core-lightning/bitcoin/base58.c

330 lines
7.4 KiB
C
Raw Normal View History

/* Converted to C by Rusty Russell, based on bitcoin source: */
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2012 The Bitcoin Developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <ccan/build_assert/build_assert.h>
#include <ccan/tal/str/str.h>
#include <openssl/bn.h>
#include <assert.h>
#include <secp256k1.h>
#include <string.h>
#include "address.h"
#include "base58.h"
#include "privkey.h"
#include "pubkey.h"
#include "shadouble.h"
static const char enc_16[] = "0123456789abcdef";
static const char enc_58[] =
"123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz";
static char encode_char(unsigned long val, const char *enc)
{
assert(val < strlen(enc));
return enc[val];
}
static int decode_char(char c, const char *enc)
{
const char *pos = strchr(enc, c);
if (!pos)
return -1;
return pos - enc;
}
/*
* Encode a byte sequence as a base58-encoded string. This is a bit
* weird: returns pointer into buf (or NULL if wouldn't fit).
*/
static char *encode_base58(char *buf, size_t buflen,
const u8 *data, size_t data_len)
{
char *p;
BIGNUM bn;
/* Convert to a bignum. */
BN_init(&bn);
BN_bin2bn(data, data_len, &bn);
/* Add NUL terminator */
if (!buflen) {
p = NULL;
goto out;
}
p = buf + buflen;
*(--p) = '\0';
/* Fill from the back, using a series of divides. */
while (!BN_is_zero(&bn)) {
int rem = BN_div_word(&bn, 58);
if (--p < buf) {
p = NULL;
goto out;
}
*p = encode_char(rem, enc_58);
}
/* Now, this is really weird. We pad with zeroes, but not at
* base 58, but in terms of zero bytes. This means that some
* encodings are shorter than others! */
while (data_len && *data == '\0') {
if (--p < buf) {
p = NULL;
goto out;
}
*p = encode_char(0, enc_58);
data_len--;
data++;
}
out:
BN_free(&bn);
return p;
}
/*
* Decode a base_n-encoded string into a byte sequence.
*/
bool raw_decode_base_n(BIGNUM *bn, const char *src, size_t len, int base)
{
const char *enc;
BN_zero(bn);
assert(base == 16 || base == 58);
switch (base) {
case 16:
enc = enc_16;
break;
case 58:
enc = enc_58;
break;
}
while (len) {
char current = *src;
if (base == 16)
current = tolower(current); /* TODO: Not in ccan. */
int val = decode_char(current, enc);
if (val < 0) {
BN_free(bn);
return false;
}
BN_mul_word(bn, base);
BN_add_word(bn, val);
src++;
len--;
}
return true;
}
/*
* Decode a base58-encoded string into a byte sequence.
*/
bool raw_decode_base58(BIGNUM *bn, const char *src, size_t len)
{
return raw_decode_base_n(bn, src, len, 58);
}
void base58_get_checksum(u8 csum[4], const u8 buf[], size_t buflen)
{
struct sha256_double sha_result;
/* Form checksum, using double SHA2 (as per bitcoin standard) */
sha256_double(&sha_result, buf, buflen);
/* Use first four bytes of that as the checksum. */
memcpy(csum, sha_result.sha.u.u8, 4);
}
char *bitcoin_to_base58(const tal_t *ctx, bool test_net,
const struct bitcoin_address *addr)
{
u8 buf[1 + sizeof(addr->addr) + 4];
char out[BASE58_ADDR_MAX_LEN + 2], *p;
buf[0] = test_net ? 111 : 0;
BUILD_ASSERT(sizeof(addr->addr) == sizeof(struct ripemd160));
memcpy(buf+1, addr, sizeof(addr->addr));
/* Append checksum */
base58_get_checksum(buf + 1 + sizeof(addr->addr),
buf, 1 + sizeof(addr->addr));
p = encode_base58(out, BASE58_ADDR_MAX_LEN, buf, sizeof(buf));
return tal_strdup(ctx, p);
}
bool bitcoin_from_base58(bool *test_net,
struct bitcoin_address *addr,
const char *base58, size_t base58_len)
{
u8 buf[1 + sizeof(addr->addr) + 4];
BIGNUM bn;
size_t len;
u8 csum[4];
BN_init(&bn);
if (!raw_decode_base58(&bn, base58, base58_len))
return false;
len = BN_num_bytes(&bn);
if (len > sizeof(buf))
return false;
memset(buf, 0, sizeof(buf));
BN_bn2bin(&bn, buf + sizeof(buf) - len);
BN_free(&bn);
if (buf[0] == 111)
*test_net = true;
else if (buf[0] == 0)
*test_net = false;
else
return false;
base58_get_checksum(csum, buf, 1 + sizeof(addr->addr));
if (memcmp(csum, buf + 1 + sizeof(addr->addr), sizeof(csum)) != 0)
return false;
memcpy(&addr->addr, buf+1, sizeof(addr->addr));
return true;
}
/* buf already contains version and ripemd160. Append checksum and encode */
char *base58_with_check(char dest[BASE58_ADDR_MAX_LEN],
u8 buf[1 + sizeof(struct ripemd160) + 4])
{
/* Append checksum */
base58_get_checksum(buf + 1 + sizeof(struct ripemd160),
buf, 1 + sizeof(struct ripemd160));
/* Now encode. */
return encode_base58(dest, BASE58_ADDR_MAX_LEN, buf,
1 + sizeof(struct ripemd160) + 4);
}
bool ripemd_from_base58(u8 *version,
struct ripemd160 *ripemd160,
const char *base58)
{
u8 buf[1 + sizeof(*ripemd160) + 4];
u8 csum[4];
BIGNUM bn;
size_t len;
/* Too long? Check here before doing arithmetic. */
if (strlen(base58) > BASE58_ADDR_MAX_LEN - 1)
return false;
BN_init(&bn);
/* Fails if it contains invalid characters. */
if (!raw_decode_base58(&bn, base58, strlen(base58)))
return false;
/* Too big? */
len = BN_num_bytes(&bn);
if (len > sizeof(buf)) {
BN_free(&bn);
return false;
}
/* Fill start with zeroes. */
memset(buf, 0, sizeof(buf) - len);
BN_bn2bin(&bn, buf + sizeof(buf) - len);
BN_free(&bn);
/* Check checksum is correct. */
base58_get_checksum(csum, buf, sizeof(buf));
if (memcmp(csum, buf + 1 + sizeof(*ripemd160), 4) != 0)
return false;
*version = buf[0];
memcpy(ripemd160, buf + 1, sizeof(*ripemd160));
return true;
}
char *key_to_base58(const tal_t *ctx, bool test_net, const struct privkey *key)
{
u8 buf[1 + 32 + 1 + 4];
char out[BASE58_KEY_MAX_LEN + 2], *p;
buf[0] = test_net ? 239 : 128;
memcpy(buf + 1, key->secret, sizeof(key->secret));
/* Mark this as a compressed key. */
buf[1 + 32] = 1;
/* Append checksum */
base58_get_checksum(buf + 1 + 32 + 1, buf, 1 + 32 + 1);
p = encode_base58(out, BASE58_KEY_MAX_LEN, buf, sizeof(buf));
return tal_strdup(ctx, p);
}
bool key_from_base58(const char *base58, size_t base58_len,
bool *test_net, struct privkey *priv, struct pubkey *key)
{
u8 keybuf[1 + 32 + 1 + 4];
u8 csum[4];
BIGNUM bn;
bool compressed;
secp256k1_context_t *secpctx;
int keylen;
BN_init(&bn);
if (!raw_decode_base58(&bn, base58, base58_len))
return false;
keylen = BN_num_bytes(&bn);
if (keylen == 1 + 32 + 4)
compressed = false;
else if (keylen == 1 + 32 + 1 + 4)
compressed = true;
else
goto fail_free_bn;
BN_bn2bin(&bn, keybuf);
base58_get_checksum(csum, keybuf, keylen - sizeof(csum));
if (memcmp(csum, keybuf + keylen - sizeof(csum), sizeof(csum)) != 0)
goto fail_free_bn;
/* Byte after key should be 1 to represent a compressed key. */
if (compressed && keybuf[1 + 32] != 1)
goto fail_free_bn;
if (keybuf[0] == 128)
*test_net = false;
else if (keybuf[0] == 239)
*test_net = true;
else
goto fail_free_bn;
/* Copy out secret. */
memcpy(priv->secret, keybuf + 1, sizeof(priv->secret));
secpctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
if (!secp256k1_ec_seckey_verify(secpctx, priv->secret))
goto fail_free_secpctx;
/* Get public key, too. */
if (!secp256k1_ec_pubkey_create(secpctx, key->key, &keylen,
priv->secret, compressed))
goto fail_free_secpctx;
assert(keylen == pubkey_len(key));
BN_free(&bn);
secp256k1_context_destroy(secpctx);
return true;
fail_free_secpctx:
secp256k1_context_destroy(secpctx);
fail_free_bn:
BN_free(&bn);
return false;
}