core-lightning/common/bolt12_merkle.c

150 lines
4.2 KiB
C
Raw Normal View History

#include <bitcoin/signature.h>
#include <ccan/crypto/sha256/sha256.h>
#include <ccan/mem/mem.h>
#include <common/bolt12_merkle.h>
/* BOLT-offers #12:
* TLV types 240 through 1000 are considered signature elements.
*/
static bool is_signature_field(const struct tlv_field *field)
{
return field->numtype >= 240 && field->numtype <= 1000;
}
static void sha256_update_bigsize(struct sha256_ctx *ctx, u64 bigsize)
{
u8 buf[BIGSIZE_MAX_LEN];
size_t len;
len = bigsize_put(buf, bigsize);
sha256_update(ctx, buf, len);
}
static void sha256_update_tlvfield(struct sha256_ctx *ctx,
const struct tlv_field *field)
{
/* We don't keep it raw, so reconstruct. */
sha256_update_bigsize(ctx, field->numtype);
sha256_update_bigsize(ctx, field->length);
sha256_update(ctx, field->value, field->length);
}
/* BOLT-offers #12:
* The Merkle Tree's leaves are, in TLV-ascending order:
* 1. The SHA256 of: `LnLeaf` followed by the TLV entry.
* 2. The SHA256 of: `LnAll` followed all non-signature TLV entries appended
* in ascending order.
*/
static void calc_lnall(const struct tlv_field *fields, struct sha256 *hash)
{
struct sha256_ctx sctx;
sha256_init(&sctx);
sha256_update(&sctx, "LnAll", 5);
for (size_t i = 0; i < tal_count(fields); i++) {
if (!is_signature_field(&fields[i]))
sha256_update_tlvfield(&sctx, &fields[i]);
}
sha256_done(&sctx, hash);
}
static void calc_lnleaf(const struct tlv_field *field, struct sha256 *hash)
{
struct sha256_ctx sctx;
sha256_init(&sctx);
sha256_update(&sctx, "LnLeaf", 6);
sha256_update_tlvfield(&sctx, field);
sha256_done(&sctx, hash);
}
static struct sha256 merkle_pair(const struct sha256 a, const struct sha256 b)
{
struct sha256 res;
struct sha256_ctx sctx;
sha256_init(&sctx);
sha256_update(&sctx, "LnBranch", 8);
sha256_update(&sctx, a.u.u8, sizeof(a.u.u8));
sha256_update(&sctx, b.u.u8, sizeof(b.u.u8));
sha256_done(&sctx, &res);
return res;
}
static struct sha256 merkle_recurse(const struct sha256 *arr, size_t len)
{
if (len == 1)
return arr[0];
return merkle_pair(merkle_recurse(arr, len / 2),
merkle_recurse(arr + len / 2, len - len / 2));
}
void merkle_tlv(const struct tlv_field *fields, struct sha256 *merkle)
{
struct sha256 lnall, *arr;
size_t n;
calc_lnall(fields, &lnall);
arr = tal_arr(NULL, struct sha256, tal_count(fields));
n = 0;
for (size_t i = 0; i < tal_count(fields); i++) {
struct sha256 s;
if (is_signature_field(&fields[i]))
continue;
calc_lnleaf(&fields[i], &s);
arr[n++] = merkle_pair(s, lnall);
}
*merkle = merkle_recurse(arr, n);
tal_free(arr);
}
/* BOLT-offers #12:
* All signatures are created as per
* [BIP-340](https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki),
* and tagged as recommended there. Thus to sign a message `msg` with
* `tag`, `m` is SHA256(SHA256(`tag`) || SHA256(`tag`) || `msg`). The
* notation used here is `SIG(tag,msg,key)`.
*
* Each form is signed using one or more TLV signature elements; TLV
* types 240 through 1000 are considered signature elements. For these
* the tag is `lightning` | `messagename` | `fieldname`, and `msg` is the
* merkle-root; `lightning` is the literal 9-byte ASCII string,
* `messagename` is the name of the TLV stream being signed (i.e. `offer`
* or `invoice`) and the `fieldname` is the TLV field containing the
* signature (e.g. `signature` or `recurrence_signature`).
*/
void sighash_from_merkle(const char *messagename,
const char *fieldname,
const struct sha256 *merkle,
struct sha256 *sighash)
{
struct sha256_ctx sctx;
bip340_sighash_init(&sctx, "lightning", messagename, fieldname);
sha256_update(&sctx, merkle, sizeof(*merkle));
sha256_done(&sctx, sighash);
}
/* We use the SHA(pubkey | publictweak); so reader cannot figure out the
* tweak and derive the base key */
void payer_key_tweak(const struct pubkey32 *bolt12,
const u8 *publictweak, size_t publictweaklen,
struct sha256 *tweak)
{
u8 rawkey[32];
struct sha256_ctx sha;
secp256k1_xonly_pubkey_serialize(secp256k1_ctx, rawkey, &bolt12->pubkey);
sha256_init(&sha);
sha256_update(&sha, rawkey, sizeof(rawkey));
sha256_update(&sha,
memcheck(publictweak, publictweaklen),
publictweaklen);
sha256_done(&sha, tweak);
}