core-lightning/common/sphinx.c

583 lines
15 KiB
C
Raw Normal View History

#include <assert.h>
#include <ccan/crypto/ripemd160/ripemd160.h>
#include <ccan/crypto/sha256/sha256.h>
#include <ccan/mem/mem.h>
#include <common/sphinx.h>
#include <common/utils.h>
#include <err.h>
#include <secp256k1_ecdh.h>
#include <sodium/crypto_auth_hmacsha256.h>
#include <sodium/crypto_stream_chacha20.h>
#define BLINDING_FACTOR_SIZE 32
#define SHARED_SECRET_SIZE 32
#define HMAC_SIZE 32
#define NUM_STREAM_BYTES ((NUM_MAX_HOPS + 1) * HOP_DATA_SIZE)
#define KEY_LEN 32
#define ONION_REPLY_SIZE 256
struct hop_params {
u8 secret[SHARED_SECRET_SIZE];
u8 blind[BLINDING_FACTOR_SIZE];
secp256k1_pubkey ephemeralkey;
};
struct keyset {
u8 pi[KEY_LEN];
u8 mu[KEY_LEN];
u8 rho[KEY_LEN];
u8 gamma[KEY_LEN];
};
/* Small helper to append data to a buffer and update the position
* into the buffer
*/
static void write_buffer(u8 *dst, const void *src, const size_t len, int *pos)
{
memcpy(dst + *pos, src, len);
*pos += len;
}
/* Read len bytes from the source at position pos into dst and update
* the position pos accordingly.
*/
static void read_buffer(void *dst, const u8 *src, const size_t len, int *pos)
{
memcpy(dst, src + *pos, len);
*pos += len;
}
u8 *serialize_onionpacket(
const tal_t *ctx,
const struct onionpacket *m)
{
u8 *dst = tal_arr(ctx, u8, TOTAL_PACKET_SIZE);
u8 der[33];
size_t outputlen = 33;
int p = 0;
secp256k1_ec_pubkey_serialize(secp256k1_ctx,
der,
&outputlen,
&m->ephemeralkey,
SECP256K1_EC_COMPRESSED);
write_buffer(dst, &m->version, 1, &p);
write_buffer(dst, der, outputlen, &p);
write_buffer(dst, m->routinginfo, ROUTING_INFO_SIZE, &p);
write_buffer(dst, m->mac, sizeof(m->mac), &p);
return dst;
}
struct onionpacket *parse_onionpacket(
const tal_t *ctx,
const void *src,
const size_t srclen
)
{
struct onionpacket *m;
int p = 0;
u8 rawEphemeralkey[33];
if (srclen != TOTAL_PACKET_SIZE)
return NULL;
m = talz(ctx, struct onionpacket);
read_buffer(&m->version, src, 1, &p);
if (m->version != 0x00) {
// FIXME add logging
return tal_free(m);
}
read_buffer(rawEphemeralkey, src, 33, &p);
if (secp256k1_ec_pubkey_parse(secp256k1_ctx, &m->ephemeralkey, rawEphemeralkey, 33) != 1)
return tal_free(m);
read_buffer(&m->routinginfo, src, ROUTING_INFO_SIZE, &p);
read_buffer(&m->mac, src, SECURITY_PARAMETER, &p);
return m;
}
static void xorbytes(uint8_t *d, const uint8_t *a, const uint8_t *b, size_t len)
{
size_t i;
for (i = 0; i < len; i++)
d[i] = a[i] ^ b[i];
}
/*
* Generate a pseudo-random byte stream of length `dstlen` from key `k` and
* store it in `dst`. `dst must be at least `dstlen` bytes long.
*/
static void generate_cipher_stream(void *dst, const u8 *k, size_t dstlen)
{
u8 nonce[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
crypto_stream_chacha20(dst, dstlen, nonce, k);
}
static bool compute_hmac(
void *dst,
const void *src,
size_t len,
const void *key,
size_t keylen)
{
crypto_auth_hmacsha256_state state;
crypto_auth_hmacsha256_init(&state, key, keylen);
crypto_auth_hmacsha256_update(&state, memcheck(src, len), len);
crypto_auth_hmacsha256_final(&state, dst);
return true;
}
static void compute_packet_hmac(const struct onionpacket *packet,
const u8 *assocdata, const size_t assocdatalen,
u8 *mukey, u8 *hmac)
{
u8 mactemp[ROUTING_INFO_SIZE + assocdatalen];
u8 mac[32];
int pos = 0;
write_buffer(mactemp, packet->routinginfo, ROUTING_INFO_SIZE, &pos);
write_buffer(mactemp, assocdata, assocdatalen, &pos);
compute_hmac(mac, mactemp, sizeof(mactemp), mukey, KEY_LEN);
memcpy(hmac, mac, SECURITY_PARAMETER);
}
static bool generate_key(void *k, const char *t, u8 tlen, const u8 *s)
{
return compute_hmac(k, s, KEY_LEN, t, tlen);
}
static bool generate_header_padding(
void *dst, size_t dstlen,
const size_t hopsize,
const char *keytype,
size_t keytypelen,
const u8 numhops,
struct hop_params *params
)
{
int i;
u8 cipher_stream[(NUM_MAX_HOPS + 1) * hopsize];
u8 key[KEY_LEN];
memset(dst, 0, dstlen);
for (i = 1; i < numhops; i++) {
if (!generate_key(&key, keytype, keytypelen, params[i - 1].secret))
return false;
generate_cipher_stream(cipher_stream, key, sizeof(cipher_stream));
int pos = ((NUM_MAX_HOPS - i) + 1) * hopsize;
xorbytes(dst, dst, cipher_stream + pos, sizeof(cipher_stream) - pos);
}
return true;
}
static void compute_blinding_factor(const secp256k1_pubkey *key,
const u8 sharedsecret[SHARED_SECRET_SIZE],
u8 res[BLINDING_FACTOR_SIZE])
{
struct sha256_ctx ctx;
u8 der[33];
size_t outputlen = 33;
struct sha256 temp;
secp256k1_ec_pubkey_serialize(secp256k1_ctx, der, &outputlen, key,
SECP256K1_EC_COMPRESSED);
sha256_init(&ctx);
sha256_update(&ctx, der, sizeof(der));
sha256_update(&ctx, sharedsecret, SHARED_SECRET_SIZE);
sha256_done(&ctx, &temp);
memcpy(res, &temp, 32);
}
static bool blind_group_element(
secp256k1_pubkey *blindedelement,
const secp256k1_pubkey *pubkey,
const u8 blind[BLINDING_FACTOR_SIZE])
{
/* tweak_mul is inplace so copy first. */
if (pubkey != blindedelement)
*blindedelement = *pubkey;
if (secp256k1_ec_pubkey_tweak_mul(secp256k1_ctx, blindedelement, blind) != 1)
return false;
return true;
}
static bool create_shared_secret(
u8 *secret,
const secp256k1_pubkey *pubkey,
const u8 *sessionkey)
{
if (secp256k1_ecdh(secp256k1_ctx, secret, pubkey, sessionkey) != 1)
return false;
return true;
}
bool onion_shared_secret(
u8 *secret,
const struct onionpacket *packet,
const struct privkey *privkey)
{
return create_shared_secret(secret, &packet->ephemeralkey,
privkey->secret.data);
}
static void generate_key_set(const u8 secret[SHARED_SECRET_SIZE],
struct keyset *keys)
{
generate_key(keys->rho, "rho", 3, secret);
generate_key(keys->pi, "pi", 2, secret);
generate_key(keys->mu, "mu", 2, secret);
generate_key(keys->gamma, "gamma", 5, secret);
}
static struct hop_params *generate_hop_params(
const tal_t *ctx,
const u8 *sessionkey,
struct pubkey path[])
{
int i, j, num_hops = tal_count(path);
secp256k1_pubkey temp;
u8 blind[BLINDING_FACTOR_SIZE];
struct hop_params *params = tal_arr(ctx, struct hop_params, num_hops);
/* Initialize the first hop with the raw information */
if (secp256k1_ec_pubkey_create(
secp256k1_ctx, &params[0].ephemeralkey, sessionkey) != 1)
return NULL;
if (!create_shared_secret(
params[0].secret, &path[0].pubkey, sessionkey))
return NULL;
compute_blinding_factor(
&params[0].ephemeralkey, params[0].secret,
params[0].blind);
/* Recursively compute all following ephemeral public keys,
* secrets and blinding factors
*/
for (i = 1; i < num_hops; i++) {
if (!blind_group_element(
&params[i].ephemeralkey,
&params[i - 1].ephemeralkey,
params[i - 1].blind))
return NULL;
/* Blind this hop's point with all previous blinding factors
* Order is indifferent, multiplication is commutative.
*/
memcpy(&blind, sessionkey, 32);
temp = path[i].pubkey;
if (!blind_group_element(&temp, &temp, blind))
return NULL;
for (j = 0; j < i; j++)
if (!blind_group_element(
&temp,
&temp,
params[j].blind))
return NULL;
/* Now hash temp and store it. This requires us to
* DER-serialize first and then skip the sign byte.
*/
u8 der[33];
size_t outputlen = 33;
secp256k1_ec_pubkey_serialize(
secp256k1_ctx, der, &outputlen, &temp,
SECP256K1_EC_COMPRESSED);
struct sha256 h;
sha256(&h, der, sizeof(der));
memcpy(&params[i].secret, &h, sizeof(h));
compute_blinding_factor(
&params[i].ephemeralkey,
params[i].secret, params[i].blind);
}
return params;
}
static void serialize_hop_data(tal_t *ctx, u8 *dst, const struct hop_data *data)
{
u8 *buf = tal_arr(ctx, u8, 0);
towire_u8(&buf, data->realm);
towire_short_channel_id(&buf, &data->channel_id);
towire_u64(&buf, data->amt_forward);
towire_u32(&buf, data->outgoing_cltv);
towire_pad(&buf, 12);
towire(&buf, data->hmac, SECURITY_PARAMETER);
memcpy(dst, buf, tal_len(buf));
tal_free(buf);
}
static void deserialize_hop_data(struct hop_data *data, const u8 *src)
{
const u8 *cursor = src;
size_t max = HOP_DATA_SIZE;
data->realm = fromwire_u8(&cursor, &max);
fromwire_short_channel_id(&cursor, &max, &data->channel_id);
data->amt_forward = fromwire_u64(&cursor, &max);
data->outgoing_cltv = fromwire_u32(&cursor, &max);
fromwire_pad(&cursor, &max, 12);
fromwire(&cursor, &max, &data->hmac, SECURITY_PARAMETER);
}
struct onionpacket *create_onionpacket(
const tal_t *ctx,
struct pubkey *path,
struct hop_data hops_data[],
const u8 *sessionkey,
const u8 *assocdata,
const size_t assocdatalen,
struct secret **path_secrets
)
{
struct onionpacket *packet = talz(ctx, struct onionpacket);
int i, num_hops = tal_count(path);
u8 filler[(num_hops - 1) * HOP_DATA_SIZE];
struct keyset keys;
u8 nexthmac[SECURITY_PARAMETER];
u8 stream[ROUTING_INFO_SIZE];
struct hop_params *params = generate_hop_params(ctx, sessionkey, path);
struct secret *secrets = tal_arr(ctx, struct secret, num_hops);
if (!params) {
tal_free(packet);
tal_free(secrets);
return NULL;
}
packet->version = 0;
memset(nexthmac, 0, SECURITY_PARAMETER);
memset(packet->routinginfo, 0, ROUTING_INFO_SIZE);
generate_header_padding(filler, sizeof(filler), HOP_DATA_SIZE,
"rho", 3, num_hops, params);
for (i = num_hops - 1; i >= 0; i--) {
memcpy(hops_data[i].hmac, nexthmac, SECURITY_PARAMETER);
hops_data[i].realm = 0;
generate_key_set(params[i].secret, &keys);
generate_cipher_stream(stream, keys.rho, ROUTING_INFO_SIZE);
/* Rightshift mix-header by 2*SECURITY_PARAMETER */
memmove(packet->routinginfo + HOP_DATA_SIZE, packet->routinginfo,
ROUTING_INFO_SIZE - HOP_DATA_SIZE);
serialize_hop_data(packet, packet->routinginfo, &hops_data[i]);
xorbytes(packet->routinginfo, packet->routinginfo, stream, ROUTING_INFO_SIZE);
if (i == num_hops - 1) {
size_t len = (NUM_MAX_HOPS - num_hops + 1) * HOP_DATA_SIZE;
memcpy(packet->routinginfo + len, filler, sizeof(filler));
}
compute_packet_hmac(packet, assocdata, assocdatalen, keys.mu,
nexthmac);
}
memcpy(packet->mac, nexthmac, sizeof(nexthmac));
memcpy(&packet->ephemeralkey, &params[0].ephemeralkey, sizeof(secp256k1_pubkey));
for (i=0; i<num_hops; i++) {
memcpy(&secrets[i], params[i].secret, SHARED_SECRET_SIZE);
}
*path_secrets = secrets;
return packet;
}
/*
2017-12-28 14:41:54 +01:00
* Given an onionpacket msg extract the information for the current
* node and unwrap the remainder so that the node can forward it.
*/
struct route_step *process_onionpacket(
const tal_t *ctx,
const struct onionpacket *msg,
const u8 *shared_secret,
const u8 *assocdata,
const size_t assocdatalen
)
{
struct route_step *step = talz(ctx, struct route_step);
u8 hmac[SECURITY_PARAMETER];
struct keyset keys;
u8 blind[BLINDING_FACTOR_SIZE];
u8 stream[NUM_STREAM_BYTES];
u8 paddedheader[ROUTING_INFO_SIZE + HOP_DATA_SIZE];
step->next = talz(step, struct onionpacket);
step->next->version = msg->version;
generate_key_set(shared_secret, &keys);
compute_packet_hmac(msg, assocdata, assocdatalen, keys.mu, hmac);
if (memcmp(msg->mac, hmac, sizeof(hmac)) != 0) {
/* Computed MAC does not match expected MAC, the message was modified. */
return tal_free(step);
}
//FIXME:store seen secrets to avoid replay attacks
generate_cipher_stream(stream, keys.rho, sizeof(stream));
memset(paddedheader, 0, sizeof(paddedheader));
memcpy(paddedheader, msg->routinginfo, ROUTING_INFO_SIZE);
xorbytes(paddedheader, paddedheader, stream, sizeof(stream));
compute_blinding_factor(&msg->ephemeralkey, shared_secret, blind);
if (!blind_group_element(&step->next->ephemeralkey, &msg->ephemeralkey, blind))
return tal_free(step);
deserialize_hop_data(&step->hop_data, paddedheader);
memcpy(&step->next->mac, step->hop_data.hmac, SECURITY_PARAMETER);
memcpy(&step->next->routinginfo, paddedheader + HOP_DATA_SIZE, ROUTING_INFO_SIZE);
if (memeqzero(step->next->mac, sizeof(step->next->mac))) {
step->nextcase = ONION_END;
} else {
step->nextcase = ONION_FORWARD;
}
return step;
}
u8 *create_onionreply(const tal_t *ctx, const struct secret *shared_secret,
const u8 *failure_msg)
{
size_t msglen = tal_len(failure_msg);
size_t padlen = ONION_REPLY_SIZE - msglen;
u8 *reply = tal_arr(ctx, u8, 0), *payload = tal_arr(ctx, u8, 0);
u8 key[KEY_LEN];
u8 hmac[HMAC_SIZE];
/* BOLT #4:
*
* The node generating the error message (_erring node_) builds a return
* packet consisting of
* the following fields:
*
* 1. data:
* * [`32`:`hmac`]
* * [`2`:`failure_len`]
* * [`failure_len`:`failuremsg`]
* * [`2`:`pad_len`]
* * [`pad_len`:`pad`]
*/
towire_u16(&payload, msglen);
towire(&payload, failure_msg, msglen);
towire_u16(&payload, padlen);
towire_pad(&payload, padlen);
/* BOLT #4:
*
* The _erring node_:
* - SHOULD set `pad` such that the `failure_len` plus `pad_len` is
* equal to 256.
* - Note: this value is 118 bytes longer than the longest
* currently-defined message.
*/
assert(tal_len(payload) == ONION_REPLY_SIZE + 4);
/* BOLT #4:
*
* Where `hmac` is an HMAC authenticating the remainder of the packet,
* with a key generated using the above process, with key type `um`
*/
generate_key(key, "um", 2, shared_secret->data);
compute_hmac(hmac, payload, tal_len(payload), key, KEY_LEN);
towire(&reply, hmac, sizeof(hmac));
towire(&reply, payload, tal_len(payload));
tal_free(payload);
return reply;
}
u8 *wrap_onionreply(const tal_t *ctx,
const struct secret *shared_secret, const u8 *reply)
{
u8 key[KEY_LEN];
size_t streamlen = tal_len(reply);
u8 stream[streamlen];
u8 *result = tal_arr(ctx, u8, streamlen);
/* BOLT #4:
*
* The erring node then generates a new key, using the key type `ammag`.
* This key is then used to generate a pseudo-random stream, which is
* in turn applied to the packet using `XOR`.
*
* The obfuscation step is repeated by every hop along the return path.
*/
generate_key(key, "ammag", 5, shared_secret->data);
generate_cipher_stream(stream, key, streamlen);
xorbytes(result, stream, reply, streamlen);
return result;
}
struct onionreply *unwrap_onionreply(const tal_t *ctx,
const struct secret *shared_secrets,
const int numhops, const u8 *reply)
{
struct onionreply *oreply = tal(tmpctx, struct onionreply);
u8 *msg = tal_arr(oreply, u8, tal_len(reply));
u8 key[KEY_LEN], hmac[HMAC_SIZE];
const u8 *cursor;
size_t max;
u16 msglen;
if (tal_len(reply) != ONION_REPLY_SIZE + sizeof(hmac) + 4) {
return NULL;
}
memcpy(msg, reply, tal_len(reply));
oreply->origin_index = -1;
for (int i = 0; i < numhops; i++) {
/* Since the encryption is just XORing with the cipher
* stream encryption is identical to decryption */
msg = wrap_onionreply(tmpctx, &shared_secrets[i], msg);
/* Check if the HMAC matches, this means that this is
* the origin */
generate_key(key, "um", 2, shared_secrets[i].data);
compute_hmac(hmac, msg + sizeof(hmac),
tal_len(msg) - sizeof(hmac), key, KEY_LEN);
if (memcmp(hmac, msg, sizeof(hmac)) == 0) {
oreply->origin_index = i;
break;
}
}
if (oreply->origin_index == -1) {
return NULL;
}
cursor = msg + sizeof(hmac);
max = tal_len(msg) - sizeof(hmac);
msglen = fromwire_u16(&cursor, &max);
if (msglen > ONION_REPLY_SIZE) {
return NULL;
}
oreply->msg = tal_arr(oreply, u8, msglen);
fromwire(&cursor, &max, oreply->msg, msglen);
tal_steal(ctx, oreply);
return oreply;
}