t) return t; } copy.core.current_command = CMD_SEND_HTLC_ROUTEFAIL; t = try_input(©, copy.core.current_command, idata, normalpath, errorpath, depth, hist); if (t) return t; } /* We can timeout an HTLC we offered. */ for (i = 0; i < sdata->num_htlcs_to_them; i++) { idata->htlc_prog = tal(idata, struct htlc_progress); idata->htlc_prog->htlc = sdata->htlcs_to_them[i]; idata->htlc_prog->adding = false; copy.core.current_command = CMD_SEND_HTLC_TIMEDOUT; t = try_input(©, copy.core.current_command, idata, normalpath, errorpath, depth, hist); if (t) return t; } /* Restore current_command */ copy.core.current_command = INPUT_NONE; } /* If they're watching HTLCs, we can send events. */ for (i = 0; i < sdata->num_live_htlcs_to_us; i++) { idata->htlc = (struct htlc *)©.live_htlcs_to_us[i]; /* Only send this once. */ if (!rval_known(sdata, idata->htlc->id)) { t = try_input(©, INPUT_RVALUE, idata, normalpath, errorpath, depth, hist); if (t) return t; } t = try_input(©, BITCOIN_HTLC_TOUS_TIMEOUT, idata, normalpath, errorpath, depth, hist); if (t) return t; } for (i = 0; i < sdata->num_live_htlcs_to_them; i++) { idata->htlc = (struct htlc *)©.live_htlcs_to_them[i]; t = try_input(©, BITCOIN_HTLC_TOTHEM_SPENT, idata, normalpath, errorpath, depth, hist); if (t) return t; t = try_input(©, BITCOIN_HTLC_TOTHEM_TIMEOUT, idata, normalpath, errorpath, depth, hist); if (t) return t; } /* If they're watching HTLC spends, we can send events. */ for (i = 0; i < sdata->num_htlc_spends_to_us; i++) { idata->htlc = (struct htlc *)©.htlc_spends_to_us[i]; t = try_input(©, BITCOIN_HTLC_FULFILL_SPEND_DONE, idata, normalpath, errorpath, depth, hist); if (t) return t; } for (i = 0; i < sdata->num_htlc_spends_to_them; i++) { idata->htlc = (struct htlc *)©.htlc_spends_to_them[i]; t = try_input(©, BITCOIN_HTLC_RETURN_SPEND_DONE, idata, normalpath, errorpath, depth, hist); if (t) return t; } /* Allowed to send inputs? */ if (copy.core.pkt_inputs) { enum state_input i; if (copy.core.deferred_pkt != INPUT_NONE) { /* Can only resubmit once state changed. */ if (copy.core.state != copy.core.deferred_state) { i = copy.core.deferred_pkt; copy.core.deferred_pkt = INPUT_NONE; return try_input(©, i, idata, normalpath, errorpath, depth, hist); } /* Can't send anything until that's done. */ return NULL; } if (peer.core.num_outputs) { i = peer.core.outputs[0]; if (peer.pkt_data[0] == -1U) idata->pkt = (Pkt *)talz(idata, char); else idata->pkt = htlc_pkt(idata, input_name(i), peer.pkt_data[0]); /* Do the first, recursion does the rest. */ memmove(peer.core.outputs, peer.core.outputs + 1, sizeof(peer.core.outputs) - sizeof(peer.core.outputs[0])); memmove(peer.pkt_data, peer.pkt_data + 1, sizeof(peer.pkt_data)-sizeof(peer.pkt_data[0])); peer.core.num_outputs--; return try_input(©, i, idata, normalpath, errorpath, depth, hist); } } tal_free(idata); return NULL; } static bool record_input_mapping(int b) { size_t n; if (!mapping_inputs) return false; /* Accumulating tested inputs? */ n = tal_count(mapping_inputs); tal_resize(&mapping_inputs, n+1); mapping_inputs[n] = b; return true; } static enum state_input **map_inputs(void) { enum state_input **inps = tal_arr(NULL, enum state_input *, STATE_MAX); unsigned int i; struct state_effect *effect = tal(inps, struct state_effect); for (i = 0; i < STATE_MAX; i++) { /* This is a global */ mapping_inputs = tal_arr(inps, enum state_input, 0); state_effect_init(effect); /* This adds to mapping_inputs every input_is() call */ if (!state_is_error(i)) state(i, NULL, INPUT_NONE, NULL, effect); inps[i] = mapping_inputs; } /* Reset global */ mapping_inputs = NULL; tal_free(effect); return inps; } static bool visited_state(const struct sithash *sithash, enum state state, bool b) { struct situation *h; struct sithash_iter i; unsigned int num = 0; for (h = sithash_first(sithash, &i); h; h = sithash_next(sithash, &i)) { num++; if (b) { if (h->a.s.valid && h->b.s.state == state) return true; } else { if (h->a.s.valid && h->a.s.state == state) return true; } } return false; } static void report_trail(const struct trail *t) { fprintf(stderr, "Error: %s\n", t->problem); while (t) { size_t i; fprintf(stderr, "%s: %s(%i) %s -> %s\n", t->name, input_name(t->input), t->htlc_id, state_name(t->before.core.state), state_name(t->after.core.state)); if (t->after.core.state >= STATE_CLOSED) { if (t->after.num_live_htlcs_to_us || t->after.num_live_htlcs_to_them) { fprintf(stderr, " Live HTLCs:"); for (i = 0; i < t->after.num_live_htlcs_to_us; i++) fprintf(stderr, " <%u", t->after.live_htlcs_to_us[i].id); for (i = 0; i < t->after.num_live_htlcs_to_them; i++) fprintf(stderr, " >%u", t->after.live_htlcs_to_them[i].id); fprintf(stderr, "\n"); } if (t->after.num_htlc_spends_to_us || t->after.num_htlc_spends_to_them) { fprintf(stderr, " HTLC spends:"); for (i = 0; i < t->after.num_htlc_spends_to_us; i++) fprintf(stderr, " <%u", t->after.htlc_spends_to_us[i].id); for (i = 0; i < t->after.num_htlc_spends_to_them; i++) fprintf(stderr, " <%u", t->after.htlc_spends_to_them[i].id); fprintf(stderr, "\n"); } } else { if (t->after.num_htlcs_to_us || t->after.num_htlcs_to_them) { fprintf(stderr, " HTLCs:"); for (i = 0; i < t->after.num_htlcs_to_us; i++) fprintf(stderr, " <%u", t->after.htlcs_to_us[i].id); for (i = 0; i < t->after.num_htlcs_to_them; i++) fprintf(stderr, " >%u", t->after.htlcs_to_them[i].id); fprintf(stderr, "\n"); } } if (t->pkt_sent) fprintf(stderr, " => %s\n", t->pkt_sent); t = t->next; } } static int state_dump_cmp(const struct state_dump *a, const struct state_dump *b, void *unused) { if (a->input != b->input) return a->input - b->input; if (a->next != b->next) return a->next - b->next; return 0; } int main(int argc, char *argv[]) { struct state_data a, b; unsigned int i; struct hist hist; struct trail *t; bool dump_states = false; err_set_progname(argv[0]); opt_register_noarg("--help|-h", opt_usage_and_exit, "" "Test lightning state machine", "Print this message."); opt_register_noarg("--dot", opt_set_bool, &dot_enable, "Output dot format for normal paths"); opt_register_noarg("--dot-all", opt_set_bool, &dot_include_abnormal, "Output dot format for all non-error paths"); opt_register_noarg("--dot-include-errors", opt_set_bool, &dot_include_errors, "Output dot format for error paths"); opt_register_noarg("--include-nops", opt_set_bool, &include_nops, "Output even for inputs which don't change state"); opt_register_noarg("--dot-simplify", opt_set_bool, &dot_simplify, "Merge high and low priority states"); opt_register_noarg("--dump-states", opt_set_bool, &dump_states, "Summarize all state transitions"); opt_register_version(); opt_parse(&argc, argv, opt_log_stderr_exit); if (dot_include_abnormal) dot_enable = true; if (dot_simplify && !dot_enable) opt_usage_exit_fail("--dot-simplify needs --dot/--dot-all"); if (dot_include_errors && !dot_enable) opt_usage_exit_fail("--dot-include-errors needs --dot/--dot-all"); if (include_nops && !dot_enable && !dump_states) opt_usage_exit_fail("--include-nops needs --dot/--dot-all/--dump-states"); /* Map the inputs tested in each state. */ hist.inputs_per_state = map_inputs(); sithash_init(&hist.sithash); hist.outputs = tal_arr(NULL, enum state_input, 0); edge_hash_init(&hist.edges); if (dump_states) { hist.state_dump = tal_arr(NULL, struct state_dump *, STATE_MAX); for (i = 0; i < STATE_MAX; i++) hist.state_dump[i] = tal_arr(hist.state_dump, struct state_dump, 0); } else hist.state_dump = NULL; #if 0 quick = dot_enable || dump_states; #else quick = true; #endif /* Initialize universe. */ sdata_init(&a, &b, STATE_INIT_WITHANCHOR, "A"); sdata_init(&b, &a, STATE_INIT_NOANCHOR, "B"); if (!sithash_update(&hist.sithash, &a)) abort(); /* Now, try each input in each state. */ t = run_peer(&a, true, false, 0, &hist); if (t) { report_trail(t); exit(1); } #if 0 /* FIXME */ /* Now try with declining an HTLC. */ do_decline = true; sithash_init(&hist.sithash); sithash_update(&hist.sithash, &a); t = run_peer(&a, true, false, 0, &hist); if (t) { report_trail(t); exit(1); } #endif for (i = 0; i < STATE_MAX; i++) { bool a_expect = true, b_expect = true; /* Ignore unused states. */ if (strstarts(state_name(i), "STATE_UNUSED")) continue; /* A supplied anchor, so doesn't enter NOANCHOR states. */ if (i == STATE_INIT_NOANCHOR || i == STATE_OPEN_WAIT_FOR_OPEN_NOANCHOR || i == STATE_OPEN_WAIT_FOR_ANCHOR || i == STATE_OPEN_WAITING_THEIRANCHOR || i == STATE_OPEN_WAIT_FOR_COMPLETE_THEIRANCHOR || i == STATE_ERR_ANCHOR_TIMEOUT) a_expect = false; if (i == STATE_INIT_WITHANCHOR || i == STATE_OPEN_WAIT_FOR_OPEN_WITHANCHOR || i == STATE_OPEN_WAIT_FOR_COMMIT_SIG || i == STATE_OPEN_WAIT_FOR_COMPLETE_OURANCHOR || i == STATE_OPEN_WAITING_OURANCHOR) b_expect = false; if (i == STATE_ERR_INTERNAL) a_expect = b_expect = false; if (visited_state(&hist.sithash, i, 0) != a_expect) warnx("Peer A %s state %s", a_expect ? "didn't visit" : "visited", state_name(i)); if (visited_state(&hist.sithash, i, 1) != b_expect) warnx("Peer B %s state %s", b_expect ? "didn't visit" : "visited", state_name(i)); if (!state_is_error(i) && tal_count(hist.inputs_per_state[i])) warnx("Never sent %s input %s", state_name(i), input_name(*hist.inputs_per_state[i])); } for (i = 0; i < INPUT_MAX; i++) { /* Not all input values are valid. */ if (streq(input_name(i), "unknown")) continue; /* We only expect packets to be output. */ if (!input_is_pkt(i)) continue; if (!find_output(hist.outputs, i)) warnx("Never sent output %s", input_name(i)); } if (dot_enable) { struct dot_edge *d; struct edge_hash_iter i; printf("digraph lightning {\n"); for (d = edge_hash_first(&hist.edges, &i); d; d = edge_hash_next(&hist.edges, &i)) { printf("%s -> %s ", d->oldstate, d->newstate); if (!d->pkt) printf("[label=\"<%s\"];\n", input_name(d->i)); else { printf("[label=\"<%s\\n>%s\"];\n", input_name(d->i), d->pkt); } } printf("}\n"); } if (dump_states) { for (i = 0; i < STATE_MAX; i++) { size_t j; size_t n = tal_count(hist.state_dump[i]); if (!n) continue; printf("%s:\n", state_name(i) + 6); asort(hist.state_dump[i], n, state_dump_cmp, NULL); for (j = 0; j < n; j++) { if (!include_nops && hist.state_dump[i][j].next == i) continue; printf("\t%s -> %s", input_name(hist.state_dump[i][j].input), state_name(hist.state_dump[i][j].next)+6); if (hist.state_dump[i][j].pkt != INPUT_NONE) printf(" (%s)", input_name(hist.state_dump[i][j].pkt)); printf("\n"); } } } return 0; }