/********************************************************************** * Copyright (c) 2013, 2014 Pieter Wuille * * Distributed under the MIT software license, see the accompanying * * file COPYING or http://www.opensource.org/licenses/mit-license.php.* **********************************************************************/ #ifndef _SECP256K1_GROUP_ #define _SECP256K1_GROUP_ #include "num.h" #include "field.h" /** A group element of the secp256k1 curve, in affine coordinates. */ typedef struct { secp256k1_fe_t x; secp256k1_fe_t y; int infinity; /* whether this represents the point at infinity */ } secp256k1_ge_t; #define SECP256K1_GE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), 0} #define SECP256K1_GE_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1} /** A group element of the secp256k1 curve, in jacobian coordinates. */ typedef struct { secp256k1_fe_t x; /* actual X: x/z^2 */ secp256k1_fe_t y; /* actual Y: y/z^3 */ secp256k1_fe_t z; int infinity; /* whether this represents the point at infinity */ } secp256k1_gej_t; #define SECP256K1_GEJ_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_CONST((i),(j),(k),(l),(m),(n),(o),(p)), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1), 0} #define SECP256K1_GEJ_CONST_INFINITY {SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 0), 1} typedef struct { secp256k1_fe_storage_t x; secp256k1_fe_storage_t y; } secp256k1_ge_storage_t; #define SECP256K1_GE_STORAGE_CONST(a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p) {SECP256K1_FE_STORAGE_CONST((a),(b),(c),(d),(e),(f),(g),(h)), SECP256K1_FE_STORAGE_CONST((i),(j),(k),(l),(m),(n),(o),(p))} /** Set a group element equal to the point at infinity */ static void secp256k1_ge_set_infinity(secp256k1_ge_t *r); /** Set a group element equal to the point with given X and Y coordinates */ static void secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y); /** Set a group element (affine) equal to the point with the given X coordinate, and given oddness * for Y. Return value indicates whether the result is valid. */ static int secp256k1_ge_set_xo_var(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd); /** Check whether a group element is the point at infinity. */ static int secp256k1_ge_is_infinity(const secp256k1_ge_t *a); /** Check whether a group element is valid (i.e., on the curve). */ static int secp256k1_ge_is_valid_var(const secp256k1_ge_t *a); static void secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a); /** Set a group element equal to another which is given in jacobian coordinates */ static void secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a); /** Set a batch of group elements equal to the inputs given in jacobian coordinates */ static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge_t *r, const secp256k1_gej_t *a); /** Set a batch of group elements equal to the inputs given in jacobian * coordinates (with known z-ratios). zr must contain the known z-ratios such * that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. */ static void secp256k1_ge_set_table_gej_var(size_t len, secp256k1_ge_t *r, const secp256k1_gej_t *a, const secp256k1_fe_t *zr); /** Bring a batch inputs given in jacobian coordinates (with known z-ratios) to * the same global z "denominator". zr must contain the known z-ratios such * that mul(a[i].z, zr[i+1]) == a[i+1].z. zr[0] is ignored. The x and y * coordinates of the result are stored in r, the common z coordinate is * stored in globalz. */ static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge_t *r, secp256k1_fe_t *globalz, const secp256k1_gej_t *a, const secp256k1_fe_t *zr); /** Set a group element (jacobian) equal to the point at infinity. */ static void secp256k1_gej_set_infinity(secp256k1_gej_t *r); /** Set a group element (jacobian) equal to the point with given X and Y coordinates. */ static void secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y); /** Set a group element (jacobian) equal to another which is given in affine coordinates. */ static void secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a); /** Compare the X coordinate of a group element (jacobian). */ static int secp256k1_gej_eq_x_var(const secp256k1_fe_t *x, const secp256k1_gej_t *a); /** Set r equal to the inverse of a (i.e., mirrored around the X axis) */ static void secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a); /** Check whether a group element is the point at infinity. */ static int secp256k1_gej_is_infinity(const secp256k1_gej_t *a); /** Set r equal to the double of a. If rzr is not-NULL, r->z = a->z * *rzr (where infinity means an implicit z = 0). */ static void secp256k1_gej_double_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, secp256k1_fe_t *rzr); /** Set r equal to the sum of a and b. If rzr is non-NULL, r->z = a->z * *rzr (a cannot be infinity in that case). */ static void secp256k1_gej_add_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b, secp256k1_fe_t *rzr); /** Set r equal to the sum of a and b (with b given in affine coordinates, and not infinity). */ static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b); /** Set r equal to the sum of a and b (with b given in affine coordinates). This is more efficient than secp256k1_gej_add_var. It is identical to secp256k1_gej_add_ge but without constant-time guarantee, and b is allowed to be infinity. If rzr is non-NULL, r->z = a->z * *rzr (a cannot be infinity in that case). */ static void secp256k1_gej_add_ge_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b, secp256k1_fe_t *rzr); /** Set r equal to the sum of a and b (with the inverse of b's Z coordinate passed as bzinv). */ static void secp256k1_gej_add_zinv_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b, const secp256k1_fe_t *bzinv); #ifdef USE_ENDOMORPHISM /** Set r to be equal to lambda times a, where lambda is chosen in a way such that this is very fast. */ static void secp256k1_ge_mul_lambda(secp256k1_ge_t *r, const secp256k1_ge_t *a); #endif /** Clear a secp256k1_gej_t to prevent leaking sensitive information. */ static void secp256k1_gej_clear(secp256k1_gej_t *r); /** Clear a secp256k1_ge_t to prevent leaking sensitive information. */ static void secp256k1_ge_clear(secp256k1_ge_t *r); /** Convert a group element to the storage type. */ static void secp256k1_ge_to_storage(secp256k1_ge_storage_t *r, const secp256k1_ge_t*); /** Convert a group element back from the storage type. */ static void secp256k1_ge_from_storage(secp256k1_ge_t *r, const secp256k1_ge_storage_t*); /** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */ static void secp256k1_ge_storage_cmov(secp256k1_ge_storage_t *r, const secp256k1_ge_storage_t *a, int flag); /** Rescale a jacobian point by b which must be non-zero. Constant-time. */ static void secp256k1_gej_rescale(secp256k1_gej_t *r, const secp256k1_fe_t *b); #endif