mirror of
https://github.com/ElementsProject/lightning.git
synced 2025-01-17 19:03:42 +01:00
sphinx: Remove obsolete onion implementation
This commit is contained in:
parent
1d3737055a
commit
d30f3f1a40
16
Makefile
16
Makefile
@ -23,9 +23,7 @@ BITCOIN_FEATURES := \
|
||||
FEATURES := $(BITCOIN_FEATURES)
|
||||
|
||||
TEST_PROGRAMS := \
|
||||
test/onion_key \
|
||||
test/test_protocol \
|
||||
test/test_onion \
|
||||
test/test_sphinx
|
||||
|
||||
BITCOIN_SRC := \
|
||||
@ -200,18 +198,6 @@ $(CCAN_OBJS) $(CDUMP_OBJS) $(HELPER_OBJS) $(BITCOIN_OBJS) $(TEST_PROGRAMS:=.o) c
|
||||
# Except for CCAN, everything depends on bitcoin/ and core headers.
|
||||
$(HELPER_OBJS) $(CORE_OBJS) $(BITCOIN_OBJS) $(TEST_PROGRAMS:=.o): $(BITCOIN_HEADERS) $(CORE_HEADERS) $(CCAN_HEADERS) $(GEN_HEADERS)
|
||||
|
||||
test-onion: test/test_onion test/onion_key
|
||||
set -e; TMPF=/tmp/onion.$$$$; test/test_onion --generate $$(test/onion_key --pub `seq 20`) > $$TMPF; for k in `seq 20`; do test/test_onion --decode $$(test/onion_key --priv $$k) < $$TMPF > $$TMPF.unwrap; mv $$TMPF.unwrap $$TMPF; done; rm -f $$TMPF
|
||||
|
||||
test-onion2: test/test_onion test/onion_key
|
||||
set -e; TMPF=/tmp/onion.$$$$; python test/test_onion.py generate $$(test/onion_key --pub `seq 20`) > $$TMPF; for k in `seq 20`; do test/test_onion --decode $$(test/onion_key --priv $$k) < $$TMPF > $$TMPF.unwrap; mv $$TMPF.unwrap $$TMPF; done; rm -f $$TMPF
|
||||
|
||||
test-onion3: test/test_onion test/onion_key
|
||||
set -e; TMPF=/tmp/onion.$$$$; test/test_onion --generate $$(test/onion_key --pub `seq 20`) > $$TMPF; for k in `seq 20`; do python test/test_onion.py decode $$(test/onion_key --priv $$k) $$(test/onion_key --pub $$k) < $$TMPF > $$TMPF.unwrap; mv $$TMPF.unwrap $$TMPF; done; rm -f $$TMPF
|
||||
|
||||
test-onion4: test/test_onion test/onion_key
|
||||
set -e; TMPF=/tmp/onion.$$$$; python test/test_onion.py generate $$(test/onion_key --pub `seq 20`) > $$TMPF; for k in `seq 20`; do python test/test_onion.py decode $$(test/onion_key --priv $$k) $$(test/onion_key --pub $$k) < $$TMPF > $$TMPF.unwrap; mv $$TMPF.unwrap $$TMPF; done; rm -f $$TMPF
|
||||
|
||||
test-protocol: test/test_protocol
|
||||
set -e; TMP=`mktemp`; [ -n "$(NO_VALGRIND)" ] || PREFIX="valgrind -q --error-exitcode=7"; for f in test/commits/*.script; do if ! $$PREFIX test/test_protocol < $$f > $$TMP; then echo "test/test_protocol < $$f FAILED" >&2; exit 1; fi; diff -u $$TMP $$f.expected; done; rm $$TMP
|
||||
|
||||
@ -220,7 +206,7 @@ doc/protocol-%.svg: test/test_protocol
|
||||
|
||||
protocol-diagrams: $(patsubst %.script, doc/protocol-%.svg, $(notdir $(wildcard test/commits/*.script)))
|
||||
|
||||
check: test-onion test-protocol bitcoin-tests
|
||||
check: test-protocol bitcoin-tests
|
||||
|
||||
include bitcoin/Makefile
|
||||
|
||||
|
@ -1,82 +0,0 @@
|
||||
#include "log.h"
|
||||
#include "onion.h"
|
||||
#include "peer.h"
|
||||
#include "protobuf_convert.h"
|
||||
#include "routing.h"
|
||||
#include <string.h>
|
||||
|
||||
/* FIXME: http://www.cypherpunks.ca/~iang/pubs/Sphinx_Oakland09.pdf */
|
||||
|
||||
/* Frees r */
|
||||
static const u8 *to_onion(const tal_t *ctx, const Route *r)
|
||||
{
|
||||
u8 *onion = tal_arr(ctx, u8, route__get_packed_size(r));
|
||||
route__pack(r, onion);
|
||||
tal_free(r);
|
||||
return onion;
|
||||
}
|
||||
|
||||
/* Create an onion for this path. */
|
||||
const u8 *onion_create(const tal_t *ctx,
|
||||
secp256k1_context *secpctx,
|
||||
const struct pubkey *ids,
|
||||
const u64 *amounts,
|
||||
size_t num_hops)
|
||||
{
|
||||
Route *r = tal(ctx, Route);
|
||||
size_t i;
|
||||
|
||||
route__init(r);
|
||||
r->n_steps = num_hops + 1;
|
||||
r->steps = tal_arr(r, RouteStep *, r->n_steps);
|
||||
|
||||
for (i = 0; i < num_hops; i++) {
|
||||
r->steps[i] = tal(r, RouteStep);
|
||||
route_step__init(r->steps[i]);
|
||||
r->steps[i]->next_case = ROUTE_STEP__NEXT_BITCOIN;
|
||||
r->steps[i]->bitcoin = pubkey_to_proto(r, secpctx, &ids[i]);
|
||||
r->steps[i]->amount = amounts[i];
|
||||
}
|
||||
|
||||
/* Now the stop marker. */
|
||||
r->steps[i] = tal(r, RouteStep);
|
||||
route_step__init(r->steps[i]);
|
||||
r->steps[i]->next_case = ROUTE_STEP__NEXT_END;
|
||||
r->steps[i]->end = true;
|
||||
r->steps[i]->amount = 0;
|
||||
|
||||
return to_onion(ctx, r);
|
||||
}
|
||||
|
||||
/* Decode next step in the route, and fill out the onion to send onwards. */
|
||||
RouteStep *onion_unwrap(struct peer *peer,
|
||||
const void *data, size_t len, const u8 **next)
|
||||
{
|
||||
struct ProtobufCAllocator *prototal = make_prototal(peer);
|
||||
Route *r;
|
||||
RouteStep *step;
|
||||
|
||||
r = route__unpack(prototal, len, data);
|
||||
if (!r || r->n_steps == 0) {
|
||||
log_unusual(peer->log, "Failed to unwrap onion");
|
||||
tal_free(prototal);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
/* Remove first step. */
|
||||
step = r->steps[0];
|
||||
/* Make sure that step owns the rest */
|
||||
steal_from_prototal(peer, prototal, step);
|
||||
|
||||
/* Re-pack with remaining steps. */
|
||||
r->n_steps--;
|
||||
memmove(r->steps, r->steps + 1, sizeof(*r->steps) * r->n_steps);
|
||||
|
||||
if (!r->n_steps) {
|
||||
*next = NULL;
|
||||
tal_free(r);
|
||||
} else
|
||||
*next = to_onion(peer, r);
|
||||
|
||||
return step;
|
||||
}
|
@ -1,21 +0,0 @@
|
||||
#ifndef LIGHTNING_DAEMON_ONION_H
|
||||
#define LIGHTNING_DAEMON_ONION_H
|
||||
#include "config.h"
|
||||
#include "lightning.pb-c.h"
|
||||
#include <ccan/short_types/short_types.h>
|
||||
#include <secp256k1.h>
|
||||
|
||||
struct peer;
|
||||
struct node_connection;
|
||||
|
||||
/* Decode next step in the route, and fill out the onion to send onwards. */
|
||||
RouteStep *onion_unwrap(struct peer *peer,
|
||||
const void *data, size_t len, const u8 **next);
|
||||
|
||||
/* Create an onion for sending msatoshi down path, paying fees. */
|
||||
const u8 *onion_create(const tal_t *ctx,
|
||||
secp256k1_context *secpctx,
|
||||
const struct pubkey *ids,
|
||||
const u64 *amounts,
|
||||
size_t num_hops);
|
||||
#endif /* LIGHTNING_DAEMON_ONION_H */
|
102
test/onion_key.c
102
test/onion_key.c
@ -1,102 +0,0 @@
|
||||
#define _GNU_SOURCE 1
|
||||
#include "onion_key.h"
|
||||
#include "version.h"
|
||||
#include <time.h>
|
||||
#include <ccan/str/hex/hex.h>
|
||||
#include <ccan/opt/opt.h>
|
||||
#include <assert.h>
|
||||
#include <secp256k1.h>
|
||||
#include <secp256k1_ecdh.h>
|
||||
#include <string.h>
|
||||
#include <stdio.h>
|
||||
#include <sys/types.h>
|
||||
#include <unistd.h>
|
||||
|
||||
/* Not really! */
|
||||
static void random_bytes(void *dst, size_t n)
|
||||
{
|
||||
size_t i;
|
||||
unsigned char *d = dst;
|
||||
|
||||
for (i = 0; i < n; i++)
|
||||
d[i] = random() % 256;
|
||||
}
|
||||
|
||||
static void random_key(secp256k1_context *ctx,
|
||||
struct seckey *seckey, secp256k1_pubkey *pkey)
|
||||
{
|
||||
do {
|
||||
random_bytes(seckey->u.u8, sizeof(seckey->u));
|
||||
} while (!secp256k1_ec_pubkey_create(ctx, pkey, seckey->u.u8));
|
||||
}
|
||||
|
||||
/* We don't want to spend a byte encoding sign, so make sure it's 0x2 */
|
||||
static void gen_keys(secp256k1_context *ctx,
|
||||
struct seckey *seckey, struct compressed_pubkey *pubkey)
|
||||
{
|
||||
secp256k1_pubkey pkey;
|
||||
size_t len = sizeof(pubkey->u8);
|
||||
|
||||
random_key(ctx, seckey, &pkey);
|
||||
|
||||
secp256k1_ec_pubkey_serialize(ctx, pubkey->u8, &len, &pkey,
|
||||
SECP256K1_EC_COMPRESSED);
|
||||
assert(len == sizeof(pubkey->u8));
|
||||
}
|
||||
|
||||
static void print_keypair(bool pub, bool priv)
|
||||
{
|
||||
secp256k1_context *ctx;
|
||||
struct seckey seckey;
|
||||
struct compressed_pubkey pubkey;
|
||||
char sechex[hex_str_size(sizeof(seckey))];
|
||||
char pubhex[hex_str_size(sizeof(pubkey))];
|
||||
|
||||
assert(pub || priv);
|
||||
|
||||
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
|
||||
gen_keys(ctx, &seckey, &pubkey);
|
||||
|
||||
hex_encode(&seckey, sizeof(seckey), sechex, sizeof(sechex));
|
||||
hex_encode(&pubkey, sizeof(pubkey), pubhex, sizeof(pubhex));
|
||||
|
||||
if (pub && priv) {
|
||||
printf("%s:%s\n", sechex, pubhex);
|
||||
} else {
|
||||
printf("%s\n", (priv ? sechex : pubhex));
|
||||
}
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
bool pub = true, priv = true;
|
||||
|
||||
opt_register_noarg("--help|-h", opt_usage_and_exit,
|
||||
"[<seeds>...]\n"
|
||||
"Generate (deterministic if seed) secp256k1 keys",
|
||||
"Print this message.");
|
||||
opt_register_noarg("--pub",
|
||||
opt_set_invbool, &priv,
|
||||
"Generate only the public key");
|
||||
opt_register_noarg("--priv",
|
||||
opt_set_invbool, &pub,
|
||||
"Generate only the private key");
|
||||
opt_register_version();
|
||||
|
||||
opt_parse(&argc, argv, opt_log_stderr_exit);
|
||||
if (!priv && !pub)
|
||||
opt_usage_exit_fail("Can't use --pub and --priv");
|
||||
|
||||
if (argc == 1) {
|
||||
srandom(time(NULL) + getpid());
|
||||
print_keypair(pub, priv);
|
||||
} else {
|
||||
int i;
|
||||
for (i = 1; i < argc; i++) {
|
||||
srandom(atoi(argv[i]));
|
||||
print_keypair(pub, priv);
|
||||
}
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
@ -1,24 +0,0 @@
|
||||
#ifndef ONION_KEY_H
|
||||
#define ONION_KEY_H
|
||||
#include <ccan/endian/endian.h>
|
||||
#include "bitcoin/privkey.h"
|
||||
|
||||
struct seckey {
|
||||
union {
|
||||
struct privkey k;
|
||||
unsigned char u8[32];
|
||||
beint64_t be64[4];
|
||||
} u;
|
||||
};
|
||||
|
||||
/* First byte is 0x02 or 0x03 indicating even or odd y */
|
||||
struct compressed_pubkey {
|
||||
unsigned char u8[33];
|
||||
};
|
||||
|
||||
/* Prepend 0x02 to get pubkey for libsecp256k1 */
|
||||
struct onion_pubkey {
|
||||
unsigned char u8[32];
|
||||
};
|
||||
|
||||
#endif /* ONION_KEY_H */
|
@ -1,642 +0,0 @@
|
||||
#define _GNU_SOURCE 1
|
||||
#include "onion_key.h"
|
||||
#include "version.h"
|
||||
#include <string.h>
|
||||
#include <unistd.h>
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <err.h>
|
||||
#include <stdbool.h>
|
||||
#include <assert.h>
|
||||
#include <ccan/build_assert/build_assert.h>
|
||||
#include <ccan/tal/tal.h>
|
||||
#include <ccan/mem/mem.h>
|
||||
#include <ccan/crypto/sha256/sha256.h>
|
||||
#include <ccan/endian/endian.h>
|
||||
#include <ccan/read_write_all/read_write_all.h>
|
||||
#include <ccan/opt/opt.h>
|
||||
#include <ccan/str/hex/hex.h>
|
||||
#include <secp256k1.h>
|
||||
#include <secp256k1_ecdh.h>
|
||||
#include <sodium/crypto_stream_aes128ctr.h>
|
||||
#include <sodium/crypto_auth_hmacsha256.h>
|
||||
#include <sodium/utils.h>
|
||||
|
||||
/*
|
||||
* The client knows the server's public key S (which has corresponding
|
||||
private key s) in advance.
|
||||
* The client generates an ephemeral private key r, and its corresponding
|
||||
public key R.
|
||||
* The client computes K = ECDH(r, S), and sends R to the server at
|
||||
connection establishing time.
|
||||
* The server receives R, and computes K = ECHD(R, s).
|
||||
* Both client and server compute Kenc = SHA256(K || 0) and Kmac = SHA256(K
|
||||
|| 1), and now send HMAC-SHA256(key=Kmac, msg=AES(key=Kenc, msg=m)) instead
|
||||
of m, for each message.
|
||||
*/
|
||||
|
||||
struct enckey {
|
||||
struct sha256 k;
|
||||
};
|
||||
|
||||
struct hmackey {
|
||||
struct sha256 k;
|
||||
};
|
||||
|
||||
struct iv {
|
||||
unsigned char iv[crypto_stream_aes128ctr_NONCEBYTES];
|
||||
};
|
||||
|
||||
static void sha_with_seed(const unsigned char secret[32],
|
||||
unsigned char seed,
|
||||
struct sha256 *res)
|
||||
{
|
||||
struct sha256_ctx ctx;
|
||||
|
||||
sha256_init(&ctx);
|
||||
sha256_update(&ctx, memcheck(secret, 32), 32);
|
||||
sha256_u8(&ctx, seed);
|
||||
sha256_done(&ctx, res);
|
||||
}
|
||||
|
||||
static struct enckey enckey_from_secret(const unsigned char secret[32])
|
||||
{
|
||||
struct enckey enckey;
|
||||
sha_with_seed(secret, 0, &enckey.k);
|
||||
return enckey;
|
||||
}
|
||||
|
||||
static struct hmackey hmackey_from_secret(const unsigned char secret[32])
|
||||
{
|
||||
struct hmackey hmackey;
|
||||
sha_with_seed(secret, 1, &hmackey.k);
|
||||
memcheck(&hmackey, 1);
|
||||
return hmackey;
|
||||
}
|
||||
|
||||
|
||||
static void ivs_from_secret(const unsigned char secret[32],
|
||||
struct iv *iv, struct iv *pad_iv)
|
||||
{
|
||||
struct sha256 sha;
|
||||
sha_with_seed(secret, 2, &sha);
|
||||
BUILD_ASSERT(sizeof(*iv) + sizeof(*pad_iv) == sizeof(sha));
|
||||
memcpy(iv->iv, sha.u.u8, sizeof(iv->iv));
|
||||
memcpy(pad_iv->iv, sha.u.u8 + sizeof(iv->iv), sizeof(pad_iv->iv));
|
||||
}
|
||||
|
||||
/* Not really! */
|
||||
static void random_bytes(void *dst, size_t n)
|
||||
{
|
||||
size_t i;
|
||||
unsigned char *d = dst;
|
||||
|
||||
for (i = 0; i < n; i++)
|
||||
d[i] = random() % 256;
|
||||
}
|
||||
|
||||
/* Compressed key would start with 0x3? Subtract from group. Thanks
|
||||
* Greg Maxwell. */
|
||||
static void flip_key(struct seckey *seckey)
|
||||
{
|
||||
int i;
|
||||
bool carry = 0;
|
||||
|
||||
const int64_t group[] = {
|
||||
0xFFFFFFFFFFFFFFFFULL,
|
||||
0xFFFFFFFFFFFFFFFEULL,
|
||||
0xBAAEDCE6AF48A03BULL,
|
||||
0xBFD25E8CD0364141ULL
|
||||
};
|
||||
|
||||
for (i = 3; i >= 0; i--) {
|
||||
uint64_t v = be64_to_cpu(seckey->u.be64[i]);
|
||||
if (carry) {
|
||||
/* Beware wrap if v == 0xFFFF.... */
|
||||
carry = (group[i] <= v);
|
||||
v++;
|
||||
} else
|
||||
carry = (group[i] < v);
|
||||
|
||||
v = group[i] - v;
|
||||
seckey->u.be64[i] = cpu_to_be64(v);
|
||||
}
|
||||
}
|
||||
|
||||
#if 0
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
struct seckey k;
|
||||
|
||||
k.u.be64[0] = cpu_to_be64(0xFFFFFFFFFFFFFFFFULL);
|
||||
k.u.be64[1] = cpu_to_be64(0xFFFFFFFFFFFFFFFEULL);
|
||||
k.u.be64[2] = cpu_to_be64(0xBAAEDCE6AF48A03BULL);
|
||||
k.u.be64[3] = cpu_to_be64(0xBFD25E8CD0364141ULL);
|
||||
flip_key(&k);
|
||||
assert(k.u.be64[0] == 0);
|
||||
assert(k.u.be64[1] == 0);
|
||||
assert(k.u.be64[2] == 0);
|
||||
assert(k.u.be64[3] == 0);
|
||||
flip_key(&k);
|
||||
assert(k.u.be64[0] == cpu_to_be64(0xFFFFFFFFFFFFFFFFULL));
|
||||
assert(k.u.be64[1] == cpu_to_be64(0xFFFFFFFFFFFFFFFEULL));
|
||||
assert(k.u.be64[2] == cpu_to_be64(0xBAAEDCE6AF48A03BULL));
|
||||
assert(k.u.be64[3] == cpu_to_be64(0xBFD25E8CD0364141ULL));
|
||||
|
||||
k.u.be64[0] = cpu_to_be64(0xFFFFFFFFFFFFFFFFULL);
|
||||
k.u.be64[1] = cpu_to_be64(0xFFFFFFFFFFFFFFFEULL);
|
||||
k.u.be64[2] = cpu_to_be64(0xBAAEDCE6AF48A03BULL);
|
||||
k.u.be64[3] = cpu_to_be64(0xBFD25E8CD0364142ULL);
|
||||
flip_key(&k);
|
||||
assert(k.u.be64[0] == 0xFFFFFFFFFFFFFFFFULL);
|
||||
assert(k.u.be64[1] == 0xFFFFFFFFFFFFFFFFULL);
|
||||
assert(k.u.be64[2] == 0xFFFFFFFFFFFFFFFFULL);
|
||||
assert(k.u.be64[3] == 0xFFFFFFFFFFFFFFFFULL);
|
||||
flip_key(&k);
|
||||
assert(k.u.be64[0] == cpu_to_be64(0xFFFFFFFFFFFFFFFFULL));
|
||||
assert(k.u.be64[1] == cpu_to_be64(0xFFFFFFFFFFFFFFFEULL));
|
||||
assert(k.u.be64[2] == cpu_to_be64(0xBAAEDCE6AF48A03BULL));
|
||||
assert(k.u.be64[3] == cpu_to_be64(0xBFD25E8CD0364142ULL));
|
||||
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
static void random_key(secp256k1_context *ctx,
|
||||
struct seckey *seckey, secp256k1_pubkey *pkey)
|
||||
{
|
||||
do {
|
||||
random_bytes(seckey->u.u8, sizeof(seckey->u));
|
||||
} while (!secp256k1_ec_pubkey_create(ctx, pkey, seckey->u.u8));
|
||||
}
|
||||
|
||||
/* We don't want to spend a byte encoding sign, so make sure it's 0x2 */
|
||||
static void gen_keys(secp256k1_context *ctx,
|
||||
struct seckey *seckey, struct onion_pubkey *pubkey)
|
||||
{
|
||||
unsigned char tmp[33];
|
||||
secp256k1_pubkey pkey;
|
||||
size_t len = sizeof(tmp);
|
||||
|
||||
random_key(ctx, seckey, &pkey);
|
||||
|
||||
secp256k1_ec_pubkey_serialize(ctx, tmp, &len, &pkey,
|
||||
SECP256K1_EC_COMPRESSED);
|
||||
assert(len == sizeof(tmp));
|
||||
if (tmp[0] == 0x3)
|
||||
flip_key(seckey);
|
||||
memcpy(pubkey, tmp+1, sizeof(*pubkey));
|
||||
}
|
||||
|
||||
/*
|
||||
* Onion routing:
|
||||
*
|
||||
* Each step decrypts the payload, and removes its message. It then
|
||||
* pads at the end to keep constant size, by encrypting 0 bytes (ZPAD)
|
||||
*
|
||||
* You can see the result of the unwrapping here:
|
||||
*
|
||||
* ENC1(PKT1 ENC2(PKT2 ENC3(PKT3 ENC4(PKT4 ENC5(PKT5 RPAD)))))
|
||||
* After 1: ENC2(PKT2 ENC3(PKT3 ENC4(PKT4 ENC5(PKT5 RPAD))))
|
||||
* ENC1(ZPAD)
|
||||
* After 2: ENC3(PKT3 ENC4(PKT4 ENC5(PKT5 RPAD)))
|
||||
* DEC2(ENC1(ZPAD))
|
||||
* ENC2(ZPAD)
|
||||
* After 3: ENC4(PKT4 ENC5(PKT5 RPAD)))
|
||||
* DEC3(DEC2(ENC1(ZPAD)) ENC2(ZPAD))
|
||||
* ENC3(ZPAD)
|
||||
* After 4: ENC5(PKT5 RPAD)
|
||||
* DEC4(DEC3(DEC2(ENC1(ZPAD)) ENC2(ZPAD)) ENC3(ZPAD))
|
||||
* ENC4(ZPAD)
|
||||
*
|
||||
* ENC1(PKT1 ENC2(PKT2))
|
||||
* => ENC2(PKT2) ENC1(ZPAD)
|
||||
* => PKT2 DEC2(ENC1(ZPAD))
|
||||
*/
|
||||
#define MESSAGE_SIZE 128
|
||||
#define MAX_HOPS 20
|
||||
|
||||
struct hop {
|
||||
unsigned char msg[MESSAGE_SIZE];
|
||||
struct onion_pubkey pubkey;
|
||||
struct sha256 hmac;
|
||||
};
|
||||
|
||||
struct onion {
|
||||
struct hop hop[MAX_HOPS];
|
||||
};
|
||||
|
||||
/* We peel from the back. */
|
||||
static struct hop *myhop(const struct onion *onion)
|
||||
{
|
||||
return (struct hop *)&onion->hop[MAX_HOPS-1];
|
||||
}
|
||||
|
||||
static bool aes_encrypt(void *dst, const void *src, size_t len,
|
||||
const struct enckey *enckey, const struct iv *iv)
|
||||
{
|
||||
return crypto_stream_aes128ctr_xor(dst, src, len, iv->iv, enckey->k.u.u8) == 0;
|
||||
}
|
||||
|
||||
static bool aes_decrypt(void *dst, const void *src, size_t len,
|
||||
const struct enckey *enckey, const struct iv *iv)
|
||||
{
|
||||
return crypto_stream_aes128ctr_xor(dst, src, len, iv->iv, enckey->k.u.u8) == 0;
|
||||
}
|
||||
|
||||
#if 0
|
||||
static void dump_contents(const void *data, size_t n)
|
||||
{
|
||||
size_t i;
|
||||
const unsigned char *p = memcheck(data, n);
|
||||
|
||||
for (i = 0; i < n; i++) {
|
||||
printf("%02x", p[i]);
|
||||
if (i % 16 == 15)
|
||||
printf("\n");
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
static bool aes_encrypt_offset(size_t offset,
|
||||
void *dst, const void *src, size_t len,
|
||||
const struct enckey *enckey,
|
||||
const struct iv *iv)
|
||||
{
|
||||
/*
|
||||
* FIXME: This would be easier if we could set the counter; instead
|
||||
* we simulate it by encrypting junk before the actual data.
|
||||
*/
|
||||
char tmp[offset + len];
|
||||
|
||||
/* Keep valgrind happy. */
|
||||
memset(tmp, 0, offset);
|
||||
memcpy(tmp + offset, src, len);
|
||||
|
||||
/* FIXME: Assumes we are allowed to encrypt in place! */
|
||||
if (!aes_encrypt(tmp, tmp, offset+len, enckey, iv))
|
||||
return false;
|
||||
|
||||
memcpy(dst, tmp + offset, len);
|
||||
return true;
|
||||
}
|
||||
|
||||
/* Padding is created by encrypting zeroes. */
|
||||
static void add_padding(struct hop *padding,
|
||||
const struct enckey *enckey,
|
||||
const struct iv *pad_iv)
|
||||
{
|
||||
static struct hop zerohop;
|
||||
|
||||
aes_encrypt(padding, &zerohop, sizeof(zerohop), enckey, pad_iv);
|
||||
}
|
||||
|
||||
static void make_hmac(const struct hop *hops, size_t num_hops,
|
||||
const struct hop *padding,
|
||||
const struct hmackey *hmackey,
|
||||
struct sha256 *hmac)
|
||||
{
|
||||
crypto_auth_hmacsha256_state state;
|
||||
size_t len, padlen = (MAX_HOPS - num_hops) * sizeof(struct hop);
|
||||
len = num_hops*sizeof(struct hop) - sizeof(hops->hmac);
|
||||
crypto_auth_hmacsha256_init(&state, hmackey->k.u.u8, sizeof(hmackey->k));
|
||||
crypto_auth_hmacsha256_update(&state, memcheck((unsigned char *)padding, padlen), padlen);
|
||||
crypto_auth_hmacsha256_update(&state, memcheck((unsigned char *)hops, len), len);
|
||||
crypto_auth_hmacsha256_update(&state, memcheck((unsigned char *)padding, padlen), padlen);
|
||||
crypto_auth_hmacsha256_final(&state, hmac->u.u8);
|
||||
}
|
||||
|
||||
#if 0
|
||||
static void _dump_hex(unsigned char *x, size_t s) {
|
||||
printf(" ");
|
||||
while (s > 0) {
|
||||
printf("%02x", *x);
|
||||
x++; s--;
|
||||
}
|
||||
}
|
||||
#define dump_hex(x) _dump_hex((void*)&x, sizeof(x))
|
||||
|
||||
static void dump_pkey(secp256k1_context *ctx, secp256k1_pubkey pkey) {
|
||||
unsigned char tmp[65];
|
||||
size_t len = sizeof(tmp);
|
||||
secp256k1_ec_pubkey_serialize(ctx, tmp, &len, &pkey, 0);
|
||||
dump_hex(tmp);
|
||||
}
|
||||
#endif
|
||||
|
||||
static bool check_hmac(struct onion *onion, const struct hmackey *hmackey)
|
||||
{
|
||||
struct sha256 hmac;
|
||||
|
||||
make_hmac(onion->hop, MAX_HOPS, NULL, hmackey, &hmac);
|
||||
return sodium_memcmp(&hmac, &myhop(onion)->hmac, sizeof(hmac)) == 0;
|
||||
}
|
||||
|
||||
static bool create_onion(const secp256k1_pubkey pubkey[],
|
||||
char *const msg[],
|
||||
size_t num,
|
||||
struct onion *onion)
|
||||
{
|
||||
int i;
|
||||
struct seckey seckeys[MAX_HOPS];
|
||||
struct onion_pubkey pubkeys[MAX_HOPS];
|
||||
struct enckey enckeys[MAX_HOPS];
|
||||
struct hmackey hmackeys[MAX_HOPS];
|
||||
struct iv ivs[MAX_HOPS];
|
||||
struct iv pad_ivs[MAX_HOPS];
|
||||
crypto_auth_hmacsha256_state padding_hmac[MAX_HOPS];
|
||||
struct hop padding[MAX_HOPS];
|
||||
size_t junk_hops;
|
||||
secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
|
||||
bool ok = false;
|
||||
|
||||
if (num > MAX_HOPS)
|
||||
goto fail;
|
||||
|
||||
/* FIXME: I think it would be safe to reuse a single disposable key
|
||||
* here? */
|
||||
/* First generate all the keys. */
|
||||
for (i = 0; i < num; i++) {
|
||||
unsigned char secret[32];
|
||||
|
||||
gen_keys(ctx, &seckeys[i], &pubkeys[i]);
|
||||
|
||||
|
||||
/* Make shared secret. */
|
||||
if (!secp256k1_ecdh(ctx, secret, &pubkey[i], seckeys[i].u.u8))
|
||||
goto fail;
|
||||
|
||||
hmackeys[i] = hmackey_from_secret(memcheck(secret, 32));
|
||||
enckeys[i] = enckey_from_secret(secret);
|
||||
ivs_from_secret(secret, &ivs[i], &pad_ivs[i]);
|
||||
}
|
||||
|
||||
/*
|
||||
* Building the onion is a little tricky.
|
||||
*
|
||||
* First, there is the padding. That's generated by previous nodes,
|
||||
* and "decrypted" by the others. So we have to generate that
|
||||
* forwards.
|
||||
*/
|
||||
for (i = 0; i < num; i++) {
|
||||
if (i > 0) {
|
||||
/* Previous node decrypts padding before passing on. */
|
||||
aes_decrypt(padding, padding, sizeof(struct hop)*(i-1),
|
||||
&enckeys[i-1], &ivs[i-1]);
|
||||
memmove(padding + 1, padding,
|
||||
sizeof(struct hop)*(i-1));
|
||||
}
|
||||
/* And generates more padding for next node. */
|
||||
add_padding(&padding[0], &enckeys[i-1], &pad_ivs[i-1]);
|
||||
crypto_auth_hmacsha256_init(&padding_hmac[i],
|
||||
hmackeys[i].k.u.u8,
|
||||
sizeof(hmackeys[i].k));
|
||||
crypto_auth_hmacsha256_update(&padding_hmac[i],
|
||||
memcheck((unsigned char *)padding,
|
||||
i * sizeof(struct hop)),
|
||||
i * sizeof(struct hop));
|
||||
}
|
||||
|
||||
/*
|
||||
* Now the normal onion is generated backwards.
|
||||
*/
|
||||
|
||||
/* Unused hops filled with random, so even recipient can't tell
|
||||
* how many were used. */
|
||||
junk_hops = MAX_HOPS - num;
|
||||
random_bytes(onion->hop, junk_hops * sizeof(struct hop));
|
||||
|
||||
for (i = num - 1; i >= 0; i--) {
|
||||
size_t other_hops, len;
|
||||
struct hop *myhop;
|
||||
|
||||
other_hops = num - i - 1 + junk_hops;
|
||||
|
||||
/* Our entry is at tail of onion. */
|
||||
myhop = onion->hop + other_hops;
|
||||
|
||||
/* Now populate our hop. */
|
||||
myhop->pubkey = pubkeys[i];
|
||||
/* Set message. */
|
||||
assert(strlen(msg[i]) < MESSAGE_SIZE);
|
||||
memset(myhop->msg, 0, MESSAGE_SIZE);
|
||||
strcpy((char *)myhop->msg, msg[i]);
|
||||
|
||||
/* Encrypt whole thing, including our message, but we
|
||||
* aware it will be offset by the prepended padding. */
|
||||
if (!aes_encrypt_offset(i * sizeof(struct hop),
|
||||
onion, onion,
|
||||
other_hops * sizeof(struct hop)
|
||||
+ sizeof(myhop->msg),
|
||||
&enckeys[i], &ivs[i]))
|
||||
goto fail;
|
||||
|
||||
/* HMAC covers entire thing except hmac itself. */
|
||||
len = (other_hops + 1)*sizeof(struct hop) - sizeof(myhop->hmac);
|
||||
crypto_auth_hmacsha256_update(&padding_hmac[i],
|
||||
memcheck((unsigned char *)onion, len), len);
|
||||
crypto_auth_hmacsha256_final(&padding_hmac[i], myhop->hmac.u.u8);
|
||||
}
|
||||
|
||||
ok = true;
|
||||
fail:
|
||||
secp256k1_context_destroy(ctx);
|
||||
return ok;
|
||||
}
|
||||
|
||||
static bool pubkey_parse(const secp256k1_context *ctx,
|
||||
secp256k1_pubkey* pubkey,
|
||||
struct onion_pubkey *pkey)
|
||||
{
|
||||
unsigned char tmp[33];
|
||||
|
||||
tmp[0] = 0x2;
|
||||
memcpy(tmp+1, pkey, sizeof(*pkey));
|
||||
return secp256k1_ec_pubkey_parse(ctx, pubkey, tmp, sizeof(tmp));
|
||||
}
|
||||
|
||||
/*
|
||||
* Decrypt onion, return true if onion->hop[0] is valid.
|
||||
*
|
||||
* Returns enckey and pad_iv for use in unwrap.
|
||||
*/
|
||||
static bool decrypt_onion(const struct seckey *myseckey, struct onion *onion,
|
||||
struct enckey *enckey, struct iv *pad_iv)
|
||||
{
|
||||
secp256k1_context *ctx;
|
||||
unsigned char secret[32];
|
||||
struct hmackey hmackey;
|
||||
struct iv iv;
|
||||
secp256k1_pubkey pubkey;
|
||||
|
||||
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
|
||||
|
||||
if (!pubkey_parse(ctx, &pubkey, &myhop(onion)->pubkey))
|
||||
goto fail;
|
||||
|
||||
/* Extract shared secret. */
|
||||
if (!secp256k1_ecdh(ctx, secret, &pubkey, myseckey->u.u8))
|
||||
goto fail;
|
||||
|
||||
hmackey = hmackey_from_secret(secret);
|
||||
*enckey = enckey_from_secret(secret);
|
||||
ivs_from_secret(secret, &iv, pad_iv);
|
||||
|
||||
/* Check HMAC. */
|
||||
#if 0
|
||||
printf("Checking HMAC using key%02x%02x%02x%02x%02x%02x%02x%02x (offset %u len %zu) for %02x%02x%02x%02x%02x%02x%02x%02x...%02x%02x%02x\n",
|
||||
hmackey.k[0], hmackey.k[1],
|
||||
hmackey.k[2], hmackey.k[3],
|
||||
hmackey.k[4], hmackey.k[5],
|
||||
hmackey.k[6], hmackey.k[7],
|
||||
SHA256_DIGEST_LENGTH,
|
||||
sizeof(*onion) - SHA256_DIGEST_LENGTH,
|
||||
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[0],
|
||||
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[1],
|
||||
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[2],
|
||||
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[3],
|
||||
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[4],
|
||||
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[5],
|
||||
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[6],
|
||||
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[7],
|
||||
((unsigned char *)(onion + 1))[-3],
|
||||
((unsigned char *)(onion + 1))[-2],
|
||||
((unsigned char *)(onion + 1))[-1]);
|
||||
dump_contents((unsigned char *)onion + SHA256_DIGEST_LENGTH,
|
||||
sizeof(*onion) - SHA256_DIGEST_LENGTH);
|
||||
#endif
|
||||
if (!check_hmac(onion, &hmackey))
|
||||
goto fail;
|
||||
|
||||
/* Decrypt everything up to pubkey. */
|
||||
/* FIXME: Assumes we can decrypt in place! */
|
||||
if (!aes_decrypt(onion, onion,
|
||||
sizeof(struct hop) * (MAX_HOPS-1)
|
||||
+ sizeof(myhop(onion)->msg),
|
||||
enckey, &iv))
|
||||
goto fail;
|
||||
|
||||
secp256k1_context_destroy(ctx);
|
||||
return true;
|
||||
|
||||
fail:
|
||||
secp256k1_context_destroy(ctx);
|
||||
return false;
|
||||
}
|
||||
|
||||
/* Get next layer of onion, for forwarding. */
|
||||
static bool peel_onion(struct onion *onion,
|
||||
const struct enckey *enckey, const struct iv *pad_iv)
|
||||
{
|
||||
/* Move next one to back. */
|
||||
memmove(&onion->hop[1], &onion->hop[0],
|
||||
sizeof(*onion) - sizeof(onion->hop[0]));
|
||||
|
||||
/* Add random-looking (but predictable) padding. */
|
||||
memset(&onion->hop[0], 0, sizeof(onion->hop[0]));
|
||||
return aes_encrypt(&onion->hop[0], &onion->hop[0],
|
||||
sizeof(onion->hop[0]), enckey, pad_iv);
|
||||
}
|
||||
|
||||
static bool parse_onion_pubkey(secp256k1_context *ctx,
|
||||
const char *arg, secp256k1_pubkey *pubkey)
|
||||
{
|
||||
unsigned char tmp[33] = { };
|
||||
|
||||
if (!hex_decode(arg, strlen(arg), tmp, sizeof(tmp)))
|
||||
return false;
|
||||
|
||||
return secp256k1_ec_pubkey_parse(ctx, pubkey, tmp, sizeof(tmp));
|
||||
}
|
||||
|
||||
static char *make_message(secp256k1_context *ctx,
|
||||
const secp256k1_pubkey *pubkey)
|
||||
{
|
||||
char *m;
|
||||
unsigned char tmp[33];
|
||||
size_t len = sizeof(tmp);
|
||||
char hexstr[hex_str_size(20)];
|
||||
|
||||
secp256k1_ec_pubkey_serialize(ctx, tmp, &len, pubkey,
|
||||
SECP256K1_EC_COMPRESSED);
|
||||
hex_encode(tmp+1, 20, hexstr, sizeof(hexstr));
|
||||
asprintf(&m, "Message for %s...", hexstr);
|
||||
return m;
|
||||
}
|
||||
|
||||
int main(int argc, char *argv[])
|
||||
{
|
||||
secp256k1_context *ctx;
|
||||
struct onion onion;
|
||||
bool generate = false, decode = false;
|
||||
|
||||
opt_register_noarg("--help|-h", opt_usage_and_exit,
|
||||
"--generate <pubkey>... OR\n"
|
||||
"--decode <privkey>\n"
|
||||
"Either create an onion message, or decode one step",
|
||||
"Print this message.");
|
||||
opt_register_noarg("--generate",
|
||||
opt_set_bool, &generate,
|
||||
"Generate onion through the given hex pubkeys");
|
||||
opt_register_noarg("--decode",
|
||||
opt_set_bool, &decode,
|
||||
"Decode onion given the private key");
|
||||
opt_register_version();
|
||||
|
||||
opt_parse(&argc, argv, opt_log_stderr_exit);
|
||||
|
||||
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
|
||||
if (generate) {
|
||||
secp256k1_pubkey pubkeys[MAX_HOPS];
|
||||
char *msgs[MAX_HOPS];
|
||||
size_t i;
|
||||
|
||||
if (argc == 1)
|
||||
opt_usage_exit_fail("Expected at least one pubkey");
|
||||
if (argc-1 > MAX_HOPS)
|
||||
opt_usage_exit_fail("Expected at most %u pubkeys",
|
||||
MAX_HOPS);
|
||||
for (i = 1; i < argc; i++) {
|
||||
if (!parse_onion_pubkey(ctx, argv[i], &pubkeys[i-1]))
|
||||
errx(1, "Bad pubkey '%s'", argv[i]);
|
||||
msgs[i-1] = make_message(ctx, &pubkeys[i-1]);
|
||||
}
|
||||
|
||||
if (!create_onion(pubkeys, msgs, argc - 1, &onion))
|
||||
errx(1, "Creating onion packet failed");
|
||||
if (!write_all(STDOUT_FILENO, &onion, sizeof(onion)))
|
||||
err(1, "Writing onion packet");
|
||||
return 0;
|
||||
} else if (decode) {
|
||||
struct seckey seckey;
|
||||
secp256k1_pubkey pubkey;
|
||||
struct enckey enckey;
|
||||
struct iv pad_iv;
|
||||
|
||||
if (argc != 2)
|
||||
opt_usage_exit_fail("Expect a privkey with --decode");
|
||||
|
||||
if (!hex_decode(argv[1], strlen(argv[1]), &seckey, sizeof(seckey)))
|
||||
errx(1, "Invalid private key hex '%s'", argv[1]);
|
||||
if (!secp256k1_ec_pubkey_create(ctx, &pubkey, seckey.u.u8))
|
||||
errx(1, "Invalid private key '%s'", argv[1]);
|
||||
|
||||
if (!read_all(STDIN_FILENO, &onion, sizeof(onion)))
|
||||
errx(1, "Reading in onion");
|
||||
|
||||
if (!decrypt_onion(&seckey, &onion, &enckey, &pad_iv))
|
||||
errx(1, "Failed decrypting onion for '%s'", argv[1]);
|
||||
if (strncmp((char *)myhop(&onion)->msg, make_message(ctx, &pubkey),
|
||||
sizeof(myhop(&onion)->msg)))
|
||||
errx(1, "Bad message '%s'", (char *)myhop(&onion)->msg);
|
||||
if (!peel_onion(&onion, &enckey, &pad_iv))
|
||||
errx(1, "Peeling onion for '%s'", argv[1]);
|
||||
if (!write_all(STDOUT_FILENO, &onion, sizeof(onion)))
|
||||
err(1, "Writing onion packet");
|
||||
return 0;
|
||||
} else
|
||||
opt_usage_exit_fail("Need --decode or --generate");
|
||||
|
||||
secp256k1_context_destroy(ctx);
|
||||
return 0;
|
||||
}
|
@ -1,345 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
import argparse
|
||||
import sys
|
||||
import time
|
||||
|
||||
from hashlib import sha256
|
||||
from binascii import hexlify, unhexlify
|
||||
import hmac
|
||||
import random
|
||||
|
||||
from cryptography.hazmat.primitives.ciphers import Cipher, modes, algorithms
|
||||
from cryptography.hazmat.primitives.ciphers.algorithms import AES
|
||||
from cryptography.hazmat.primitives.ciphers.modes import CTR
|
||||
from cryptography.hazmat.backends import default_backend
|
||||
# http://cryptography.io
|
||||
|
||||
from pyelliptic import ecc
|
||||
|
||||
class MyEx(Exception): pass
|
||||
|
||||
def hmac_sha256(k, m):
|
||||
return hmac.new(k, m, sha256).digest()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
## pyelliptic doesn't support compressed pubkey representations
|
||||
## so we have to add some code...
|
||||
from pyelliptic.openssl import OpenSSL
|
||||
import ctypes
|
||||
|
||||
OpenSSL.EC_POINT_set_compressed_coordinates_GFp = \
|
||||
OpenSSL._lib.EC_POINT_set_compressed_coordinates_GFp
|
||||
OpenSSL.EC_POINT_set_compressed_coordinates_GFp.restype = ctypes.c_int
|
||||
OpenSSL.EC_POINT_set_compressed_coordinates_GFp.argtypes = [
|
||||
ctypes.c_void_p, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_int,
|
||||
ctypes.c_void_p]
|
||||
|
||||
def ecc_ecdh_key(sec, pub):
|
||||
assert isinstance(sec, ecc.ECC)
|
||||
if isinstance(pub, ecc.ECC):
|
||||
pub = pub.get_pubkey()
|
||||
#return sec.get_ecdh_key(pub)
|
||||
|
||||
pubkey_x, pubkey_y = ecc.ECC._decode_pubkey(pub, 'binary')
|
||||
|
||||
other_key = other_pub_key_x = other_pub_key_y = other_pub_key = None
|
||||
own_priv_key = res = res_x = res_y = None
|
||||
try:
|
||||
other_key = OpenSSL.EC_KEY_new_by_curve_name(sec.curve)
|
||||
if other_key == 0:
|
||||
raise Exception("[OpenSSL] EC_KEY_new_by_curve_name FAIL ... " + OpenSSL.get_error())
|
||||
|
||||
other_pub_key_x = OpenSSL.BN_bin2bn(pubkey_x, len(pubkey_x), 0)
|
||||
other_pub_key_y = OpenSSL.BN_bin2bn(pubkey_y, len(pubkey_y), 0)
|
||||
|
||||
other_group = OpenSSL.EC_KEY_get0_group(other_key)
|
||||
other_pub_key = OpenSSL.EC_POINT_new(other_group)
|
||||
if (other_pub_key == None):
|
||||
raise Exception("[OpenSSl] EC_POINT_new FAIL ... " + OpenSSL.get_error())
|
||||
|
||||
if (OpenSSL.EC_POINT_set_affine_coordinates_GFp(other_group,
|
||||
other_pub_key,
|
||||
other_pub_key_x,
|
||||
other_pub_key_y,
|
||||
0)) == 0:
|
||||
raise Exception(
|
||||
"[OpenSSL] EC_POINT_set_affine_coordinates_GFp FAIL ..." + OpenSSL.get_error())
|
||||
|
||||
own_priv_key = OpenSSL.BN_bin2bn(sec.privkey, len(sec.privkey), 0)
|
||||
|
||||
res = OpenSSL.EC_POINT_new(other_group)
|
||||
if (OpenSSL.EC_POINT_mul(other_group, res, 0, other_pub_key, own_priv_key, 0)) == 0:
|
||||
raise Exception(
|
||||
"[OpenSSL] EC_POINT_mul FAIL ..." + OpenSSL.get_error())
|
||||
|
||||
res_x = OpenSSL.BN_new()
|
||||
res_y = OpenSSL.BN_new()
|
||||
|
||||
if (OpenSSL.EC_POINT_get_affine_coordinates_GFp(other_group, res,
|
||||
res_x,
|
||||
res_y, 0
|
||||
)) == 0:
|
||||
raise Exception(
|
||||
"[OpenSSL] EC_POINT_get_affine_coordinates_GFp FAIL ... " + OpenSSL.get_error())
|
||||
|
||||
resx = OpenSSL.malloc(0, OpenSSL.BN_num_bytes(res_x))
|
||||
resy = OpenSSL.malloc(0, OpenSSL.BN_num_bytes(res_y))
|
||||
|
||||
OpenSSL.BN_bn2bin(res_x, resx)
|
||||
resx = resx.raw
|
||||
OpenSSL.BN_bn2bin(res_y, resy)
|
||||
resy = resy.raw
|
||||
|
||||
return resx, resy
|
||||
|
||||
finally:
|
||||
if other_key: OpenSSL.EC_KEY_free(other_key)
|
||||
if other_pub_key_x: OpenSSL.BN_free(other_pub_key_x)
|
||||
if other_pub_key_y: OpenSSL.BN_free(other_pub_key_y)
|
||||
if other_pub_key: OpenSSL.EC_POINT_free(other_pub_key)
|
||||
if own_priv_key: OpenSSL.BN_free(own_priv_key)
|
||||
if res: OpenSSL.EC_POINT_free(res)
|
||||
if res_x: OpenSSL.BN_free(res_x)
|
||||
if res_y: OpenSSL.BN_free(res_y)
|
||||
|
||||
def get_pos_y_for_x(pubkey_x, yneg=0):
|
||||
key = pub_key = pub_key_x = pub_key_y = None
|
||||
try:
|
||||
key = OpenSSL.EC_KEY_new_by_curve_name(OpenSSL.get_curve('secp256k1'))
|
||||
group = OpenSSL.EC_KEY_get0_group(key)
|
||||
pub_key_x = OpenSSL.BN_bin2bn(pubkey_x, len(pubkey_x), 0)
|
||||
pub_key = OpenSSL.EC_POINT_new(group)
|
||||
|
||||
if OpenSSL.EC_POINT_set_compressed_coordinates_GFp(group, pub_key,
|
||||
pub_key_x, yneg, 0) == 0:
|
||||
raise Exception("[OpenSSL] EC_POINT_set_compressed_coordinates_GFp FAIL ... " + OpenSSL.get_error())
|
||||
|
||||
|
||||
pub_key_y = OpenSSL.BN_new()
|
||||
if (OpenSSL.EC_POINT_get_affine_coordinates_GFp(group, pub_key,
|
||||
pub_key_x,
|
||||
pub_key_y, 0
|
||||
)) == 0:
|
||||
raise Exception("[OpenSSL] EC_POINT_get_affine_coordinates_GFp FAIL ... " + OpenSSL.get_error())
|
||||
|
||||
pubkeyy = OpenSSL.malloc(0, OpenSSL.BN_num_bytes(pub_key_y))
|
||||
OpenSSL.BN_bn2bin(pub_key_y, pubkeyy)
|
||||
pubkeyy = pubkeyy.raw
|
||||
field_size = OpenSSL.EC_GROUP_get_degree(OpenSSL.EC_KEY_get0_group(key))
|
||||
secret_len = int((field_size + 7) / 8)
|
||||
if len(pubkeyy) < secret_len:
|
||||
pubkeyy = pubkeyy.rjust(secret_len, b'\0')
|
||||
return pubkeyy
|
||||
finally:
|
||||
if key is not None: OpenSSL.EC_KEY_free(key)
|
||||
if pub_key is not None: OpenSSL.EC_POINT_free(pub_key)
|
||||
if pub_key_x is not None: OpenSSL.BN_free(pub_key_x)
|
||||
if pub_key_y is not None: OpenSSL.BN_free(pub_key_y)
|
||||
|
||||
def ec_decompress(pubkey, curve='secp256k1'):
|
||||
if pubkey[0] == '\x02' or pubkey[0] == '\x03':
|
||||
yneg = ord(pubkey[0]) & 1
|
||||
pubkey = "\x04" + pubkey[1:] + get_pos_y_for_x(pubkey[1:], yneg=yneg)
|
||||
elif pubkey[0] == '\x04':
|
||||
pass
|
||||
else:
|
||||
raise Exception("Unrecognised pubkey format: %s" % (pubkey,))
|
||||
return pubkey
|
||||
|
||||
class Onion(object):
|
||||
HMAC_LEN = 32
|
||||
PKEY_LEN = 32
|
||||
MSG_LEN = 128
|
||||
ZEROES = b"\x00" * (HMAC_LEN + PKEY_LEN + MSG_LEN)
|
||||
|
||||
@staticmethod
|
||||
def tweak_sha(sha, d):
|
||||
sha = sha.copy()
|
||||
sha.update(d)
|
||||
return sha.digest()
|
||||
|
||||
@classmethod
|
||||
def get_ecdh_secrets(cls, sec, pkey_x, pkey_y):
|
||||
pkey = unhexlify('04') + pkey_x + pkey_y
|
||||
tmp_key = ecc.ECC(curve='secp256k1', pubkey=pkey)
|
||||
sec_x, sec_y = ecc_ecdh_key(sec, tmp_key)
|
||||
|
||||
b = '\x02' if ord(sec_y[-1]) % 2 == 0 else '\x03'
|
||||
sec = sha256(sha256(b + sec_x).digest())
|
||||
|
||||
enckey = cls.tweak_sha(sec, b'\x00')[:16]
|
||||
hmac = cls.tweak_sha(sec, b'\x01')
|
||||
ivs = cls.tweak_sha(sec, b'\x02')
|
||||
iv, pad_iv = ivs[:16], ivs[16:]
|
||||
|
||||
return enckey, hmac, iv, pad_iv
|
||||
|
||||
def enc_pad(self, enckey, pad_iv):
|
||||
aes = Cipher(AES(enckey), CTR(pad_iv),
|
||||
default_backend()).encryptor()
|
||||
return aes.update(self.ZEROES)
|
||||
|
||||
class OnionDecrypt(Onion):
|
||||
def __init__(self, onion, my_ecc):
|
||||
self.my_ecc = my_ecc
|
||||
|
||||
hmac_end = len(onion)
|
||||
pkey_end = hmac_end - self.HMAC_LEN
|
||||
self.msg_end = pkey_end - self.PKEY_LEN
|
||||
self.fwd_end = self.msg_end - self.MSG_LEN
|
||||
|
||||
self.onion = onion
|
||||
self.pkey = onion[self.msg_end:pkey_end]
|
||||
self.hmac = onion[pkey_end:hmac_end]
|
||||
|
||||
self.get_secrets()
|
||||
|
||||
def decrypt(self):
|
||||
pad = self.enc_pad(self.enckey, self.pad_iv)
|
||||
|
||||
aes = Cipher(AES(self.enckey), CTR(self.iv),
|
||||
default_backend()).decryptor()
|
||||
self.fwd = pad + aes.update(self.onion[:self.fwd_end])
|
||||
self.msg = aes.update(self.onion[self.fwd_end:self.msg_end])
|
||||
|
||||
def get_secrets(self):
|
||||
pkey_x = self.pkey
|
||||
pkey_y = get_pos_y_for_x(pkey_x) # always positive by design
|
||||
enckey, hmac, iv, pad_iv = self.get_ecdh_secrets(self.my_ecc, pkey_x, pkey_y)
|
||||
if not self.check_hmac(hmac):
|
||||
raise Exception("HMAC did not verify")
|
||||
self.enckey = enckey
|
||||
self.iv = iv
|
||||
self.pad_iv = pad_iv
|
||||
|
||||
def check_hmac(self, hmac_key):
|
||||
calc = hmac_sha256(hmac_key, self.onion[:-self.HMAC_LEN])
|
||||
return calc == self.hmac
|
||||
|
||||
class OnionEncrypt(Onion):
|
||||
def __init__(self, msgs, pubkeys):
|
||||
assert len(msgs) == len(pubkeys)
|
||||
assert 0 < len(msgs) <= 20
|
||||
assert all( len(m) <= self.MSG_LEN for m in msgs )
|
||||
|
||||
msgs = [m + "\0"*(self.MSG_LEN - len(m)) for m in msgs]
|
||||
pubkeys = [ecc.ECC(pubkey=pk, curve='secp256k1') for pk in pubkeys]
|
||||
n = len(msgs)
|
||||
|
||||
tmpkeys = []
|
||||
tmppubkeys = []
|
||||
for i in range(n):
|
||||
while True:
|
||||
t = ecc.ECC(curve='secp256k1')
|
||||
if ord(t.pubkey_y[-1]) % 2 == 0:
|
||||
break
|
||||
# or do the math to "flip" the secret key and pub key
|
||||
tmpkeys.append(t)
|
||||
tmppubkeys.append(t.pubkey_x)
|
||||
|
||||
enckeys, hmacs, ivs, pad_ivs = zip(*[self.get_ecdh_secrets(tmpkey, pkey.pubkey_x, pkey.pubkey_y)
|
||||
for tmpkey, pkey in zip(tmpkeys, pubkeys)])
|
||||
|
||||
# padding takes the form:
|
||||
# E_(n-1)(0000s)
|
||||
# D_(n-1)(
|
||||
# E(n-2)(0000s)
|
||||
# D(n-2)(
|
||||
# ...
|
||||
# )
|
||||
# )
|
||||
|
||||
padding = ""
|
||||
for i in range(n-1):
|
||||
pad = self.enc_pad(enckeys[i], pad_ivs[i])
|
||||
aes = Cipher(AES(enckeys[i]), CTR(ivs[i]),
|
||||
default_backend()).decryptor()
|
||||
padding = pad + aes.update(padding)
|
||||
|
||||
if n < 20:
|
||||
padding += str(bytearray(random.getrandbits(8)
|
||||
for _ in range(len(self.ZEROES) * (20-n))))
|
||||
|
||||
# to encrypt the message we need to bump the counter past all
|
||||
# the padding, then just encrypt the final message
|
||||
aes = Cipher(AES(enckeys[-1]), CTR(ivs[-1]),
|
||||
default_backend()).encryptor()
|
||||
aes.update(padding) # don't care about cyphertext
|
||||
msgenc = aes.update(msgs[-1])
|
||||
|
||||
msgenc = padding + msgenc + tmppubkeys[-1]
|
||||
del padding
|
||||
msgenc += hmac_sha256(hmacs[-1], msgenc)
|
||||
|
||||
# *PHEW*
|
||||
# now iterate
|
||||
|
||||
for i in reversed(range(n-1)):
|
||||
# drop the padding this node will add
|
||||
msgenc = msgenc[len(self.ZEROES):]
|
||||
# adding the msg
|
||||
msgenc += msgs[i]
|
||||
# encrypt it
|
||||
aes = Cipher(AES(enckeys[i]), CTR(ivs[i]),
|
||||
default_backend()).encryptor()
|
||||
msgenc = aes.update(msgenc)
|
||||
# add the tmp key
|
||||
msgenc += tmppubkeys[i]
|
||||
# add the hmac
|
||||
msgenc += hmac_sha256(hmacs[i], msgenc)
|
||||
self.onion = msgenc
|
||||
|
||||
def generate(args):
|
||||
server_keys = []
|
||||
msgs = []
|
||||
for k in args.pubkeys:
|
||||
k = unhexlify(k)
|
||||
msgs.append("Message for %s..." % (hexlify(k[1:21]),))
|
||||
k = ec_decompress(k)
|
||||
server_keys.append(k)
|
||||
o = OnionEncrypt(msgs, server_keys)
|
||||
sys.stdout.write(o.onion)
|
||||
return
|
||||
|
||||
def decode(args):
|
||||
msg = sys.stdin.read()
|
||||
key = ecc.ECC(privkey=unhexlify(args.seckey),
|
||||
pubkey=ec_decompress(unhexlify(args.pubkey)),
|
||||
curve='secp256k1')
|
||||
o = OnionDecrypt(msg, key)
|
||||
o.decrypt()
|
||||
#sys.stderr.write("Message: \"%s\"\n" % (o.msg,))
|
||||
want_msg = "Message for %s..." % (args.pubkey[2:42])
|
||||
if o.msg != want_msg + "\0"*(Onion.MSG_LEN - len(want_msg)):
|
||||
raise Exception("Unexpected message: \"%s\" (wanted: %s)" % (o.msg, want_msg))
|
||||
|
||||
sys.stdout.write(o.fwd)
|
||||
|
||||
def main(argv):
|
||||
parser = argparse.ArgumentParser(description="Process some integers.")
|
||||
sp = parser.add_subparsers()
|
||||
p = sp.add_parser("generate")
|
||||
p.add_argument("pubkeys", nargs='+', help="public keys of recipients")
|
||||
p.set_defaults(func=generate)
|
||||
|
||||
p = sp.add_parser("decode")
|
||||
p.add_argument("seckey", help="secret key for router")
|
||||
p.add_argument("pubkey", help="public key for router")
|
||||
p.set_defaults(func=decode)
|
||||
|
||||
args = parser.parse_args(argv)
|
||||
|
||||
return args.func(args)
|
||||
|
||||
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main(sys.argv[1:])
|
||||
sys.exit(0)
|
||||
|
Loading…
Reference in New Issue
Block a user