diff --git a/external/libwally-core/src/secp256k1/src/group.h b/external/libwally-core/src/secp256k1/src/group.h index 706ffd92f..4957b248f 100644 --- a/external/libwally-core/src/secp256k1/src/group.h +++ b/external/libwally-core/src/secp256k1/src/group.h @@ -45,7 +45,7 @@ static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const se /** Set a group element (affine) equal to the point with the given X coordinate * and a Y coordinate that is a quadratic residue modulo p. The return value - * is true if and only if a coordinate with the given X coordinate exists. + * is true iff a coordinate with the given X coordinate exists. */ static int secp256k1_ge_set_xquad(secp256k1_ge *r, const secp256k1_fe *x); diff --git a/external/libwally-core/src/secp256k1/src/group_impl.h b/external/libwally-core/src/secp256k1/src/group_impl.h index 28c8c1248..18f2b3735 100644 --- a/external/libwally-core/src/secp256k1/src/group_impl.h +++ b/external/libwally-core/src/secp256k1/src/group_impl.h @@ -641,7 +641,7 @@ static int secp256k1_gej_has_quad_y_var(const secp256k1_gej *a) { } /* We rely on the fact that the Jacobi symbol of 1 / a->z^3 is the same as - * that of a->z. Thus a->y / a->z^3 is a quadratic residue if and only if a->y * a->z + * that of a->z. Thus a->y / a->z^3 is a quadratic residue iff a->y * a->z is */ secp256k1_fe_mul(&yz, &a->y, &a->z); return secp256k1_fe_is_quad_var(&yz);