As a side-effect of using amount_msat in gossipd/routing.c, we explicitly
handle overflows and don't need to pre-prune ridiculous-fee channels.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
And use wallet_forward_status_in_db() everywhere in db code.
And clean up extra CHANGELOG.md entry (looks like rebase error?)
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
The left join should make sure we still get the results but
referencing the fields and/or attempting to write them to the JSON-RPC
result will cause unforeseen problems. So just omit if we forgot
something.
We split json_invoice(), as it now needs to round-trip to the gossipd,
and uniqueness checks need to happen *after* gossipd replies to avoid
a race.
For every candidate channel gossipd gives us, we check that it's in
state NORMAL (not shutting down, not still waiting for lockin), that
it's connected, and that it has capacity. We then choose one with
probability weighted by excess capacity, so larger channels are more
likely.
As a side effect of this, we can tell if an invoice is unpayble (no
channels have sufficient incoming capacity) or difficuly (no *online*
channels have sufficient capacity), so we add those warnings.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Note that we don't actually need the output number: it's the tx itself
which is confirmed. And the next caller doesn't have it convenient, so
eliminate it.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
These are not confirmed by the normal methods (wallet_can_spend is false!),
so we'll deal with them manually.
We use UTXO_FIELDS in wallet_add_utxo, too, for consistency.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This seems like a premature optimization: it tried to cut down the number of
allocations by reusing the same `struct invoice_details` while iterating through
a number of results. But this sidesteps the checks by `valgrind` and we'd miss a
missing field that was set by the previous iteration.
Reported-by: @rustyrussell
Signed-off-by: Christian Decker <@cdecker>
Well, it's generated by shachain, so technically it is a sha256, but
that's an internal detail. It's a secret.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Simplification of the offset calculation to use the rescan parameter, and rename
of `wallet_first_blocknum`. We now use either relative rescan from our last
known location, or absolute if a negative rescan was given. It's all handled in
a single location (except the case in which the blockcount is below our
precomputed offset), so this should reduce surprises.
Signed-off-by: Christian Decker <decker.christian@gmail.com>
This will be used to replay transactions that were witnessed in the blockchain
during startup, so that onchaind can be recreate its state.
Signed-off-by: Christian Decker <decker.christian@gmail.com>
The only use for these was to compute their txids so we could notify depth
in case of reorgs.
Signed-off-by: Christian Decker <decker.christian@gmail.com>
This fixes the root cause of https://github.com/ElementsProject/lightning/issues/1212
where we deleted the payment because we wanted to retry, then retry failed
so we had an (old) HTLC without a matching payment. We then fed that
HTLC to onchaind, which tells us it's missing, and we try to fail the
payment and deref a NULL pointer.
Fixes: #1212
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Will be used later to filter out outputs we are interested in, and
trigger db updates with them.
Signed-off-by: Christian Decker <decker.christian@gmail.com>
In preparation for removing in-memory invoice objects.
Since they will be removed, there will no longer be any
individual invoice objects to attach to.
Since we create new entries from wallet_channel_insert(), there's no
need for the branches. And indeed, many wallet functions can be
static.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We derive the seed from this, so it needs to be unique, but using
rowid forced us to put the channel into the db early, before it
was ready.
Instead, use a counter to ensure uniqueness, initialized when we load
existing peers. This doesn't need to touch the database at all.
As we now have only two places where the channel is committed (the
funder and fundee paths), so we create a new explicit
'wallet_channel_insert()' function: 'wallet_channel_save()' now just
updates.
Note that this also fixes some weirdness in
wallet_channels_load_active: we strangely avoided loading channels in
CLOSINGD_COMPLETE (which fortunately was a transient state, so
unlikely anyone hit this). Note that since the lines above already
delete all the OPENINGD channels, we now simply load them all.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Adds a simple check that compares genesis-blockhashes from the
chainparams against the blockhash that the wallet was created
with. The wallet is network specific, so mixing is always a bad idea.
Signed-off-by: Christian Decker <decker.christian@gmail.com>
With fallback depending on chainparams: this means the first upgrade
will be slow, but after that it'll be fast.
Fixes: #990
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This provides a sanity check that we are in sync, and also keeps the
logic in the program and out of the SQL.
Since the destructor now doesn't clean up the peer, there are some
wider changes to be made when cleaning up. Most notably we create
lots of channels in run-wallet.c and they previously freed the peer:
now we need free the peer explicitly, so we need to free them first.
Suggested-by: @cdecker
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Much like the database; peer contains id, address, channel contains
per-channel information. Where we create a channel, we always create
the peer too.
For the moment, peer->log and channel->log coexist side-by-side, to
reduce some of the churn.
Note that this changes the API to dev-forget-channel: if we have more
than one channel, we insist they specify the short-channel-id.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We were sideloading it, which is awkward, now it's a field that we can
actually use in the code.
Signed-off-by: Christian Decker <decker.christian@gmail.com>
For performance, we delay entering the 'wallet_payment' into the db
until we actually commit to the HTLC (when we have to touch the DB
anyway).
This opens a race where we can try to pay twice, and since it's not in
the database yet, we don't notice the duplicate.
So remove the temporary payment field from htlc_out, which was always
an uncomfortable hack, and make the wallet code abstract over the
deferred entry a little by maintaining a 'unstored_payments' list
and incorporating that in results.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We need these to decode any returned errors.
We remove it from struct pay_command too, and load directly from db
when we need it.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
We should be saving this, as it's our proof of payment. Also, we return
it if they try to pay again.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This reuses the same code internally, and also now means that we deal
correctly with "any" msatoshi invoices: the old code would a return
'msatoshi' of 0 in that case.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This gives us a lower bound on where funding tx could be.
In theory, it could be lower than this if we get a reorganization, but
in practice this is already a 1-block buffer (since we can't get into
current block, only the next one).
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
It's only used for tests, but it's better to use the wallet_channels_load_active like
the real code.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
It's just a sha256_double, but importantly when we convert it to a
string (in type_to_string, which is used in logging) we use
bitcoin_txid_to_hex() so it's reversed as people expect.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Accuracy improvements:
1. We assumed the output was a p2wpkh, but it can be user-supplied now.
2. We assumed we always had change; remove this for wallet_select_all.
Calculation out-by-one fixes:
1. We need to add 1 byte (4 sipa) for the input count.
2. We need to add 1 byte (4 sipa) for the output count.
3. We need to add 1 byte (4 sipa) for the output script length for each output.
4. We need to add 1 byte (4 sipa) for the input script length for each input.
5. We need to add 1 byte (4 sipa) for the PUSH optcode for each P2SH input.
The results are now a slight overestimate (due to guessing 73 bytes
for signature, whereas they're 71 or 72 in practice).
Fixes: #458
Reported-by: Jonas Nick @jonasnick
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>