They would sometimes fail under load, if using valgrind. Retry
properly rather than relying on random sleeps. Also, takes "make
check" running time here from 1m31.864s to 1m16.872s.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We use dev-disconnect to convince one node the other has disconnected
(but not vice versa), to get deterministic behaviour. We do this with
one HTLC outstanding, to test the HTLC timeout path.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Once we see an on-chain tx, we ignore the state machine and handle it
as per the onchain.md draft. This specifies a *resolution* for each
output, and we're done when they're irrevocable.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
It's not quite true: if we offer the anchor, we have a commitinfo
without their signature yet. So make it a pointer again. Since we
always allocate struct commit_info with talz, it starts as a NULL
pointer.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This is called when an HTLC times out, and we need to send it back to
ourselves. We also adjust the locktime, since in practice we should
refuse an HTLC less than our locktime.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We don't report conflicts, just depths. So we report 0 if it's in a
main chain which loses to another, otherwise it's always positive.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Since bitcoind doesn't propagate non-main chains, there's little point
trying to be smart when we see them. This simplifies things immensely.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
It's primitive, but we re-broadcast any txs not included in the main
chain every time the tip moves. We only track transactions we are
watching, but that turns out to cover every transaction we generate
anyway.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This can fail. Real cases include both sides dumping their commitment
txs in testing (only one can succeed).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We watch the anchor output, and separate it into different cases.
This is simpler with segwit (txids are known before sigs), but we also
had missed the case of our own commit transaction spend.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
There's no reason to, it's a simple p2wpkh to our key.
We still spend the "to-us" from our commit tx, since it could be
theoretically be stolen by the revocation value, and it's a complex
p2wsh which a normal wallet won't have the information to spend.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Turns out that we want to pass information about the commit info, the
HTLC number and (sometimes) the R value, so create a struct for that.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
You can't re-enter the state machine from a callback, so this allows you
to queue an input for when it returns.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This turns out to make life easier for watching HTLC timeouts (we just
place a new watch for each HTLC).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Since 43729c6856 (protocol: add output script to close_clearing message.)
the close scripts are not p2sh, but arbitrary. Fix the close tx matching.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We just use a p2sh to a single address for the moment, but that's simply for
non-segwit wallets; we'll pay to whatever the other side specifies.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Since any transaction with all segregated-witness inputs is non-malleable,
and all our transactions are that, we can remove normalized txids.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Rather than p2sh of a 2of2, it's now a version 0 witness program.
This means that the commit transaction input and mutual close
transaction input are both different.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
There isn't a single blockhash; we may be on multiple forks. But the one
caller which cares is commit_tx_depth(), which wants to know if the tx is
spendable yet. So that uses get_last_mediantime().
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We really want to do this for HTLCs; we don't do anything useful yet, but
this code replaces the direct call to bitcoind_watch_addr().
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Rather than polling for interesting bitcoin txs via importaddress, we use
the chain topology to register our interest directly.x
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This gets the median time of the block the tx is in. If there is more
than one (different tips), it gets the last median time.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Like txids, we need to reverse them. We didn't, but then we only used them
to pass to/from bitcoind. We're about to get them from the block header,
so we need to fix that.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
With segregated witness, we can (in advance!) specify the txid or tx
output we want to watch, so convert to that now. For the moment it's
done by pretending we have normalized txids; that goes away after the
conversion.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This lets us live in a segwit world, before segwit. It's a shim which we
can remove once we've changed all our outputs.
We need a few more sleeps in our test script, since we've slowed
things down by doing these calls for every tx in every block.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This allows us to track precise transaction depth ourselves,
particularly in the case of branching.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Otherwise, they're malleable. We only care about our own anchor:
their anchor is their problem (and they'll probably get away with it).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This is an address that bitcoind will happily pay to, but we know it's
a witness output so our inputs to the anchor are immalleable.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
You need to be running a bitcoind modified with segregated witness:
https://github.com/sipa/bitcoin/tree/segwit4
It needs 432 blocks to activate it!
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We currently linearize and then measure the string; this is better since
we're about to do it in a second place.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This can be used for proper support for fee negotiation; for the moment
it will be used for our anchor transaction creation.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We need to control the *inputs* to the anchor tx, to make sure they
pay to witness scripts (thus the anchor is immalleable). The easiest
way to do this is to hand out P2SH addresses for the user, and have
them pay into those. Then they hand us that tx and we use it to
create the anchor.
This is not a long-term solution!
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We need this for signing segwitness txs. Unfortunately, we don't have it
for transactions we received as hex, only ones we created; to make this safe
we use a pointer which is NULL if we don't know, and those will crash if
we try to sign or check their sigs.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We got the -> second translation wrong by a factor of 512, and also we
need to move the median time in our tests otherwise bitcoind won't let
us spend the tx.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
I had already disabled it, and this clears the decks for Segregated Witness
which gives us everything we want.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We always set *matches to false (outside the branch, oops). We also
distinguish the case where we ack from the case where they acked,
which removes a FIXME and makes it work.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We now keep a list of commitment transaction states for "us" and
"them", as well as a "struct channel_state" for staged changes.
We manipulate these structures as we send out packets, receive
packets, or receive acknowledgement of packets. In particular, we
update the other nodes' staging_cstate as we send out our requests,
and update our own staging_cstate are we receive acks. When we
receive a request, we update both (as we immediately send out our
ack).
The RPC output is changed; rather than expose the complexity, we
expose our last committed state: what would happen if we have to drop
to the blockchain now.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Rather than creating packets then queueing them, call out to functions
which do both. This moves us towards doing more work in those functions
where we send out a request, which is sometimes clearer.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
And divide fees as specified there.
We still use fixed values rather than floating, and we don't send or
handle update_fee messages.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We used to have a hacky close timeout which would immediately fire
when we'd closed because the connection was down. Far better to have
a specific "connection lost" input, and have it respond like CMD_CLOSE.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We don't actually implement closing when we have HTLCs (we should
allow it, as that's what the clearing phase is for), since soon we'll
rewrite HTLC to match the async HTLC protocol of BOLT #2.
Note that this folds the close paths, using a simple check if we have
a close transaction. That's a slight state layer violation, but
reduces code duplication.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
For the change to asynchronous updates as specified by BOLT #2, we
need to know when the other side acknowledged a packet. This creates
a simple callback mechanism for it.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This uses libsodium (we could use openssl, but the required primitives
are only in 1.1.0 which is still in alpha).
It doesn't handle reconnections yet, either.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This means we send the first two revocation hashes; this is important
once we move to a commit model as we need to send (unsolicited) the
signature for the *next* commit tx so we need its commit hash.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This encapsulates proposals more cleanly, and is important when we change
the protocol to have more than one outstanding at a time.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
The channel funding code needs to know who offered the anchor, as they
are responsible for paying fees until the other side is able to. This
is actually a hack, but at least now it's internal to funding and not
passed in at every funding_delta() call.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
If something goes wrong after we've broadcast the anchor tx, we need to use
the commit tx to spend it.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
It currently points into freed memory once we've make_commit_txs; we
don't currently dereference it after that, but I did in some test code
and got a surprise. Make a copy in all cases where we set it, so
there can't be lifetime problems.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This is only for the simple case where there are no HTLCs.
We group the current commit information together in the struct;
this involves a trivial transform from peer->cur_commit_theirsig to
peer->cur_commit.theirsig.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This is required for transactions which use OP_CSV to lock outputs for
a given amount of time: we need to know the mediantime of the block
they were included into.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We abort when this happens, but still worth testing.
This involves a refactor so we can allocate watches off a specific context,
for easy freeing when they're no longer wanted.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
When a peer is finally to be freed (ie. STATE_CLOSED), doing this
inside the state logic is a bit fraught. We're better off exiting the
io loop and freeing it there.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We do the simplest thing: a timer goes off, and we check all HTLCs for
one which has expired more than 30 seconds ago.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Otherwise we won't finish the conversation. In fact, only the writer
side should ever close: we wake it if we want to close and it tests
peer->cond.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
When the only commands are via JSON, you might argue that we should
simply insist the user not operate on the same peer in parallel. That
would suck, and also we need to handle the case of a command from
a timer (eg. HTLC expiry!) or a bitcoin event.
So, we need a queue for commands, but also we need to do some of the
command checking just before the command runs: the HTLC we're dealing
with might have vanished for example.
The current command is wrapped in an anonymous "curr_cmd" struct
for extra clarity.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This lets us implement accept_pkt_anchor().
Also had to predeclare sha256 in commit_tx.h, revealed by the new
includes.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>