daemon: encrypted communication (version 3)

After useful feedback from Anthony Towns and Mats Jerratsch (of
thunder.network fame), this is the third version of inter-node crypto.

1) First, each side sends a 33-byte session pubkey.  This is a
   bitcoin-style compressed EC key, unique for each session.
  
2) ECDH is used to derive a shared secret.  From this we generate
   the following transmission encoding parameters for each side:
   Session AES-128 key: SHA256(shared-secret || my-sessionpubkey || 0)
   Session HMAC key: SHA256(shared-secret || my-sessionpubkey || 1)
   IV for AES: SHA256(shared-secret || my-sessionpubkey || 2)

3) All packets from then on are encrypted of form:
	/* HMAC, covering totlen and data */
	struct sha256 hmac;
	/* Total data transmitted (including this). */
	le64 totlen;
	/* Encrypted contents, rounded up to 16 byte boundary. */
	u8 data[];

4) The first packet is an Authenticate protobuf, containing this node's
   pubkey, and a bitcoin-style EC signature of the other side's session
   pubkey.

5) Unknown protobuf fields are handled in the protocol as follows
   (including in the initial Authenticate packet):

   1) Odd numbered fields are optional, and backwards compatible.
   2) Even numbered fields are required; abort if you get one.

Currently both sides just send an error packet "hello" after the
handshake, and make sure they receive the same.

Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
This commit is contained in:
Rusty Russell 2016-01-22 06:41:48 +10:30
parent 9449f387ac
commit 74f294e36c
8 changed files with 749 additions and 8 deletions

View File

@ -14,6 +14,7 @@ DAEMON_LIB_SRC := \
DAEMON_LIB_OBJS := $(DAEMON_LIB_SRC:.c=.o)
DAEMON_SRC := \
daemon/cryptopkt.c \
daemon/dns.c \
daemon/jsonrpc.c \
daemon/lightningd.c \
@ -31,6 +32,7 @@ DAEMON_JSMN_HEADERS := daemon/jsmn/jsmn.h
DAEMON_HEADERS := \
daemon/configdir.h \
daemon/cryptopkt.h \
daemon/dns.h \
daemon/json.h \
daemon/jsonrpc.h \

509
daemon/cryptopkt.c Normal file
View File

@ -0,0 +1,509 @@
#include "bitcoin/shadouble.h"
#include "bitcoin/signature.h"
#include "cryptopkt.h"
#include "lightning.pb-c.h"
#include "lightningd.h"
#include "log.h"
#include "peer.h"
#include "protobuf_convert.h"
#include "secrets.h"
#include <ccan/build_assert/build_assert.h>
#include <ccan/crypto/sha256/sha256.h>
#include <ccan/endian/endian.h>
#include <ccan/io/io_plan.h>
#include <ccan/mem/mem.h>
#include <ccan/short_types/short_types.h>
#include <inttypes.h>
#include <openssl/aes.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>
#include <openssl/rand.h>
#include <secp256k1.h>
#include <secp256k1_ecdh.h>
#define MAX_PKT_LEN (1024 * 1024)
#define ROUNDUP(x,a) (((x) + ((a)-1)) & ~((a)-1))
struct crypto_pkt {
/* HMAC */
struct sha256 hmac;
/* Total length transmitted. */
le64 totlen;
/* ... contents... */
u8 data[];
};
/* Temporary structure for negotiation (peer->io_data->neg) */
struct key_negotiate {
/* Our session secret key. */
u8 seckey[32];
/* Our pubkey, their pubkey. */
u8 our_sessionpubkey[33], their_sessionpubkey[33];
/* Callback once it's all done. */
struct io_plan *(*cb)(struct io_conn *, struct peer *);
};
#define ENCKEY_SEED 0
#define HMACKEY_SEED 1
#define IV_SEED 2
struct enckey {
struct sha256 k;
};
struct hmackey {
struct sha256 k;
};
struct iv {
unsigned char iv[AES_BLOCK_SIZE];
};
static void sha_with_seed(const unsigned char secret[32],
const unsigned char serial_pubkey[33],
unsigned char seed,
struct sha256 *res)
{
struct sha256_ctx ctx;
sha256_init(&ctx);
sha256_update(&ctx, memcheck(secret, 32), 32);
sha256_update(&ctx, memcheck(serial_pubkey, 33), 33);
sha256_u8(&ctx, seed);
sha256_done(&ctx, res);
}
static struct enckey enckey_from_secret(const unsigned char secret[32],
const unsigned char serial_pubkey[33])
{
struct enckey enckey;
sha_with_seed(secret, serial_pubkey, ENCKEY_SEED, &enckey.k);
return enckey;
}
static struct hmackey hmackey_from_secret(const unsigned char secret[32],
const unsigned char serial_pubkey[33])
{
struct hmackey hmackey;
sha_with_seed(secret, serial_pubkey, HMACKEY_SEED, &hmackey.k);
return hmackey;
}
static struct iv iv_from_secret(const unsigned char secret[32],
const unsigned char serial_pubkey[33])
{
struct sha256 sha;
struct iv iv;
sha_with_seed(secret, serial_pubkey, IV_SEED, &sha);
memcpy(iv.iv, sha.u.u8, sizeof(iv.iv));
return iv;
}
struct dir_state {
u64 totlen;
struct hmackey hmackey;
EVP_CIPHER_CTX evpctx;
/* Current packet. */
struct crypto_pkt *cpkt;
};
static bool setup_crypto(struct dir_state *dir,
u8 shared_secret[32], u8 serial_pubkey[33])
{
struct iv iv;
struct enckey enckey;
dir->totlen = 0;
dir->hmackey = hmackey_from_secret(shared_secret, serial_pubkey);
dir->cpkt = NULL;
iv = iv_from_secret(shared_secret, serial_pubkey);
enckey = enckey_from_secret(shared_secret, serial_pubkey);
return EVP_EncryptInit(&dir->evpctx, EVP_aes_128_ctr(),
memcheck(enckey.k.u.u8, sizeof(enckey.k)),
memcheck(iv.iv, sizeof(iv.iv))) == 1;
}
struct io_data {
/* Stuff we need to keep around to talk to peer. */
struct dir_state in, out;
/* Header we're currently reading. */
size_t len_in;
struct crypto_pkt hdr_in;
/* For negotiation phase. */
struct key_negotiate *neg;
};
static void *proto_tal_alloc(void *allocator_data, size_t size)
{
return tal_arr(allocator_data, char, size);
}
static void proto_tal_free(void *allocator_data, void *pointer)
{
tal_free(pointer);
}
static Pkt *decrypt_pkt(struct peer *peer, struct crypto_pkt *cpkt,
size_t data_len)
{
size_t full_len;
struct sha256 hmac;
int outlen;
struct io_data *iod = peer->io_data;
struct ProtobufCAllocator prototal;
Pkt *ret;
full_len = ROUNDUP(data_len, AES_BLOCK_SIZE);
HMAC(EVP_sha256(), iod->in.hmackey.k.u.u8, sizeof(iod->in.hmackey),
(unsigned char *)&cpkt->totlen, sizeof(cpkt->totlen) + full_len,
hmac.u.u8, NULL);
if (CRYPTO_memcmp(&hmac, &cpkt->hmac, sizeof(hmac)) != 0) {
log_unusual(peer->log, "Packet has bad HMAC");
return NULL;
}
/* FIXME: Assumes we can decrypt in place! */
EVP_DecryptUpdate(&iod->in.evpctx, cpkt->data, &outlen,
memcheck(cpkt->data, full_len), full_len);
assert(outlen == full_len);
/* De-protobuf it. */
prototal.alloc = proto_tal_alloc;
prototal.free = proto_tal_free;
prototal.allocator_data = tal(iod, char);
ret = pkt__unpack(&prototal, data_len, cpkt->data);
if (!ret)
tal_free(prototal.allocator_data);
else
/* Make sure packet owns contents */
tal_steal(ret, prototal.allocator_data);
return ret;
}
static struct crypto_pkt *encrypt_pkt(struct peer *peer,
const Pkt *pkt,
size_t *total_len)
{
static unsigned char zeroes[AES_BLOCK_SIZE-1];
struct crypto_pkt *cpkt;
unsigned char *dout;
size_t len, full_len;
int outlen;
struct io_data *iod = peer->io_data;
len = pkt__get_packed_size(pkt);
full_len = ROUNDUP(len, AES_BLOCK_SIZE);
*total_len = sizeof(*cpkt) + full_len;
cpkt = (struct crypto_pkt *)tal_arr(peer, char, *total_len);
iod->out.totlen += len;
cpkt->totlen = cpu_to_le64(iod->out.totlen);
dout = cpkt->data;
/* FIXME: Assumes we can encrypt in place! */
pkt__pack(pkt, dout);
EVP_EncryptUpdate(&iod->out.evpctx, dout, &outlen,
memcheck(dout, len), len);
dout += outlen;
/* Now encrypt tail, padding with zeroes if necessary. */
EVP_EncryptUpdate(&iod->out.evpctx, dout, &outlen, zeroes,
full_len - len);
assert(dout + outlen == cpkt->data + full_len);
HMAC(EVP_sha256(), iod->out.hmackey.k.u.u8, sizeof(iod->out.hmackey),
(unsigned char *)&cpkt->totlen, sizeof(cpkt->totlen) + full_len,
cpkt->hmac.u.u8, NULL);
return cpkt;
}
static int do_read_packet(int fd, struct io_plan_arg *arg)
{
struct peer *peer = arg->u1.vp;
struct io_data *iod = peer->io_data;
u64 max;
size_t data_off, data_len;
int ret;
/* Still reading header? */
if (iod->len_in < sizeof(iod->hdr_in)) {
ret = read(fd, (char *)&iod->hdr_in + iod->len_in,
sizeof(iod->hdr_in) - iod->len_in);
if (ret <= 0)
return -1;
iod->len_in += ret;
/* We don't ever send empty packets, so don't check for
* that here. */
return 0;
}
max = ROUNDUP(le64_to_cpu(iod->hdr_in.totlen) - iod->in.totlen,
AES_BLOCK_SIZE);
if (iod->len_in == sizeof(iod->hdr_in)) {
/* FIXME: Handle re-xmit. */
if (le64_to_cpu(iod->hdr_in.totlen) < iod->in.totlen) {
log_unusual(peer->log,
"Packet went backwards: %"PRIu64
" -> %"PRIu64,
iod->in.totlen,
le64_to_cpu(iod->hdr_in.totlen));
return -1;
}
if (le64_to_cpu(iod->hdr_in.totlen)
> iod->in.totlen + MAX_PKT_LEN) {
log_unusual(peer->log,
"Packet overlength: %"PRIu64" -> %"PRIu64,
iod->in.totlen,
le64_to_cpu(iod->hdr_in.totlen));
return -1;
}
iod->in.cpkt = (struct crypto_pkt *)
tal_arr(iod, u8, sizeof(struct crypto_pkt) + max);
memcpy(iod->in.cpkt, &iod->hdr_in, sizeof(iod->hdr_in));
}
data_off = iod->len_in - sizeof(struct crypto_pkt);
ret = read(fd, iod->in.cpkt->data + data_off, max - data_off);
if (ret <= 0)
return -1;
iod->len_in += ret;
if (iod->len_in <= max)
return 0;
/* Can't overflow len arg: packet can't be more than MAX_PKT_LEN */
data_len = le64_to_cpu(iod->hdr_in.totlen) - iod->in.totlen;
peer->inpkt = decrypt_pkt(peer, iod->in.cpkt, data_len);
iod->in.cpkt = tal_free(iod->in.cpkt);
if (!peer->inpkt)
return -1;
iod->in.totlen += data_len;
return 1;
}
struct io_plan *peer_read_packet(struct io_conn *conn,
struct peer *peer,
struct io_plan *(*cb)(struct io_conn *,
struct peer *))
{
struct io_plan_arg *arg = io_plan_arg(conn, IO_IN);
peer->io_data->len_in = 0;
arg->u1.vp = peer;
return io_set_plan(conn, IO_IN, do_read_packet,
(struct io_plan *(*)(struct io_conn *, void *))cb,
peer);
}
/* Caller must free data! */
struct io_plan *peer_write_packet(struct io_conn *conn,
struct peer *peer,
const Pkt *pkt,
struct io_plan *(*next)(struct io_conn *,
struct peer *))
{
struct io_data *iod = peer->io_data;
size_t totlen;
/* We free previous packet here, rather than doing indirection
* via io_write */
tal_free(iod->out.cpkt);
iod->out.cpkt = encrypt_pkt(peer, pkt, &totlen);
return io_write(conn, iod->out.cpkt, totlen, next, peer);
}
static void *pkt_unwrap(struct peer *peer, Pkt__PktCase which)
{
size_t i;
const ProtobufCMessage *base;
if (peer->inpkt->pkt_case != which) {
log_unusual(peer->log, "Expected %u, got %u",
which, peer->inpkt->pkt_case);
return NULL;
}
/* It's a union, and each member starts with base. Pick one */
base = &peer->inpkt->error->base;
/* Look for unknown fields. Remember, "It's OK to be odd!" */
for (i = 0; i < base->n_unknown_fields; i++) {
log_debug(peer->log, "Unknown field in %u: %u",
which, base->unknown_fields[i].tag);
/* Odd is OK */
if (base->unknown_fields[i].tag & 1)
continue;
log_unusual(peer->log, "Unknown field %u in %u",
base->unknown_fields[i].tag, which);
return NULL;
}
return peer->inpkt->error;
}
static struct io_plan *check_proof(struct io_conn *conn, struct peer *peer)
{
struct key_negotiate *neg = peer->io_data->neg;
struct sha256_double sha;
struct signature sig;
struct io_plan *(*cb)(struct io_conn *, struct peer *);
struct pubkey id;
Authenticate *auth;
auth = pkt_unwrap(peer, PKT__PKT_AUTH);
if (!auth)
return io_close(conn);
if (!proto_to_signature(auth->session_sig, &sig)) {
log_unusual(peer->log, "Invalid auth signature");
return io_close(conn);
}
if (!proto_to_pubkey(peer->state->secpctx, auth->node_id, &id)) {
log_unusual(peer->log, "Invalid auth id");
return io_close(conn);
}
/* Signature covers *our* session key. */
sha256_double(&sha,
neg->our_sessionpubkey, sizeof(neg->our_sessionpubkey));
if (!check_signed_hash(peer->state->secpctx, &sha, &sig, &id)) {
log_unusual(peer->log, "Bad auth signature");
return io_close(conn);
}
tal_free(auth);
/* All complete, return to caller. */
cb = neg->cb;
peer->io_data->neg = tal_free(neg);
return cb(conn, peer);
}
static struct io_plan *receive_proof(struct io_conn *conn, struct peer *peer)
{
return peer_read_packet(conn, peer, check_proof);
}
/* Steals w onto the returned Pkt */
static Pkt *pkt_wrap(const tal_t *ctx, void *w, Pkt__PktCase pkt_case)
{
Pkt *pkt = tal(ctx, Pkt);
pkt__init(pkt);
pkt->pkt_case = pkt_case;
/* Union, so any will do */
pkt->error = tal_steal(pkt, w);
return pkt;
}
static Pkt *authenticate_pkt(const tal_t *ctx,
const struct pubkey *node_id,
const struct signature *sig)
{
Authenticate *auth = tal(ctx, Authenticate);
authenticate__init(auth);
auth->node_id = pubkey_to_proto(auth, node_id);
auth->session_sig = signature_to_proto(auth, sig);
return pkt_wrap(ctx, auth, PKT__PKT_AUTH);
}
static struct io_plan *keys_exchanged(struct io_conn *conn, struct peer *peer)
{
u8 shared_secret[32];
struct pubkey sessionkey;
struct signature sig;
struct key_negotiate *neg = peer->io_data->neg;
Pkt *auth;
if (!pubkey_from_der(peer->state->secpctx,
neg->their_sessionpubkey,
sizeof(neg->their_sessionpubkey),
&sessionkey)) {
/* FIXME: Dump key in this case. */
log_unusual(peer->log, "Bad sessionkey");
return io_close(conn);
}
/* Derive shared secret. */
if (!secp256k1_ecdh(peer->state->secpctx, shared_secret,
&sessionkey.pubkey, neg->seckey)) {
log_unusual(peer->log, "Bad ECDH");
return io_close(conn);
}
/* Each side combines with their OWN session key to SENDING crypto. */
if (!setup_crypto(&peer->io_data->in, shared_secret,
neg->their_sessionpubkey)
|| !setup_crypto(&peer->io_data->out, shared_secret,
neg->our_sessionpubkey)) {
log_unusual(peer->log, "Failed setup_crypto()");
return io_close(conn);
}
/* Now sign their session key to prove who we are. */
privkey_sign(peer, neg->their_sessionpubkey,
sizeof(neg->their_sessionpubkey), &sig);
/* FIXME: Free auth afterwards. */
auth = authenticate_pkt(peer, &peer->state->id, &sig);
return peer_write_packet(conn, peer, auth, receive_proof);
}
static struct io_plan *session_key_receive(struct io_conn *conn,
struct peer *peer)
{
struct key_negotiate *neg = peer->io_data->neg;
/* Now read their key. */
return io_read(conn, neg->their_sessionpubkey,
sizeof(neg->their_sessionpubkey), keys_exchanged, peer);
}
static void gen_sessionkey(secp256k1_context *ctx,
u8 seckey[32],
secp256k1_pubkey *pubkey)
{
do {
if (RAND_bytes(seckey, 32) != 1)
fatal("Could not get random bytes for sessionkey");
} while (!secp256k1_ec_pubkey_create(ctx, pubkey, seckey));
}
struct io_plan *peer_crypto_setup(struct io_conn *conn, struct peer *peer,
struct io_plan *(*cb)(struct io_conn *,
struct peer *))
{
size_t outputlen;
secp256k1_pubkey sessionkey;
struct key_negotiate *neg;
peer->io_data = tal(peer, struct io_data);
/* We store negotiation state here. */
neg = peer->io_data->neg = tal(peer->io_data, struct key_negotiate);
neg->cb = cb;
gen_sessionkey(peer->state->secpctx, neg->seckey, &sessionkey);
secp256k1_ec_pubkey_serialize(peer->state->secpctx,
neg->our_sessionpubkey, &outputlen,
&sessionkey,
SECP256K1_EC_COMPRESSED);
assert(outputlen == sizeof(neg->our_sessionpubkey));
return io_write(conn, neg->our_sessionpubkey, outputlen,
session_key_receive, peer);
}

26
daemon/cryptopkt.h Normal file
View File

@ -0,0 +1,26 @@
#ifndef LIGHTNING_DAEMON_CRYPTOPKT_H
#define LIGHTNING_DAEMON_CRYPTOPKT_H
#include "config.h"
#include "lightning.pb-c.h"
#include <ccan/io/io.h>
struct peer;
struct io_plan *peer_crypto_setup(struct io_conn *conn,
struct peer *peer,
struct io_plan *(*cb)(struct io_conn *,
struct peer *));
/* Reads packet into peer->inpkt/peer->inpkt_len */
struct io_plan *peer_read_packet(struct io_conn *conn,
struct peer *peer,
struct io_plan *(*cb)(struct io_conn *,
struct peer *));
struct io_plan *peer_write_packet(struct io_conn *conn,
struct peer *peer,
const Pkt *pkt,
struct io_plan *(*next)(struct io_conn *,
struct peer *));
#endif /* LIGHTNING_DAEMON_CRYPTOPKT_H */

View File

@ -1,3 +1,4 @@
#include "cryptopkt.h"
#include "dns.h"
#include "jsonrpc.h"
#include "lightningd.h"
@ -14,6 +15,33 @@
#include <sys/socket.h>
#include <sys/types.h>
/* Send and receive (encrypted) hello message. */
static struct io_plan *peer_test_check(struct io_conn *conn, struct peer *peer)
{
if (peer->inpkt->pkt_case != PKT__PKT_ERROR)
fatal("Bad packet type %u", peer->inpkt->pkt_case);
if (!peer->inpkt->error->problem
|| strcmp(peer->inpkt->error->problem, "hello") != 0)
fatal("Bad packet '%.6s'", peer->inpkt->error->problem);
log_info(peer->log, "Successful hello!");
return io_close(conn);
}
static struct io_plan *peer_test_read(struct io_conn *conn, struct peer *peer)
{
return peer_read_packet(conn, peer, peer_test_check);
}
static struct io_plan *peer_test(struct io_conn *conn, struct peer *peer)
{
Error err = ERROR__INIT;
Pkt pkt = PKT__INIT;
pkt.pkt_case = PKT__PKT_ERROR;
pkt.error = &err;
err.problem = "hello";
return peer_write_packet(conn, peer, &pkt, peer_test_read);
}
static void destroy_peer(struct peer *peer)
{
list_del_from(&peer->state->peers, &peer->list);
@ -32,6 +60,7 @@ static struct peer *new_peer(struct lightningd_state *state,
peer->state = state;
peer->addr.type = addr_type;
peer->addr.protocol = addr_protocol;
peer->io_data = NULL;
/* FIXME: Attach IO logging for this peer. */
tal_add_destructor(peer, destroy_peer);
@ -63,7 +92,7 @@ struct io_plan *peer_connected_out(struct io_conn *conn,
return io_close(conn);
}
log_info(peer->log, "Connected out to %s:%s", name, port);
return io_write(conn, "Hello!", 6, io_close_cb, NULL);
return peer_crypto_setup(conn, peer, peer_test);
}
static struct io_plan *peer_connected_in(struct io_conn *conn,
@ -73,8 +102,9 @@ static struct io_plan *peer_connected_in(struct io_conn *conn,
"in");
if (!peer)
return io_close(conn);
return io_write(conn, "Hello!", 6, io_close_cb, NULL);
log_info(peer->log, "Peer connected in");
return peer_crypto_setup(conn, peer, peer_test);
}
static int make_listen_fd(struct lightningd_state *state,

View File

@ -1,6 +1,7 @@
#ifndef LIGHTNING_DAEMON_PEER_H
#define LIGHTNING_DAEMON_PEER_H
#include "config.h"
#include "lightning.pb-c.h"
#include "netaddr.h"
#include <ccan/list/list.h>
@ -14,6 +15,12 @@ struct peer {
/* The other end's address. */
struct netaddr addr;
/* Current received packet. */
Pkt *inpkt;
/* Current ongoing packetflow */
struct io_data *io_data;
/* What happened. */
struct log *log;
};

View File

@ -222,6 +222,49 @@ void funding__free_unpacked
assert(message->base.descriptor == &funding__descriptor);
protobuf_c_message_free_unpacked ((ProtobufCMessage*)message, allocator);
}
void authenticate__init
(Authenticate *message)
{
static Authenticate init_value = AUTHENTICATE__INIT;
*message = init_value;
}
size_t authenticate__get_packed_size
(const Authenticate *message)
{
assert(message->base.descriptor == &authenticate__descriptor);
return protobuf_c_message_get_packed_size ((const ProtobufCMessage*)(message));
}
size_t authenticate__pack
(const Authenticate *message,
uint8_t *out)
{
assert(message->base.descriptor == &authenticate__descriptor);
return protobuf_c_message_pack ((const ProtobufCMessage*)message, out);
}
size_t authenticate__pack_to_buffer
(const Authenticate *message,
ProtobufCBuffer *buffer)
{
assert(message->base.descriptor == &authenticate__descriptor);
return protobuf_c_message_pack_to_buffer ((const ProtobufCMessage*)message, buffer);
}
Authenticate *
authenticate__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data)
{
return (Authenticate *)
protobuf_c_message_unpack (&authenticate__descriptor,
allocator, len, data);
}
void authenticate__free_unpacked
(Authenticate *message,
ProtobufCAllocator *allocator)
{
assert(message->base.descriptor == &authenticate__descriptor);
protobuf_c_message_free_unpacked ((ProtobufCMessage*)message, allocator);
}
void open_channel__init
(OpenChannel *message)
{
@ -1344,6 +1387,57 @@ const ProtobufCMessageDescriptor funding__descriptor =
(ProtobufCMessageInit) funding__init,
NULL,NULL,NULL /* reserved[123] */
};
static const ProtobufCFieldDescriptor authenticate__field_descriptors[2] =
{
{
"node_id",
1,
PROTOBUF_C_LABEL_REQUIRED,
PROTOBUF_C_TYPE_MESSAGE,
0, /* quantifier_offset */
offsetof(Authenticate, node_id),
&bitcoin_pubkey__descriptor,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"session_sig",
2,
PROTOBUF_C_LABEL_REQUIRED,
PROTOBUF_C_TYPE_MESSAGE,
0, /* quantifier_offset */
offsetof(Authenticate, session_sig),
&signature__descriptor,
NULL,
0, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
};
static const unsigned authenticate__field_indices_by_name[] = {
0, /* field[0] = node_id */
1, /* field[1] = session_sig */
};
static const ProtobufCIntRange authenticate__number_ranges[1 + 1] =
{
{ 1, 0 },
{ 0, 2 }
};
const ProtobufCMessageDescriptor authenticate__descriptor =
{
PROTOBUF_C__MESSAGE_DESCRIPTOR_MAGIC,
"authenticate",
"Authenticate",
"Authenticate",
"",
sizeof(Authenticate),
2,
authenticate__field_descriptors,
authenticate__field_indices_by_name,
1, authenticate__number_ranges,
(ProtobufCMessageInit) authenticate__init,
NULL,NULL,NULL /* reserved[123] */
};
static const ProtobufCEnumValue open_channel__anchor_offer__enum_values_by_number[2] =
{
{ "WILL_CREATE_ANCHOR", "OPEN_CHANNEL__ANCHOR_OFFER__WILL_CREATE_ANCHOR", 1 },
@ -2259,7 +2353,7 @@ const ProtobufCMessageDescriptor error__descriptor =
(ProtobufCMessageInit) error__init,
NULL,NULL,NULL /* reserved[123] */
};
static const ProtobufCFieldDescriptor pkt__field_descriptors[17] =
static const ProtobufCFieldDescriptor pkt__field_descriptors[18] =
{
{
"update",
@ -2465,8 +2559,21 @@ static const ProtobufCFieldDescriptor pkt__field_descriptors[17] =
0 | PROTOBUF_C_FIELD_FLAG_ONEOF, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
{
"auth",
50,
PROTOBUF_C_LABEL_OPTIONAL,
PROTOBUF_C_TYPE_MESSAGE,
offsetof(Pkt, pkt_case),
offsetof(Pkt, auth),
&authenticate__descriptor,
NULL,
0 | PROTOBUF_C_FIELD_FLAG_ONEOF, /* flags */
0,NULL,NULL /* reserved1,reserved2, etc */
},
};
static const unsigned pkt__field_indices_by_name[] = {
17, /* field[17] = auth */
13, /* field[13] = close */
15, /* field[15] = close_ack */
14, /* field[14] = close_complete */
@ -2485,13 +2592,14 @@ static const unsigned pkt__field_indices_by_name[] = {
3, /* field[3] = update_signature */
7, /* field[7] = update_timedout_htlc */
};
static const ProtobufCIntRange pkt__number_ranges[4 + 1] =
static const ProtobufCIntRange pkt__number_ranges[5 + 1] =
{
{ 1, 0 },
{ 20, 9 },
{ 30, 13 },
{ 40, 16 },
{ 0, 17 }
{ 50, 17 },
{ 0, 18 }
};
const ProtobufCMessageDescriptor pkt__descriptor =
{
@ -2501,10 +2609,10 @@ const ProtobufCMessageDescriptor pkt__descriptor =
"Pkt",
"",
sizeof(Pkt),
17,
18,
pkt__field_descriptors,
pkt__field_indices_by_name,
4, pkt__number_ranges,
5, pkt__number_ranges,
(ProtobufCMessageInit) pkt__init,
NULL,NULL,NULL /* reserved[123] */
};

View File

@ -20,6 +20,7 @@ typedef struct _Signature Signature;
typedef struct _Locktime Locktime;
typedef struct _BitcoinPubkey BitcoinPubkey;
typedef struct _Funding Funding;
typedef struct _Authenticate Authenticate;
typedef struct _OpenChannel OpenChannel;
typedef struct _OpenAnchor OpenAnchor;
typedef struct _OpenCommitSig OpenCommitSig;
@ -147,6 +148,26 @@ struct _Funding
, 0,0ll, 0,0 }
/*
* Set channel params.
*/
struct _Authenticate
{
ProtobufCMessage base;
/*
* Which node this is.
*/
BitcoinPubkey *node_id;
/*
* Signature of your session key. *
*/
Signature *session_sig;
};
#define AUTHENTICATE__INIT \
{ PROTOBUF_C_MESSAGE_INIT (&authenticate__descriptor) \
, NULL, NULL }
/*
* Set channel params.
*/
@ -500,6 +521,7 @@ struct _Error
typedef enum {
PKT__PKT__NOT_SET = 0,
PKT__PKT_AUTH = 50,
PKT__PKT_OPEN = 20,
PKT__PKT_OPEN_ANCHOR = 21,
PKT__PKT_OPEN_COMMIT_SIG = 22,
@ -527,6 +549,10 @@ struct _Pkt
ProtobufCMessage base;
Pkt__PktCase pkt_case;
union {
/*
* Start of connection
*/
Authenticate *auth;
/*
* Opening
*/
@ -658,6 +684,25 @@ Funding *
void funding__free_unpacked
(Funding *message,
ProtobufCAllocator *allocator);
/* Authenticate methods */
void authenticate__init
(Authenticate *message);
size_t authenticate__get_packed_size
(const Authenticate *message);
size_t authenticate__pack
(const Authenticate *message,
uint8_t *out);
size_t authenticate__pack_to_buffer
(const Authenticate *message,
ProtobufCBuffer *buffer);
Authenticate *
authenticate__unpack
(ProtobufCAllocator *allocator,
size_t len,
const uint8_t *data);
void authenticate__free_unpacked
(Authenticate *message,
ProtobufCAllocator *allocator);
/* OpenChannel methods */
void open_channel__init
(OpenChannel *message);
@ -1017,6 +1062,9 @@ typedef void (*BitcoinPubkey_Closure)
typedef void (*Funding_Closure)
(const Funding *message,
void *closure_data);
typedef void (*Authenticate_Closure)
(const Authenticate *message,
void *closure_data);
typedef void (*OpenChannel_Closure)
(const OpenChannel *message,
void *closure_data);
@ -1082,6 +1130,7 @@ extern const ProtobufCMessageDescriptor signature__descriptor;
extern const ProtobufCMessageDescriptor locktime__descriptor;
extern const ProtobufCMessageDescriptor bitcoin_pubkey__descriptor;
extern const ProtobufCMessageDescriptor funding__descriptor;
extern const ProtobufCMessageDescriptor authenticate__descriptor;
extern const ProtobufCMessageDescriptor open_channel__descriptor;
extern const ProtobufCEnumDescriptor open_channel__anchor_offer__descriptor;
extern const ProtobufCMessageDescriptor open_anchor__descriptor;

View File

@ -51,6 +51,14 @@ message funding {
// Packet Types
//
// Set channel params.
message authenticate {
// Which node this is.
required bitcoin_pubkey node_id = 1;
// Signature of your session key. */
required signature session_sig = 2;
};
// Set channel params.
message open_channel {
// Relative locktime for outputs going to us.
@ -205,6 +213,8 @@ message error {
// This is the union which defines all of them
message pkt {
oneof pkt {
// Start of connection
authenticate auth = 50;
// Opening
open_channel open = 20;
open_anchor open_anchor = 21;