#include #include #include #include #include #include #include #include #include #include #include #include #define SEGREGATED_WITNESS_FLAG 0x1 static void push_tx_input(const struct bitcoin_tx_input *input, void (*push)(const void *, size_t, void *), void *pushp) { push(&input->txid, sizeof(input->txid), pushp); push_le32(input->index, push, pushp); push_varint_blob(input->script, push, pushp); push_le32(input->sequence_number, push, pushp); } static void push_tx_output(const struct bitcoin_tx_output *output, void (*push)(const void *, size_t, void *), void *pushp) { push_le64(output->amount, push, pushp); push_varint_blob(output->script, push, pushp); } /* BIP 141: * It is followed by stack items, with each item starts with a var_int * to indicate the length. */ static void push_witness(const u8 *witness, void (*push)(const void *, size_t, void *), void *pushp) { push_varint_blob(witness, push, pushp); } /* BIP144: * If the witness is empty, the old serialization format should be used. */ static bool uses_witness(const struct bitcoin_tx *tx) { size_t i; for (i = 0; i < tal_count(tx->input); i++) { if (tx->input[i].witness) return true; } return false; } /* BIP 141: The witness is a serialization of all witness data of the * transaction. Each txin is associated with a witness field. A * witness field starts with a var_int to indicate the number of stack * items for the txin. */ static void push_witnesses(const struct bitcoin_tx *tx, void (*push)(const void *, size_t, void *), void *pushp) { size_t i; for (i = 0; i < tal_count(tx->input); i++) { size_t j, elements; /* Not every input needs a witness. */ if (!tx->input[i].witness) { push_varint(0, push, pushp); continue; } elements = tal_count(tx->input[i].witness); push_varint(elements, push, pushp); for (j = 0; j < tal_count(tx->input[i].witness); j++) { push_witness(tx->input[i].witness[j], push, pushp); } } } static void push_tx(const struct bitcoin_tx *tx, void (*push)(const void *, size_t, void *), void *pushp, bool extended) { varint_t i; u8 flag = 0; push_le32(tx->version, push, pushp); if (extended) { u8 marker; /* BIP 144 */ /* marker char Must be zero */ /* flag char Must be nonzero */ marker = 0; push(&marker, 1, pushp); /* BIP 141: The flag MUST be a 1-byte non-zero * value. Currently, 0x01 MUST be used. * * BUT: Current segwit4 branch breaks fundrawtransaction; * it sees 0 inputs and thinks it's extended format. * Make it really an extended format, but without * witness. */ if (uses_witness(tx)) flag = SEGREGATED_WITNESS_FLAG; push(&flag, 1, pushp); } push_varint(tal_count(tx->input), push, pushp); for (i = 0; i < tal_count(tx->input); i++) push_tx_input(&tx->input[i], push, pushp); push_varint(tal_count(tx->output), push, pushp); for (i = 0; i < tal_count(tx->output); i++) push_tx_output(&tx->output[i], push, pushp); if (flag & SEGREGATED_WITNESS_FLAG) push_witnesses(tx, push, pushp); push_le32(tx->lock_time, push, pushp); } static void push_sha(const void *data, size_t len, void *shactx_) { struct sha256_ctx *ctx = shactx_; sha256_update(ctx, memcheck(data, len), len); } static void hash_prevouts(struct sha256_double *h, const struct bitcoin_tx *tx) { struct sha256_ctx ctx; size_t i; /* BIP143: If the ANYONECANPAY flag is not set, hashPrevouts is the * double SHA256 of the serialization of all input * outpoints */ sha256_init(&ctx); for (i = 0; i < tal_count(tx->input); i++) { push_sha(&tx->input[i].txid, sizeof(tx->input[i].txid), &ctx); push_le32(tx->input[i].index, push_sha, &ctx); } sha256_double_done(&ctx, h); } static void hash_sequence(struct sha256_double *h, const struct bitcoin_tx *tx) { struct sha256_ctx ctx; size_t i; /* BIP143: If none of the ANYONECANPAY, SINGLE, NONE sighash type * is set, hashSequence is the double SHA256 of the serialization * of nSequence of all inputs */ sha256_init(&ctx); for (i = 0; i < tal_count(tx->input); i++) push_le32(tx->input[i].sequence_number, push_sha, &ctx); sha256_double_done(&ctx, h); } /* If the sighash type is neither SINGLE nor NONE, hashOutputs is the * double SHA256 of the serialization of all output value (8-byte * little endian) with scriptPubKey (varInt for the length + * script); */ static void hash_outputs(struct sha256_double *h, const struct bitcoin_tx *tx) { struct sha256_ctx ctx; size_t i; sha256_init(&ctx); for (i = 0; i < tal_count(tx->output); i++) { push_le64(tx->output[i].amount, push_sha, &ctx); push_varint_blob(tx->output[i].script, push_sha, &ctx); } sha256_double_done(&ctx, h); } static void hash_for_segwit(struct sha256_ctx *ctx, const struct bitcoin_tx *tx, unsigned int input_num, const u8 *witness_script) { struct sha256_double h; /* BIP143: * * Double SHA256 of the serialization of: * 1. nVersion of the transaction (4-byte little endian) */ push_le32(tx->version, push_sha, ctx); /* 2. hashPrevouts (32-byte hash) */ hash_prevouts(&h, tx); push_sha(&h, sizeof(h), ctx); /* 3. hashSequence (32-byte hash) */ hash_sequence(&h, tx); push_sha(&h, sizeof(h), ctx); /* 4. outpoint (32-byte hash + 4-byte little endian) */ push_sha(&tx->input[input_num].txid, sizeof(tx->input[input_num].txid), ctx); push_le32(tx->input[input_num].index, push_sha, ctx); /* 5. scriptCode of the input (varInt for the length + script) */ push_varint_blob(witness_script, push_sha, ctx); /* 6. value of the output spent by this input (8-byte little end) */ push_le64(*tx->input[input_num].amount, push_sha, ctx); /* 7. nSequence of the input (4-byte little endian) */ push_le32(tx->input[input_num].sequence_number, push_sha, ctx); /* 8. hashOutputs (32-byte hash) */ hash_outputs(&h, tx); push_sha(&h, sizeof(h), ctx); /* 9. nLocktime of the transaction (4-byte little endian) */ push_le32(tx->lock_time, push_sha, ctx); } void sha256_tx_for_sig(struct sha256_double *h, const struct bitcoin_tx *tx, unsigned int input_num, const u8 *witness_script) { size_t i; struct sha256_ctx ctx = SHA256_INIT; /* Caller should zero-out other scripts for signing! */ assert(input_num < tal_count(tx->input)); for (i = 0; i < tal_count(tx->input); i++) if (i != input_num) assert(!tx->input[i].script); if (witness_script) { /* BIP143 hashing if OP_CHECKSIG is inside witness. */ hash_for_segwit(&ctx, tx, input_num, witness_script); } else { /* Otherwise signature hashing never includes witness. */ push_tx(tx, push_sha, &ctx, false); } sha256_le32(&ctx, SIGHASH_ALL); sha256_double_done(&ctx, h); } static void push_linearize(const void *data, size_t len, void *pptr_) { u8 **pptr = pptr_; size_t oldsize = tal_count(*pptr); tal_resize(pptr, oldsize + len); memcpy(*pptr + oldsize, memcheck(data, len), len); } u8 *linearize_tx(const tal_t *ctx, const struct bitcoin_tx *tx) { u8 *arr = tal_arr(ctx, u8, 0); push_tx(tx, push_linearize, &arr, uses_witness(tx)); return arr; } static void push_measure(const void *data, size_t len, void *lenp) { *(size_t *)lenp += len; } size_t measure_tx_cost(const struct bitcoin_tx *tx) { size_t non_witness_len = 0, witness_len = 0; push_tx(tx, push_measure, &non_witness_len, false); if (uses_witness(tx)) push_witnesses(tx, push_measure, &witness_len); /* Witness bytes only push 1/4 of normal bytes, for cost. */ return non_witness_len * 4 + witness_len; } void bitcoin_txid(const struct bitcoin_tx *tx, struct bitcoin_txid *txid) { struct sha256_ctx ctx = SHA256_INIT; /* For TXID, we never use extended form. */ push_tx(tx, push_sha, &ctx, false); sha256_double_done(&ctx, &txid->shad); } struct bitcoin_tx *bitcoin_tx(const tal_t *ctx, varint_t input_count, varint_t output_count) { struct bitcoin_tx *tx = tal(ctx, struct bitcoin_tx); size_t i; tx->output = tal_arrz(tx, struct bitcoin_tx_output, output_count); tx->input = tal_arrz(tx, struct bitcoin_tx_input, input_count); for (i = 0; i < tal_count(tx->input); i++) { /* We assume NULL is a zero bitmap */ assert(tx->input[i].script == NULL); tx->input[i].sequence_number = 0xFFFFFFFF; tx->input[i].amount = NULL; tx->input[i].witness = NULL; } tx->lock_time = 0; tx->version = 2; return tx; } static bool pull_sha256_double(const u8 **cursor, size_t *max, struct sha256_double *h) { return pull(cursor, max, h, sizeof(*h)); } static u64 pull_value(const u8 **cursor, size_t *max) { u64 amount; amount = pull_le64(cursor, max); return amount; } /* Pulls a varint which specifies a data length: ensures basic sanity to * avoid trivial OOM */ static u64 pull_length(const u8 **cursor, size_t *max) { u64 v = pull_varint(cursor, max); if (v > *max) { *cursor = NULL; *max = 0; return 0; } return v; } static void pull_input(const tal_t *ctx, const u8 **cursor, size_t *max, struct bitcoin_tx_input *input) { u64 script_len; pull_sha256_double(cursor, max, &input->txid.shad); input->index = pull_le32(cursor, max); script_len = pull_length(cursor, max); if (script_len) input->script = tal_arr(ctx, u8, script_len); else input->script = NULL; pull(cursor, max, input->script, tal_len(input->script)); input->sequence_number = pull_le32(cursor, max); } static void pull_output(const tal_t *ctx, const u8 **cursor, size_t *max, struct bitcoin_tx_output *output) { output->amount = pull_value(cursor, max); output->script = tal_arr(ctx, u8, pull_length(cursor, max)); pull(cursor, max, output->script, tal_len(output->script)); } static u8 *pull_witness_item(const tal_t *ctx, const u8 **cursor, size_t *max) { uint64_t len = pull_length(cursor, max); u8 *item; item = tal_arr(ctx, u8, len); pull(cursor, max, item, len); return item; } static void pull_witness(struct bitcoin_tx_input *inputs, size_t i, const u8 **cursor, size_t *max) { uint64_t j, num = pull_length(cursor, max); /* 0 means not using witness. */ if (num == 0) { inputs[i].witness = NULL; return; } inputs[i].witness = tal_arr(inputs, u8 *, num); for (j = 0; j < num; j++) { inputs[i].witness[j] = pull_witness_item(inputs[i].witness, cursor, max); } } struct bitcoin_tx *pull_bitcoin_tx(const tal_t *ctx, const u8 **cursor, size_t *max) { struct bitcoin_tx *tx = tal(ctx, struct bitcoin_tx); size_t i; u64 count; u8 flag = 0; tx->version = pull_le32(cursor, max); count = pull_length(cursor, max); /* BIP 144 marker is 0 (impossible to have tx with 0 inputs) */ if (count == 0) { pull(cursor, max, &flag, 1); if (flag != SEGREGATED_WITNESS_FLAG) return tal_free(tx); count = pull_length(cursor, max); } tx->input = tal_arr(tx, struct bitcoin_tx_input, count); for (i = 0; i < tal_count(tx->input); i++) pull_input(tx, cursor, max, tx->input + i); count = pull_length(cursor, max); tx->output = tal_arr(tx, struct bitcoin_tx_output, count); for (i = 0; i < tal_count(tx->output); i++) pull_output(tx, cursor, max, tx->output + i); if (flag & SEGREGATED_WITNESS_FLAG) { for (i = 0; i < tal_count(tx->input); i++) pull_witness(tx->input, i, cursor, max); } else { for (i = 0; i < tal_count(tx->input); i++) tx->input[i].witness = NULL; } tx->lock_time = pull_le32(cursor, max); /* If we ran short, fail. */ if (!*cursor) tx = tal_free(tx); return tx; } struct bitcoin_tx *bitcoin_tx_from_hex(const tal_t *ctx, const char *hex, size_t hexlen) { const char *end; u8 *linear_tx; const u8 *p; struct bitcoin_tx *tx; size_t len; end = memchr(hex, '\n', hexlen); if (!end) end = hex + hexlen; len = hex_data_size(end - hex); p = linear_tx = tal_arr(ctx, u8, len); if (!hex_decode(hex, end - hex, linear_tx, len)) goto fail; tx = pull_bitcoin_tx(ctx, &p, &len); if (!tx) goto fail; if (len) goto fail_free_tx; tal_free(linear_tx); return tx; fail_free_tx: tal_free(tx); fail: tal_free(linear_tx); return NULL; } /* . Bitcoind represents hashes as little-endian for RPC. */ static void reverse_bytes(u8 *arr, size_t len) { unsigned int i; for (i = 0; i < len / 2; i++) { unsigned char tmp = arr[i]; arr[i] = arr[len - 1 - i]; arr[len - 1 - i] = tmp; } } bool bitcoin_txid_from_hex(const char *hexstr, size_t hexstr_len, struct bitcoin_txid *txid) { if (!hex_decode(hexstr, hexstr_len, txid, sizeof(*txid))) return false; reverse_bytes(txid->shad.sha.u.u8, sizeof(txid->shad.sha.u.u8)); return true; } bool bitcoin_txid_to_hex(const struct bitcoin_txid *txid, char *hexstr, size_t hexstr_len) { struct sha256_double rev = txid->shad; reverse_bytes(rev.sha.u.u8, sizeof(rev.sha.u.u8)); return hex_encode(&rev, sizeof(rev), hexstr, hexstr_len); } static char *fmt_bitcoin_tx(const tal_t *ctx, const struct bitcoin_tx *tx) { u8 *lin = linearize_tx(ctx, tx); char *s = tal_hex(ctx, lin); tal_free(lin); return s; } static char *fmt_bitcoin_txid(const tal_t *ctx, const struct bitcoin_txid *txid) { char *hexstr = tal_arr(ctx, char, hex_str_size(sizeof(*txid))); bitcoin_txid_to_hex(txid, hexstr, hex_str_size(sizeof(*txid))); return hexstr; } REGISTER_TYPE_TO_STRING(bitcoin_tx, fmt_bitcoin_tx); REGISTER_TYPE_TO_STRING(bitcoin_txid, fmt_bitcoin_txid);