We probably also want to call secp_randomise/wally_secp_randomize here
too, and since these calls all call setup_tmpctx, it probably makes
sense to have a helper function to do all that. Until thats done, I
modified the tests so grepping will show the places where the sequence
of calls is repeated.
Signed-off-by: Jon Griffiths <jon_p_griffiths@yahoo.com>
tal_count() is used where there's a type, even if it's char or u8, and
tal_bytelen() is going to replace tal_len() for clarity: it's only needed
where a pointer is void.
We shim tal_bytelen() for now.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
I didn't convert all tests: they can still use a standalone context.
It's just marginally more efficient to share the libwally one for all
our daemons which link against it anyway.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This avoids clashing with the new_channel we're about to add to lightningd,
and also matches its counterpart new_initial_channel.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
It's just a sha256_double, but importantly when we convert it to a
string (in type_to_string, which is used in logging) we use
bitcoin_txid_to_hex() so it's reversed as people expect.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Handling feerates for the fundee (who only receives fee_update) is
simple: it's practically atomic since we accept commitment and send
revocation, thus they're applied to both sides at once.
Handling feerates for the funder is more complex: in theory we could
have multiple in flight. However, if we avoid this using the same
logic as we use to suppress multiple commitments in flight, it's
simple again.
We fix the test code to use real feerate manipulation, thus have to
remove an assert about feerate being non-zero. And now we have
feechanges, we need to rely on the changes_pending flags, as we can
have changes without an HTLCs changing.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
The wire protocol uses this, in the assumption that we'll never see feerates
in excess of 4294967 satoshi per kiloweight.
So let's use that consistently internally as well.
Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>