lightningd: remove getsharedsecret.

This was introduced to allow creating a shared secret, but it's better to use
makesecret which creates unique secrets.  getsharedsecret being a generic ECDH
function allows the caller to initiate conversations as if it was us; this
is generally OK, since we don't allow untrusted API access, but the commando
plugin had to blacklist this for read-only runes explicitly.

Since @ZmnSCPxj never ended up using this after introducing it, simply
remove it.

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
Changelog-Removed: JSONRPC: `getsharedsecret` API: use `makesecret`
This commit is contained in:
Rusty Russell 2022-07-15 14:00:48 +09:30
parent c34a0a22ad
commit 9685c1adaf
8 changed files with 0 additions and 180 deletions

View file

@ -93,7 +93,6 @@ def load_jsonrpc_service(schema_dir: str = None):
# "funderupdate",
# "getlog",
"GetRoute",
# "getsharedsecret",
"ListForwards",
# "listoffers",
"ListPays",

View file

@ -1442,18 +1442,6 @@ class LightningRpc(UnixDomainSocketRpc):
}
return self.call("checkmessage", payload)
def getsharedsecret(self, point, **kwargs):
"""
Compute the hash of the Elliptic Curve Diffie Hellman shared
secret point from this node private key and an
input {point}.
"""
payload = {
"point": point
}
payload.update({k: v for k, v in kwargs.items()})
return self.call("getsharedsecret", payload)
def keysend(self, destination, amount_msat=None, label=None, maxfeepercent=None,
retry_for=None, maxdelay=None, exemptfee=None,
extratlvs=None, msatoshi=None):

View file

@ -34,7 +34,6 @@ MANPAGES := doc/lightning-cli.1 \
doc/lightning-funderupdate.7 \
doc/lightning-fundpsbt.7 \
doc/lightning-getroute.7 \
doc/lightning-getsharedsecret.7 \
doc/lightning-hsmtool.8 \
doc/lightning-invoice.7 \
doc/lightning-keysend.7 \

View file

@ -59,7 +59,6 @@ Core Lightning Documentation
lightning-getinfo <lightning-getinfo.7.md>
lightning-getlog <lightning-getlog.7.md>
lightning-getroute <lightning-getroute.7.md>
lightning-getsharedsecret <lightning-getsharedsecret.7.md>
lightning-help <lightning-help.7.md>
lightning-hsmtool <lightning-hsmtool.8.md>
lightning-invoice <lightning-invoice.7.md>

View file

@ -1,94 +0,0 @@
lightning-getsharedsecret -- Command for computing an ECDH
==========================================================
SYNOPSIS
--------
**getsharedsecret** *point*
DESCRIPTION
-----------
The **getsharedsecret** RPC command computes a shared secret from a
given public *point*, and the secret key of this node.
The *point* is a hexadecimal string of the compressed public
key DER-encoding of the SECP256K1 point.
RETURN VALUE
------------
[comment]: # (GENERATE-FROM-SCHEMA-START)
On success, an object is returned, containing:
- **shared_secret** (hex): the SHA-2 of the compressed encoding of the shared secp256k1 point (always 64 characters)
[comment]: # (GENERATE-FROM-SCHEMA-END)
This command may fail if communications with the HSM has a
problem;
by default lightningd uses a software "HSM" which should
never fail in this way.
(As of the time of this writing there is no true hardware
HSM that lightningd can use, but we are leaving this
possibilty open in the future.)
In that case, it will return with an error code of 800.
CRYPTOGRAPHIC STANDARDS
-----------------------
This serves as a key agreement scheme in elliptic-curve based
cryptographic standards.
However, note that most key agreement schemes based on
Elliptic-Curve Diffie-Hellman do not hash the DER-compressed
point.
Standards like SECG SEC-1 ECIES specify using the X coordinate
of the point instead.
The Lightning BOLT standard (which `lightningd` uses), unlike
most other cryptographic standards, specifies the SHA-256 hash
of the DER-compressed encoding of the point.
It is not possible to extract the X coordinate of the ECDH point
via this API, since there is no known way to reverse the 256-bit
SHA-2 hash function.
Thus there is no way to implement ECIES and similar standards using
this API.
If you know the secret key behind *point*, you do not need to
even call **getsharedsecret**, you can just multiply the secret key
with the node public key.
Typically, a sender will generate an ephemeral secret key
and multiply it with the node public key,
then use the result to derive an encryption key
for a symmetric encryption scheme
to encrypt a message that can be read only by that node.
Then the ephemeral secret key is multiplied
by the standard generator point,
and the ephemeral public key and the encrypted message is
sent to the node,
which then uses **getsharedsecret** to derive the same key.
The above sketch elides important details like
key derivation function, stream encryption scheme,
message authentication code, and so on.
You should follow an established standard and avoid
rolling your own crypto.
AUTHOR
------
ZmnSCPxj <<ZmnSCPxj@protonmail.com>> is mainly responsible.
SEE ALSO
--------
RESOURCES
---------
* BOLT 4: <https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md#shared-secret>
* BOLT 8: <https://github.com/lightningnetwork/lightning-rfc/blob/master/08-transport.md#handshake-state>
* SECG SEC-1 ECIES: <https://secg.org/sec1-v2.pdf>
* Main web site: <https://github.com/ElementsProject/lightning>
[comment]: # ( SHA256STAMP:47c5b466b02b80d40937f40c725733f72c20f3bc26cc7f4dacd5ef858ab0282b)

View file

@ -1,16 +0,0 @@
{
"$schema": "http://json-schema.org/draft-07/schema#",
"type": "object",
"additionalProperties": true,
"required": [
"shared_secret"
],
"properties": {
"shared_secret": {
"type": "hex",
"description": "the SHA-2 of the compressed encoding of the shared secp256k1 point",
"maxLength": 64,
"minLength": 64
}
}
}

View file

@ -128,26 +128,6 @@ struct ext_key *hsm_init(struct lightningd *ld)
return bip32_base;
}
static struct command_result *json_getsharedsecret(struct command *cmd,
const char *buffer,
const jsmntok_t *obj UNNEEDED,
const jsmntok_t *params)
{
struct pubkey *point;
struct secret ss;
struct json_stream *response;
if (!param(cmd, buffer, params,
p_req("point", &param_pubkey, &point),
NULL))
return command_param_failed();
ecdh(point, &ss);
response = json_stream_success(cmd);
json_add_secret(response, "shared_secret", &ss);
return command_success(cmd, response);
}
static struct command_result *json_makesecret(struct command *cmd,
const char *buffer,
const jsmntok_t *obj UNNEEDED,
@ -186,12 +166,3 @@ static const struct json_command makesecret_command = {
"Get a pseudorandom secret key, using some {hex} data."
};
AUTODATA(json_command, &makesecret_command);
static const struct json_command getsharedsecret_command = {
"getsharedsecret",
"utility", /* FIXME: Or "crypto"? */
&json_getsharedsecret,
"Compute the hash of the Elliptic Curve Diffie Hellman shared secret point from "
"this node private key and an input {point}."
};
AUTODATA(json_command, &getsharedsecret_command);

View file

@ -2245,32 +2245,6 @@ def test_sendcustommsg(node_factory):
])
@pytest.mark.developer("needs --dev-force-privkey")
def test_getsharedsecret(node_factory):
"""
Test getsharedsecret command.
"""
# From BOLT 8 test vectors.
options = [
{"dev-force-privkey": "1212121212121212121212121212121212121212121212121212121212121212"},
{}
]
l1, l2 = node_factory.get_nodes(2, opts=options)
# Check BOLT 8 test vectors.
shared_secret = l1.rpc.getsharedsecret("028d7500dd4c12685d1f568b4c2b5048e8534b873319f3a8daa612b469132ec7f7")['shared_secret']
assert (shared_secret == "1e2fb3c8fe8fb9f262f649f64d26ecf0f2c0a805a767cf02dc2d77a6ef1fdcc3")
# Clear the forced privkey of l1.
del l1.daemon.opts["dev-force-privkey"]
l1.restart()
# l1 and l2 can generate the same shared secret
# knowing only the public key of the other.
assert (l1.rpc.getsharedsecret(l2.info["id"])["shared_secret"]
== l2.rpc.getsharedsecret(l1.info["id"])["shared_secret"])
@pytest.mark.developer("needs --dev-force-privkey")
def test_makesecret(node_factory):
"""