test/test_onion: demo program to show onion routing crypto.

We can make this more efficient, but this works for now.

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This commit is contained in:
Rusty Russell 2015-09-30 10:54:55 +09:30
parent b47d4bbe6a
commit 81d35294f4
2 changed files with 557 additions and 3 deletions

View File

@ -32,7 +32,8 @@ TEST_CLI_PROGRAMS := \
test-cli/update-channel-signature
TEST_PROGRAMS := \
test/test_state_coverage
test/test_state_coverage \
test/test_onion
BITCOIN_OBJS := \
bitcoin/address.o \
@ -98,7 +99,10 @@ test-cli-tests: $(TEST_CLI_PROGRAMS)
cd test-cli; scripts/shutdown.sh 2>/dev/null || true
set -e; cd test-cli; for args in "" --steal --unilateral --htlc-onchain; do scripts/setup.sh && scripts/test.sh $$args && scripts/shutdown.sh; done
check: test-cli-tests
test-onion: test/test_onion
set -e; for i in `seq 20`; do ./test/test_onion $$i; done
check: test-cli-tests test-onion
full-check: check $(TEST_PROGRAMS)
test/test_state_coverage
@ -117,7 +121,7 @@ gen_state_names.h: state_types.h ccan/ccan/cdump/tools/cdump-enumstr
libsecp256k1.a: secp256k1/libsecp256k1.la
secp256k1/libsecp256k1.la:
cd secp256k1 && ./autogen.sh && ./configure --enable-static=yes --enable-shared=no --enable-tests=no --enable-module-schnorr=yes --libdir=`pwd`/..
cd secp256k1 && ./autogen.sh && ./configure --enable-static=yes --enable-shared=no --enable-tests=no --enable-module-schnorr=yes --enable-module-ecdh=yes --libdir=`pwd`/..
$(MAKE) -C secp256k1 install-exec
lightning.pb-c.c lightning.pb-c.h: lightning.proto

550
test/test_onion.c Normal file
View File

@ -0,0 +1,550 @@
#define _GNU_SOURCE 1
#include "secp256k1.h"
#include "secp256k1_ecdh.h"
#include <openssl/hmac.h>
#include <openssl/evp.h>
#include <openssl/aes.h>
#include <string.h>
#include <unistd.h>
#include <stdlib.h>
#include <err.h>
#include <stdbool.h>
#include <assert.h>
#include <ccan/tal/tal.h>
#include <ccan/mem/mem.h>
#include <ccan/crypto/sha256/sha256.h>
/*
* The client knows the server's public key S (which has corresponding
private key s) in advance.
* The client generates an ephemeral private key r, and its corresponding
public key R.
* The client computes K = ECDH(r, S), and sends R to the server at
connection establishing time.
* The server receives R, and computes K = ECHD(R, s).
* Both client and server compute Kenc = SHA256(K || 0) and Kmac = SHA256(K
|| 1), and now send HMAC-SHA256(key=Kmac, msg=AES(key=Kenc, msg=m)) instead
of m, for each message.
*/
//#define EXPORT_FRIENDLY 1 /* No crypto! */
//#define NO_HMAC 1 /* No real hmac */
struct seckey {
struct sha256 k;
};
struct enckey {
struct sha256 k;
};
struct hmackey {
struct sha256 k;
};
struct iv {
unsigned char iv[AES_BLOCK_SIZE];
};
static void sha_with_seed(const unsigned char secret[32],
unsigned char seed,
struct sha256 *res)
{
struct sha256_ctx ctx;
sha256_init(&ctx);
sha256_update(&ctx, memcheck(secret, 32), 32);
sha256_u8(&ctx, seed);
sha256_done(&ctx, res);
}
static struct enckey enckey_from_secret(const unsigned char secret[32])
{
struct enckey enckey;
sha_with_seed(secret, 0, &enckey.k);
return enckey;
}
static struct hmackey hmackey_from_secret(const unsigned char secret[32])
{
struct hmackey hmackey;
sha_with_seed(secret, 1, &hmackey.k);
memcheck(&hmackey, 1);
return hmackey;
}
static struct iv iv_from_secret(const unsigned char secret[32], size_t i)
{
struct iv iv;
struct sha256 sha;
sha_with_seed(secret, 2, &sha);
memcpy(iv.iv, sha.u.u8, sizeof(iv.iv));
#ifdef EXPORT_FRIENDLY
iv.iv[0] = i*2;
#endif
return iv;
}
static struct iv pad_iv_from_secret(const unsigned char secret[32], size_t i)
{
struct iv iv;
struct sha256 sha;
sha_with_seed(secret, 3, &sha);
memcpy(iv.iv, sha.u.u8, sizeof(iv.iv));
#ifdef EXPORT_FRIENDLY
iv.iv[0] = i*2 + 1;
#endif
return iv;
}
/* Not really! */
static void random_bytes(void *dst, size_t n)
{
size_t i;
unsigned char *d = dst;
for (i = 0; i < n; i++)
d[i] = random() % 256;
}
static void gen_keys(secp256k1_context *ctx,
struct seckey *seckey, secp256k1_pubkey *pubkey)
{
do {
random_bytes(seckey->k.u.u8, sizeof(seckey->k));
} while (!secp256k1_ec_pubkey_create(ctx, pubkey, seckey->k.u.u8));
}
/*
* Onion routing:
*
* Each step decrypts the payload, and removes its message. It then
* pads at the end to keep constant size, by encrypting 0 bytes (ZPAD)
*
* You can see the result of the unwrapping here:
*
* ENC1(PKT1 ENC2(PKT2 ENC3(PKT3 ENC4(PKT4 ENC5(PKT5 RPAD)))))
* After 1: ENC2(PKT2 ENC3(PKT3 ENC4(PKT4 ENC5(PKT5 RPAD))))
* ENC1(ZPAD)
* After 2: ENC3(PKT3 ENC4(PKT4 ENC5(PKT5 RPAD)))
* DEC2(ENC1(ZPAD))
* ENC2(ZPAD)
* After 3: ENC4(PKT4 ENC5(PKT5 RPAD)))
* DEC3(DEC2(ENC1(ZPAD)) ENC2(ZPAD))
* ENC3(ZPAD)
* After 4: ENC5(PKT5 RPAD)
* DEC4(DEC3(DEC2(ENC1(ZPAD)) ENC2(ZPAD)) ENC3(ZPAD))
* ENC4(ZPAD)
*
* ENC1(PKT1 ENC2(PKT2))
* => ENC2(PKT2) ENC1(ZPAD)
* => PKT2 DEC2(ENC1(ZPAD))
*/
#define MESSAGE_SIZE 128
#define MAX_HOPS 20
struct hop {
struct sha256 hmac;
/* FIXME: Must use parse/serialize functions. */
secp256k1_pubkey pubkey;
unsigned char msg[MESSAGE_SIZE];
};
struct onion {
struct hop hop[MAX_HOPS];
};
static bool aes_encrypt(void *dst, const void *src, size_t len,
const struct enckey *enckey, const struct iv *iv)
{
#ifdef EXPORT_FRIENDLY
unsigned char *dptr = dst;
const unsigned char *sptr = memcheck(src, len);
size_t i;
for (i = 0; i < len; i++)
dptr[i] = sptr[i] + iv->iv[0] + i / sizeof(struct hop);
return true;
#else
EVP_CIPHER_CTX evpctx;
int outlen;
/* Counter mode allows parallelism in future. */
if (EVP_EncryptInit(&evpctx, EVP_aes_256_ctr(),
memcheck(enckey->k.u.u8, sizeof(enckey->k)),
memcheck(iv->iv, sizeof(iv->iv))) != 1)
return false;
/* No padding, we're a multiple of 128 bits. */
if (EVP_CIPHER_CTX_set_padding(&evpctx, 0) != 1)
return false;
EVP_EncryptUpdate(&evpctx, dst, &outlen, memcheck(src, len), len);
assert(outlen == len);
/* Shouldn't happen (no padding) */
if (EVP_EncryptFinal(&evpctx, dst, &outlen) != 1)
return false;
assert(outlen == 0);
return true;
#endif
}
static bool aes_decrypt(void *dst, const void *src, size_t len,
const struct enckey *enckey, const struct iv *iv)
{
#ifdef EXPORT_FRIENDLY
unsigned char *dptr = dst;
const unsigned char *sptr = memcheck(src, len);
size_t i;
for (i = 0; i < len; i++)
dptr[i] = sptr[i] - iv->iv[0] - i / sizeof(struct hop);
return true;
#else
EVP_CIPHER_CTX evpctx;
int outlen;
/* Counter mode allows parallelism in future. */
if (EVP_DecryptInit(&evpctx, EVP_aes_256_ctr(),
memcheck(enckey->k.u.u8, sizeof(enckey->k)),
memcheck(iv->iv, sizeof(iv->iv))) != 1)
return false;
/* No padding, we're a multiple of 128 bits. */
if (EVP_CIPHER_CTX_set_padding(&evpctx, 0) != 1)
return false;
EVP_DecryptUpdate(&evpctx, dst, &outlen, memcheck(src, len), len);
assert(outlen == len);
/* Shouldn't happen (no padding) */
if (EVP_DecryptFinal(&evpctx, dst, &outlen) != 1)
return false;
assert(outlen == 0);
return true;
#endif
}
void dump_contents(const void *data, size_t n)
{
size_t i;
const unsigned char *p = memcheck(data, n);
for (i = 0; i < n; i++) {
printf("%02x", p[i]);
if (i % 16 == 15)
printf("\n");
}
}
static bool decrypt_padding(struct hop *padding, size_t nhops,
const struct enckey *enckey,
const struct iv *iv)
{
/*
* FIXME: This would be easier if we could set the counter; instead
* we simulate it by decrypting junk before the actual padding.
*/
struct hop tmp[MAX_HOPS];
/* Keep valgrind happy. */
memset(tmp, 0, (MAX_HOPS - nhops) * sizeof(struct hop));
memcpy(tmp + MAX_HOPS - nhops, padding, nhops * sizeof(struct hop));
/* FIXME: Assumes we are allowed to decrypt in place! */
if (!aes_decrypt((char *)tmp + offsetof(struct hop, msg),
(char *)tmp + offsetof(struct hop, msg),
sizeof(tmp) - offsetof(struct hop, msg), enckey, iv))
return false;
memcpy(padding, tmp + MAX_HOPS - nhops, nhops * sizeof(struct hop));
return true;
}
/* Padding is created by encrypting zeroes. */
static void add_padding(struct hop *padding,
const struct enckey *enckey,
const struct iv *pad_iv)
{
static struct hop zerohop;
aes_encrypt(padding, &zerohop, sizeof(zerohop), enckey, pad_iv);
}
static void make_hmac(const struct hop *hops, size_t num_hops,
const struct hop *padding,
const struct hmackey *hmackey,
struct sha256 *hmac)
{
#ifdef NO_HMAC
/* Copy first byte of message on each hop. */
size_t i;
memset(hmac, 0, sizeof(*hmac));
for (i = 0; i < MAX_HOPS; i++) {
if (i < num_hops)
hmac->u.u8[i] = hops[i].msg[0];
else
hmac->u.u8[i] = padding[i - num_hops].msg[0];
}
#else
HMAC_CTX ctx;
size_t len, padlen;
/* Calculate HMAC of pubkey onwards, plus padding. */
HMAC_CTX_init(&ctx);
HMAC_Init_ex(&ctx, memcheck(hmackey->k.u.u8, sizeof(hmackey->k)),
sizeof(hmackey->k), EVP_sha256(), NULL);
len = num_hops*sizeof(struct hop) - offsetof(struct hop, pubkey);
HMAC_Update(&ctx, memcheck((unsigned char *)hops + offsetof(struct hop, pubkey),
len), len);
padlen = (MAX_HOPS - num_hops) * sizeof(struct hop);
HMAC_Update(&ctx, memcheck((unsigned char *)padding, padlen), padlen);
HMAC_Final(&ctx, hmac->u.u8, NULL);
#endif
}
static bool check_hmac(struct onion *onion, const struct hmackey *hmackey)
{
struct sha256 hmac;
make_hmac(onion->hop, MAX_HOPS, NULL, hmackey, &hmac);
return CRYPTO_memcmp(&hmac, &onion->hop[0].hmac, sizeof(hmac)) == 0;
}
bool create_onion(const secp256k1_pubkey pubkey[],
char *const msg[],
size_t num,
struct onion *onion)
{
int i;
struct seckey *seckeys = tal_arr(NULL, struct seckey, num);
secp256k1_pubkey *pubkeys = tal_arr(seckeys, secp256k1_pubkey, num);
struct enckey *enckeys = tal_arr(seckeys, struct enckey, num);
struct hmackey *hmackeys = tal_arr(seckeys, struct hmackey, num);
struct iv *ivs = tal_arr(seckeys, struct iv, num);
struct iv *pad_ivs = tal_arr(seckeys, struct iv, num);
struct hop **padding = tal_arr(seckeys, struct hop *, num);
struct hop **hops = tal_arr(seckeys, struct hop *, num);
size_t junk_hops;
secp256k1_context *ctx;
bool ok = false;
if (num > MAX_HOPS)
goto fail;
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
/* First generate all the keys. */
for (i = 0; i < num; i++) {
unsigned char secret[32];
gen_keys(ctx, &seckeys[i], &pubkeys[i]);
/* Make shared secret. */
if (!secp256k1_ecdh(ctx, secret, &pubkey[i], seckeys[i].k.u.u8))
goto fail;
hmackeys[i] = hmackey_from_secret(memcheck(secret, 32));
enckeys[i] = enckey_from_secret(secret);
ivs[i] = iv_from_secret(secret, i);
pad_ivs[i] = pad_iv_from_secret(secret, i);
}
/*
* Building the onion is a little tricky.
*
* First, there is the padding. That's generated by previous nodes,
* and "decrypted" by the others. So we have to generate that
* forwards.
*/
for (i = 1; i < num; i++) {
/* Each one has 1 padding from previous. */
padding[i] = tal_arr(padding, struct hop, i);
/* Copy padding from previous node. */
memcpy(padding[i], padding[i-1], sizeof(struct hop)*(i-1));
/* Previous node "decrypts" it before handing to us */
if (!decrypt_padding(padding[i], i-1,
&enckeys[i-1], &ivs[i-1]))
goto fail;
/* And generates another lot of padding. */
add_padding(padding[i]+i-1, &enckeys[i-1], &pad_ivs[i-1]);
}
/*
* Now the normal onion is generated backwards.
*/
/* Unused hops filled with random, so even recipient can't tell
* how many were used. */
junk_hops = MAX_HOPS - num;
for (i = num - 1; i >= 0; i--) {
size_t other_hops;
struct hop *myonion;
other_hops = num - i - 1 + junk_hops;
myonion = hops[i] = tal_arr(hops, struct hop, 1 + other_hops);
if (i == num - 1) {
/* Fill with junk. */
random_bytes(myonion + 1,
other_hops * sizeof(struct hop));
} else {
/* Copy from next hop. */
memcpy(myonion + 1, hops[i+1],
other_hops * sizeof(struct hop));
}
/* Now populate our hop. */
myonion->pubkey = pubkeys[i];
/* Set message. */
assert(strlen(msg[i]) < MESSAGE_SIZE);
memset(myonion->msg, 0, MESSAGE_SIZE);
strcpy((char *)myonion->msg, msg[i]);
/* Encrypt whole thing from message onwards. */
if (!aes_encrypt(&myonion->msg, &myonion->msg,
(1 + other_hops) * sizeof(struct hop)
- offsetof(struct hop, msg),
&enckeys[i], &ivs[i]))
goto fail;
/* HMAC covers entire thing except hmac itself. */
make_hmac(myonion, 1 + other_hops, padding[i],
&hmackeys[i], &myonion->hmac);
}
/* Transfer results to onion, for first node. */
assert(tal_count(hops[0]) == MAX_HOPS);
memcpy(onion->hop, hops[0], sizeof(onion->hop));
ok = true;
fail:
tal_free(seckeys);
secp256k1_context_destroy(ctx);
return ok;
}
/*
* Decrypt onion, return true if onion->hop[0] is valid.
*
* Returns enckey and pad_iv for use in unwrap.
*/
bool decrypt_onion(const struct seckey *myseckey, struct onion *onion,
struct enckey *enckey, struct iv *pad_iv, size_t i)
{
secp256k1_context *ctx;
unsigned char secret[32];
struct hmackey hmackey;
struct iv iv;
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
/* Extract shared secret. */
if (!secp256k1_ecdh(ctx, secret, &onion->hop[0].pubkey,
myseckey->k.u.u8))
goto fail;
hmackey = hmackey_from_secret(secret);
*enckey = enckey_from_secret(secret);
iv = iv_from_secret(secret, i);
*pad_iv = pad_iv_from_secret(secret, i);
/* Check HMAC. */
#if 0
printf("Checking HMAC using key%02x%02x%02x%02x%02x%02x%02x%02x (offset %u len %zu) for %02x%02x%02x%02x%02x%02x%02x%02x...%02x%02x%02x\n",
hmackey.k[0], hmackey.k[1],
hmackey.k[2], hmackey.k[3],
hmackey.k[4], hmackey.k[5],
hmackey.k[6], hmackey.k[7],
SHA256_DIGEST_LENGTH,
sizeof(*onion) - SHA256_DIGEST_LENGTH,
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[0],
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[1],
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[2],
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[3],
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[4],
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[5],
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[6],
((unsigned char *)onion + SHA256_DIGEST_LENGTH)[7],
((unsigned char *)(onion + 1))[-3],
((unsigned char *)(onion + 1))[-2],
((unsigned char *)(onion + 1))[-1]);
dump_contents((unsigned char *)onion + SHA256_DIGEST_LENGTH,
sizeof(*onion) - SHA256_DIGEST_LENGTH);
#endif
if (!check_hmac(onion, &hmackey))
goto fail;
/* Decrypt everything after pubkey. */
if (!aes_decrypt(onion->hop[0].msg, onion->hop[0].msg,
sizeof(*onion) - offsetof(struct hop, msg),
enckey, &iv))
goto fail;
secp256k1_context_destroy(ctx);
return true;
fail:
secp256k1_context_destroy(ctx);
return false;
}
/* Get next layer of onion, for forwarding. */
bool peel_onion(struct onion *onion,
const struct enckey *enckey, const struct iv *pad_iv)
{
/* Move next one to front. */
memmove(&onion->hop[0], &onion->hop[1],
sizeof(*onion) - sizeof(onion->hop[0]));
/* Add random-looking (but predictable) padding. */
memset(&onion->hop[MAX_HOPS-1], 0, sizeof(onion->hop[MAX_HOPS-1]));
return aes_encrypt(&onion->hop[MAX_HOPS-1], &onion->hop[MAX_HOPS-1],
sizeof(onion->hop[MAX_HOPS-1]), enckey, pad_iv);
}
int main(int argc, char *argv[])
{
secp256k1_context *ctx;
size_t i, hops;
struct seckey seckeys[MAX_HOPS];
secp256k1_pubkey pubkeys[MAX_HOPS];
char *msgs[MAX_HOPS];
struct onion onion;
assert(EVP_CIPHER_iv_length(EVP_aes_256_ctr()) == sizeof(struct iv));
if (argc != 2)
errx(1, "Usage: %s <num hops>", argv[0]);
hops = atoi(argv[1]);
if (hops == 0 || hops > MAX_HOPS)
errx(1, "%s is invalid number of hops", argv[1]);
ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
for (i = 0; i < hops; i++) {
asprintf(&msgs[i], "Message to %zu", i);
gen_keys(ctx, &seckeys[i], &pubkeys[i]);
}
if (!create_onion(pubkeys, msgs, hops, &onion))
errx(1, "Creating onion packet failed");
/* Now parse and peel. */
for (i = 0; i < hops; i++) {
struct enckey enckey;
struct iv pad_iv;
printf("Decrypting with key %zi\n", i);
if (!decrypt_onion(&seckeys[i], &onion, &enckey, &pad_iv, i))
errx(1, "Decrypting onion for hop %zi", i);
if (strcmp((char *)onion.hop[0].msg, msgs[i]) != 0)
errx(1, "Bad message for hop %zi", i);
if (!peel_onion(&onion, &enckey, &pad_iv))
errx(1, "Peeling onion for hop %zi", i);
}
secp256k1_context_destroy(ctx);
return 0;
}