core-lightning/connectd/multiplex.c

593 lines
16 KiB
C
Raw Normal View History

/*~ This contains all the code to shuffle data between socket to the peer
* itself, and the subdaemons. */
#include "config.h"
#include <assert.h>
#include <bitcoin/block.h>
#include <bitcoin/chainparams.h>
#include <ccan/io/io.h>
#include <common/cryptomsg.h>
#include <common/dev_disconnect.h>
#include <common/features.h>
#include <common/gossip_constants.h>
#include <common/gossip_rcvd_filter.h>
#include <common/gossip_store.h>
#include <common/per_peer_state.h>
#include <common/status.h>
#include <common/timeout.h>
#include <common/utils.h>
#include <common/wire_error.h>
#include <connectd/connectd.h>
#include <connectd/multiplex.h>
#include <errno.h>
#include <fcntl.h>
#include <netinet/in.h>
#include <netinet/tcp.h>
#include <sys/socket.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <wire/peer_wire.h>
#include <wire/wire.h>
#include <wire/wire_io.h>
void queue_peer_msg(struct peer *peer, const u8 *msg TAKES)
{
msg_enqueue(peer->peer_outq, msg);
}
/* Send warning, close connection to peer */
static void send_warning(struct peer *peer, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
status_vfmt(LOG_UNUSUAL, &peer->id, fmt, ap);
va_end(ap);
/* Close locally, send msg as final warning */
io_close(peer->to_subd);
va_start(ap, fmt);
peer->final_msg = towire_warningfmtv(peer, NULL, fmt, ap);
va_end(ap);
}
/* Kicks off write_to_peer() to look for more gossip to send from store */
static void wake_gossip(struct peer *peer);
static struct oneshot *gossip_stream_timer(struct peer *peer)
{
u32 next;
/* BOLT #7:
*
* A node:
*...
* - SHOULD flush outgoing gossip messages once every 60 seconds,
* independently of the arrival times of the messages.
* - Note: this results in staggered announcements that are unique
* (not duplicated).
*/
/* We shorten this for dev_fast_gossip! */
next = GOSSIP_FLUSH_INTERVAL(peer->daemon->dev_fast_gossip);
return new_reltimer(&peer->daemon->timers,
peer, time_from_sec(next),
wake_gossip, peer);
}
/* This is called once we need it: otherwise, the gossip_store may not exist,
* since we start at the same time as gossipd itself. */
static void setup_gossip_store(struct daemon *daemon)
{
daemon->gossip_store_fd = open(GOSSIP_STORE_FILENAME, O_RDONLY);
if (daemon->gossip_store_fd < 0)
status_failed(STATUS_FAIL_INTERNAL_ERROR,
"Opening gossip_store %s: %s",
GOSSIP_STORE_FILENAME, strerror(errno));
/* gossipd will be writing to this, and it's not atomic! Safest
* way to find the "end" is to walk through. */
daemon->gossip_store_end
= find_gossip_store_end(daemon->gossip_store_fd, 1);
}
void setup_peer_gossip_store(struct peer *peer,
const struct feature_set *our_features,
const u8 *their_features)
{
/* Lazy setup */
if (peer->daemon->gossip_store_fd == -1)
setup_gossip_store(peer->daemon);
peer->gs.grf = new_gossip_rcvd_filter(peer);
/* BOLT #7:
*
* A node:
* - if the `gossip_queries` feature is negotiated:
* - MUST NOT relay any gossip messages it did not generate itself,
* unless explicitly requested.
*/
if (feature_negotiated(our_features, their_features, OPT_GOSSIP_QUERIES)) {
peer->gs.gossip_timer = NULL;
peer->gs.active = false;
peer->gs.off = 1;
return;
}
peer->gs.gossip_timer = gossip_stream_timer(peer);
peer->gs.active = true;
peer->gs.timestamp_min = 0;
peer->gs.timestamp_max = UINT32_MAX;
/* BOLT #7:
*
* - upon receiving an `init` message with the
* `initial_routing_sync` flag set to 1:
* - SHOULD send gossip messages for all known channels and
* nodes, as if they were just received.
* - if the `initial_routing_sync` flag is set to 0, OR if the
* initial sync was completed:
* - SHOULD resume normal operation, as specified in the
* following [Rebroadcasting](#rebroadcasting) section.
*/
if (feature_offered(their_features, OPT_INITIAL_ROUTING_SYNC))
peer->gs.off = 1;
else {
/* During tests, particularly, we find that the gossip_store
* moves fast, so make sure it really does start at the end. */
peer->gs.off
= find_gossip_store_end(peer->daemon->gossip_store_fd,
peer->daemon->gossip_store_end);
}
}
/* These four function handle subd->peer */
static struct io_plan *after_final_msg(struct io_conn *peer_conn,
struct peer *peer)
{
/* io_close will want to free this itself! */
assert(peer->to_peer == peer_conn);
/* Invert ownership, so io_close frees peer for us */
tal_steal(NULL, peer_conn);
tal_steal(peer_conn, peer);
return io_close(peer_conn);
}
#if DEVELOPER
static struct io_plan *write_to_peer(struct io_conn *peer_conn,
struct peer *peer);
static struct io_plan *dev_leave_hanging(struct io_conn *peer_conn,
struct peer *peer)
{
/* We don't tell the peer we're disconnecting, but from now on
* our writes go nowhere, and there's nothing to read. */
dev_sabotage_fd(io_conn_fd(peer_conn), false);
return write_to_peer(peer_conn, peer);
}
#endif /* DEVELOPER */
/* We're happy for the kernel to batch update and gossip messages, but a
* commitment message, for example, should be instantly sent. There's no
* great way of doing this, unfortunately.
*
* Setting TCP_NODELAY on Linux flushes the socket, which really means
* we'd want to toggle on then off it *after* sending. But Linux has
* TCP_CORK. On FreeBSD, it seems (looking at source) not to, so
* there we'd want to set it before the send, and reenable it
* afterwards. Even if this is wrong on other non-Linux platforms, it
* only means one extra packet.
*/
static void set_urgent_flag(struct peer *peer, bool urgent)
{
int val;
int opt;
const char *optname;
static bool complained = false;
if (urgent == peer->urgent)
return;
#ifdef TCP_CORK
opt = TCP_CORK;
optname = "TCP_CORK";
#elif defined(TCP_NODELAY)
opt = TCP_NODELAY;
optname = "TCP_NODELAY";
#else
#error "Please report platform with neither TCP_CORK nor TCP_NODELAY?"
#endif
val = urgent;
if (setsockopt(io_conn_fd(peer->to_peer),
IPPROTO_TCP, opt, &val, sizeof(val)) != 0) {
/* This actually happens in testing, where we blackhole the fd */
if (!complained) {
status_unusual("setsockopt %s=1: %s",
optname,
strerror(errno));
complained = true;
}
}
peer->urgent = urgent;
}
static bool is_urgent(enum peer_wire type)
{
switch (type) {
case WIRE_INIT:
case WIRE_ERROR:
case WIRE_WARNING:
case WIRE_TX_ADD_INPUT:
case WIRE_TX_ADD_OUTPUT:
case WIRE_TX_REMOVE_INPUT:
case WIRE_TX_REMOVE_OUTPUT:
case WIRE_TX_COMPLETE:
case WIRE_TX_SIGNATURES:
case WIRE_OPEN_CHANNEL:
case WIRE_ACCEPT_CHANNEL:
case WIRE_FUNDING_CREATED:
case WIRE_FUNDING_SIGNED:
case WIRE_FUNDING_LOCKED:
case WIRE_OPEN_CHANNEL2:
case WIRE_ACCEPT_CHANNEL2:
case WIRE_INIT_RBF:
case WIRE_ACK_RBF:
case WIRE_SHUTDOWN:
case WIRE_CLOSING_SIGNED:
case WIRE_UPDATE_ADD_HTLC:
case WIRE_UPDATE_FULFILL_HTLC:
case WIRE_UPDATE_FAIL_HTLC:
case WIRE_UPDATE_FAIL_MALFORMED_HTLC:
case WIRE_UPDATE_FEE:
case WIRE_UPDATE_BLOCKHEIGHT:
case WIRE_CHANNEL_REESTABLISH:
case WIRE_ANNOUNCEMENT_SIGNATURES:
case WIRE_CHANNEL_ANNOUNCEMENT:
case WIRE_NODE_ANNOUNCEMENT:
case WIRE_CHANNEL_UPDATE:
case WIRE_QUERY_SHORT_CHANNEL_IDS:
case WIRE_REPLY_SHORT_CHANNEL_IDS_END:
case WIRE_QUERY_CHANNEL_RANGE:
case WIRE_REPLY_CHANNEL_RANGE:
case WIRE_GOSSIP_TIMESTAMP_FILTER:
case WIRE_OBS2_ONION_MESSAGE:
case WIRE_ONION_MESSAGE:
#if EXPERIMENTAL_FEATURES
case WIRE_STFU:
#endif
return false;
/* These are time-sensitive, and so send without delay. */
case WIRE_PING:
case WIRE_PONG:
case WIRE_COMMITMENT_SIGNED:
case WIRE_REVOKE_AND_ACK:
return true;
};
/* plugins can inject other messages; assume not urgent. */
return false;
}
static struct io_plan *encrypt_and_send(struct peer *peer,
const u8 *msg TAKES,
struct io_plan *(*next)
(struct io_conn *peer_conn,
struct peer *peer))
{
int type = fromwire_peektype(msg);
#if DEVELOPER
switch (dev_disconnect(&peer->id, type)) {
case DEV_DISCONNECT_BEFORE:
if (taken(msg))
tal_free(msg);
return io_close(peer->to_peer);
case DEV_DISCONNECT_AFTER:
next = (void *)io_close_cb;
break;
case DEV_DISCONNECT_BLACKHOLE:
dev_blackhole_fd(io_conn_fd(peer->to_peer));
break;
case DEV_DISCONNECT_NORMAL:
break;
case DEV_DISCONNECT_DISABLE_AFTER:
next = dev_leave_hanging;
break;
}
#endif
set_urgent_flag(peer, is_urgent(type));
/* We free this and the encrypted version in next write_to_peer */
peer->sent_to_peer = cryptomsg_encrypt_msg(peer, &peer->cs, msg);
return io_write(peer->to_peer,
peer->sent_to_peer,
tal_bytelen(peer->sent_to_peer),
next, peer);
}
/* Kicks off write_to_peer() to look for more gossip to send from store */
static void wake_gossip(struct peer *peer)
{
peer->gs.active = true;
io_wake(peer->peer_outq);
/* And go again in 60 seconds (from now, now when we finish!) */
peer->gs.gossip_timer = gossip_stream_timer(peer);
}
/* If we are streaming gossip, get something from gossip store */
static u8 *maybe_from_gossip_store(const tal_t *ctx, struct peer *peer)
{
u8 *msg;
/* Not streaming yet? */
if (!peer->gs.active)
return NULL;
/* This should be around to kick us every 60 seconds */
assert(peer->gs.gossip_timer);
again:
msg = gossip_store_next(ctx, &peer->daemon->gossip_store_fd,
peer->gs.timestamp_min,
peer->gs.timestamp_max,
&peer->gs.off,
&peer->daemon->gossip_store_end);
/* Don't send back gossip they sent to us! */
if (msg) {
status_peer_debug(&peer->id,
"Sending gossip %s",
peer_wire_name(fromwire_peektype(msg)));
if (gossip_rcvd_filter_del(peer->gs.grf, msg)) {
msg = tal_free(msg);
goto again;
}
status_peer_io(LOG_IO_OUT, &peer->id, msg);
return msg;
}
peer->gs.active = false;
return NULL;
}
/* We only handle gossip_timestamp_filter for now */
static bool handle_message_locally(struct peer *peer, const u8 *msg)
{
struct bitcoin_blkid chain_hash;
u32 first_timestamp, timestamp_range;
/* We remember these so we don't rexmit them */
if (is_msg_gossip_broadcast(msg))
gossip_rcvd_filter_add(peer->gs.grf, msg);
if (!fromwire_gossip_timestamp_filter(msg, &chain_hash,
&first_timestamp,
&timestamp_range)) {
return false;
}
if (!bitcoin_blkid_eq(&chainparams->genesis_blockhash, &chain_hash)) {
send_warning(peer, "gossip_timestamp_filter for bad chain: %s",
tal_hex(tmpctx, msg));
return true;
}
peer->gs.timestamp_min = first_timestamp;
peer->gs.timestamp_max = first_timestamp + timestamp_range - 1;
/* Make sure we never leave it on an impossible value. */
if (peer->gs.timestamp_max < peer->gs.timestamp_min)
peer->gs.timestamp_max = UINT32_MAX;
peer->gs.off = 1;
/* BOLT #7:
* - MAY wait for the next outgoing gossip flush to send these.
*/
/* We send immediately the first time, after that we wait. */
if (!peer->gs.gossip_timer)
wake_gossip(peer);
return true;
}
static struct io_plan *write_to_peer(struct io_conn *peer_conn,
struct peer *peer)
{
const u8 *msg;
assert(peer->to_peer == peer_conn);
/* Free last sent one (if any) */
peer->sent_to_peer = tal_free(peer->sent_to_peer);
/* Pop tail of send queue */
msg = msg_dequeue(peer->peer_outq);
/* Nothing to send? */
if (!msg) {
/* Send final once subd is not longer connected */
if (peer->final_msg && !peer->to_subd) {
return encrypt_and_send(peer,
peer->final_msg,
after_final_msg);
}
/* If they want us to send gossip, do so now. */
msg = maybe_from_gossip_store(NULL, peer);
if (!msg) {
/* Tell them to read again, */
io_wake(&peer->subd_in);
/* Wait for them to wake us */
return msg_queue_wait(peer_conn, peer->peer_outq,
write_to_peer, peer);
}
}
return encrypt_and_send(peer, take(msg), write_to_peer);
}
static struct io_plan *read_from_subd(struct io_conn *subd_conn,
struct peer *peer);
static struct io_plan *read_from_subd_done(struct io_conn *subd_conn,
struct peer *peer)
{
/* Tell them to encrypt & write. */
queue_peer_msg(peer, take(peer->subd_in));
peer->subd_in = NULL;
/* Wait for them to wake us */
return io_wait(subd_conn, &peer->subd_in, read_from_subd, peer);
}
static struct io_plan *read_from_subd(struct io_conn *subd_conn,
struct peer *peer)
{
return io_read_wire(subd_conn, peer, &peer->subd_in,
read_from_subd_done, peer);
}
/* These four function handle peer->subd */
static struct io_plan *write_to_subd(struct io_conn *subd_conn,
struct peer *peer)
{
const u8 *msg;
assert(peer->to_subd == subd_conn);
/* Pop tail of send queue */
msg = msg_dequeue(peer->subd_outq);
/* Nothing to send? */
if (!msg) {
/* Tell them to read again. */
io_wake(&peer->peer_in);
/* Wait for them to wake us */
return msg_queue_wait(subd_conn, peer->subd_outq,
write_to_subd, peer);
}
return io_write_wire(subd_conn, take(msg), write_to_subd, peer);
}
static struct io_plan *read_hdr_from_peer(struct io_conn *peer_conn,
struct peer *peer);
static struct io_plan *read_body_from_peer_done(struct io_conn *peer_conn,
struct peer *peer)
{
u8 *decrypted;
decrypted = cryptomsg_decrypt_body(NULL, &peer->cs,
peer->peer_in);
if (!decrypted)
return io_close(peer_conn);
tal_free(peer->peer_in);
/* If we swallow this, just try again. */
if (handle_message_locally(peer, decrypted)) {
tal_free(decrypted);
return read_hdr_from_peer(peer_conn, peer);
}
/* Tell them to write. */
msg_enqueue(peer->subd_outq, take(decrypted));
/* Wait for them to wake us */
return io_wait(peer_conn, &peer->peer_in, read_hdr_from_peer, peer);
}
static struct io_plan *read_body_from_peer(struct io_conn *peer_conn,
struct peer *peer)
{
u16 len;
if (!cryptomsg_decrypt_header(&peer->cs, peer->peer_in, &len))
return io_close(peer_conn);
tal_resize(&peer->peer_in, (u32)len + CRYPTOMSG_BODY_OVERHEAD);
return io_read(peer_conn, peer->peer_in, tal_count(peer->peer_in),
read_body_from_peer_done, peer);
}
static struct io_plan *read_hdr_from_peer(struct io_conn *peer_conn,
struct peer *peer)
{
assert(peer->to_peer == peer_conn);
/* BOLT #8:
*
* ### Receiving and Decrypting Messages
*
* In order to decrypt the _next_ message in the network
* stream, the following steps are completed:
*
* 1. Read _exactly_ 18 bytes from the network buffer.
*/
peer->peer_in = tal_arr(peer, u8, CRYPTOMSG_HDR_SIZE);
return io_read(peer_conn, peer->peer_in, CRYPTOMSG_HDR_SIZE,
read_body_from_peer, peer);
}
static struct io_plan *subd_conn_init(struct io_conn *subd_conn, struct peer *peer)
{
peer->to_subd = subd_conn;
return io_duplex(subd_conn,
read_from_subd(subd_conn, peer),
write_to_subd(subd_conn, peer));
}
static void destroy_subd_conn(struct io_conn *subd_conn, struct peer *peer)
{
assert(subd_conn == peer->to_subd);
peer->to_subd = NULL;
/* In case they were waiting for this to send final_msg */
if (peer->final_msg)
msg_wake(peer->peer_outq);
}
bool multiplex_subd_setup(struct peer *peer, int *fd_for_subd)
{
int fds[2];
if (socketpair(AF_LOCAL, SOCK_STREAM, 0, fds) != 0) {
status_broken("Failed to create socketpair: %s",
strerror(errno));
return false;
}
peer->to_subd = io_new_conn(peer, fds[0], subd_conn_init, peer);
tal_add_destructor2(peer->to_subd, destroy_subd_conn, peer);
*fd_for_subd = fds[1];
return true;
}
static void destroy_peer_conn(struct io_conn *peer_conn, struct peer *peer)
{
assert(peer->to_peer == peer_conn);
peer->to_peer = NULL;
/* Close internal connections if not already. */
if (peer->to_subd)
io_close(peer->to_subd);
}
struct io_plan *multiplex_peer_setup(struct io_conn *peer_conn,
struct peer *peer)
{
/*~ If conn closes, we close the subd connections and wait for
* lightningd to tell us to close with the peer */
tal_add_destructor2(peer_conn, destroy_peer_conn, peer);
return io_duplex(peer_conn,
read_hdr_from_peer(peer_conn, peer),
write_to_peer(peer_conn, peer));
}
void multiplex_final_msg(struct peer *peer, const u8 *final_msg TAKES)
{
peer->final_msg = tal_dup_talarr(peer, u8, final_msg);
if (!peer->to_subd)
io_wake(peer->peer_outq);
}