mirror of
https://github.com/btcsuite/btcd.git
synced 2024-11-20 02:09:04 +01:00
ff3fac426d
The format used is identical to that used in bitcoind.
666 lines
27 KiB
Go
666 lines
27 KiB
Go
// Copyright 2010 The Go Authors. All rights reserved.
|
|
// Copyright 2011 ThePiachu. All rights reserved.
|
|
// Copyright 2013-2014 Conformal Systems LLC. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package btcec
|
|
|
|
// References:
|
|
// [SECG]: Recommended Elliptic Curve Domain Parameters
|
|
// http://www.secg.org/download/aid-784/sec2-v2.pdf
|
|
|
|
// This package operates, internally, on Jacobian coordinates. For a given
|
|
// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1)
|
|
// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole
|
|
// calculation can be performed within the transform (as in ScalarMult and
|
|
// ScalarBaseMult). But even for Add and Double, it's faster to apply and
|
|
// reverse the transform than to operate in affine coordinates.
|
|
|
|
import (
|
|
"crypto/elliptic"
|
|
"math/big"
|
|
"sync"
|
|
)
|
|
|
|
//TODO: examine if we need to care about EC optimization as descibed here
|
|
// https://bitcointalk.org/index.php?topic=155054.0;all
|
|
|
|
var (
|
|
// fieldOne is simply the integer 1 in field representation. It is
|
|
// used to avoid needing to create it multiple times during the internal
|
|
// arithmetic.
|
|
fieldOne = new(fieldVal).SetInt(1)
|
|
)
|
|
|
|
// KoblitzCurve supports a koblitz curve implementation that fits the ECC Curve
|
|
// interface from crypto/elliptic.
|
|
type KoblitzCurve struct {
|
|
*elliptic.CurveParams
|
|
q *big.Int
|
|
H int // cofactor of the curve.
|
|
}
|
|
|
|
// Params returns the parameters for the curve.
|
|
func (curve *KoblitzCurve) Params() *elliptic.CurveParams {
|
|
return curve.CurveParams
|
|
}
|
|
|
|
// bigAffineToField takes an affine point (x, y) as big integers and converts
|
|
// it to an affine point as field values.
|
|
func (curve *KoblitzCurve) bigAffineToField(x, y *big.Int) (*fieldVal, *fieldVal) {
|
|
x3, y3 := new(fieldVal), new(fieldVal)
|
|
x3.SetByteSlice(x.Bytes())
|
|
y3.SetByteSlice(y.Bytes())
|
|
|
|
return x3, y3
|
|
}
|
|
|
|
// fieldJacobianToBigAffine takes a Jacobian point (x, y, z) as field values and
|
|
// converts it to an affine point as big integers.
|
|
func (curve *KoblitzCurve) fieldJacobianToBigAffine(x, y, z *fieldVal) (*big.Int, *big.Int) {
|
|
// Inversions are expensive and both point addition and point doubling
|
|
// are faster when working with points that have a z value of one. So,
|
|
// if the point needs to be converted to affine, go ahead and normalize
|
|
// the point itself at the same time as the calculation is the same.
|
|
var zInv, tempZ fieldVal
|
|
zInv.Set(z).Inverse() // zInv = Z^-1
|
|
tempZ.SquareVal(&zInv) // tempZ = Z^-2
|
|
x.Mul(&tempZ) // X = X/Z^2 (mag: 1)
|
|
y.Mul(tempZ.Mul(&zInv)) // Y = Y/Z^3 (mag: 1)
|
|
z.SetInt(1) // Z = 1 (mag: 1)
|
|
|
|
// Normalize the x and y values.
|
|
x.Normalize()
|
|
y.Normalize()
|
|
|
|
// Convert the field values for the now affine point to big.Ints.
|
|
x3, y3 := new(big.Int), new(big.Int)
|
|
x3.SetBytes(x.Bytes()[:])
|
|
y3.SetBytes(y.Bytes()[:])
|
|
return x3, y3
|
|
}
|
|
|
|
// IsOnCurve returns boolean if the point (x,y) is on the curve.
|
|
// Part of the elliptic.Curve interface. This function differs from the
|
|
// crypto/elliptic algorithm since a = 0 not -3.
|
|
func (curve *KoblitzCurve) IsOnCurve(x, y *big.Int) bool {
|
|
// Convert big ints to field values for faster arithmetic.
|
|
fx, fy := curve.bigAffineToField(x, y)
|
|
|
|
// Elliptic curve equation for secp256k1 is: y^2 = x^3 + 7
|
|
y2 := new(fieldVal).SquareVal(fy).Normalize()
|
|
result := new(fieldVal).SquareVal(fx).Mul(fx).AddInt(7).Normalize()
|
|
return y2.Equals(result)
|
|
}
|
|
|
|
// addZ1AndZ2EqualsOne adds two Jacobian points that are already known to have
|
|
// z values of 1 and stores the result in (x3, y3, z3). That is to say
|
|
// (x1, y1, 1) + (x2, y2, 1) = (x3, y3, z3). It performs faster addition than
|
|
// the generic add routine since less arithmetic is needed due to the ability to
|
|
// avoid the z value multiplications.
|
|
func (curve *KoblitzCurve) addZ1AndZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) {
|
|
// To compute the point addition efficiently, this implementation splits
|
|
// the equation into intermediate elements which are used to minimize
|
|
// the number of field multiplications using the method shown at:
|
|
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl
|
|
//
|
|
// In particular it performs the calculations using the following:
|
|
// H = X2-X1, HH = H^2, I = 4*HH, J = H*I, r = 2*(Y2-Y1), V = X1*I
|
|
// X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = 2*H
|
|
//
|
|
// This results in a cost of 4 field multiplications, 2 field squarings,
|
|
// 6 field additions, and 5 integer multiplications.
|
|
|
|
// When the x coordinates are the same for two points on the curve, the
|
|
// y coordinates either must be the same, in which case it is point
|
|
// doubling, or they are opposite and the result is the point at
|
|
// infinity per the group law for elliptic curve cryptography.
|
|
x1.Normalize()
|
|
y1.Normalize()
|
|
x2.Normalize()
|
|
y2.Normalize()
|
|
if x1.Equals(x2) {
|
|
if y1.Equals(y2) {
|
|
// Since x1 == x2 and y1 == y2, point doubling must be
|
|
// done, otherwise the addition would end up dividing
|
|
// by zero.
|
|
curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
|
|
return
|
|
}
|
|
|
|
// Since x1 == x2 and y1 == -y2, the sum is the point at
|
|
// infinity per the group law.
|
|
x3.SetInt(0)
|
|
y3.SetInt(0)
|
|
z3.SetInt(0)
|
|
return
|
|
}
|
|
|
|
// Calculate X3, Y3, and Z3 according to the intermediate elements
|
|
// breakdown above.
|
|
var h, i, j, r, v fieldVal
|
|
var negJ, neg2V, negX3 fieldVal
|
|
h.Set(x1).Negate(1).Add(x2) // H = X2-X1 (mag: 3)
|
|
i.SquareVal(&h).MulInt(4) // I = 4*H^2 (mag: 4)
|
|
j.Mul2(&h, &i) // J = H*I (mag: 1)
|
|
r.Set(y1).Negate(1).Add(y2).MulInt(2) // r = 2*(Y2-Y1) (mag: 6)
|
|
v.Mul2(x1, &i) // V = X1*I (mag: 1)
|
|
negJ.Set(&j).Negate(1) // negJ = -J (mag: 2)
|
|
neg2V.Set(&v).MulInt(2).Negate(2) // neg2V = -(2*V) (mag: 3)
|
|
x3.Set(&r).Square().Add(&negJ).Add(&neg2V) // X3 = r^2-J-2*V (mag: 6)
|
|
negX3.Set(x3).Negate(6) // negX3 = -X3 (mag: 7)
|
|
j.Mul(y1).MulInt(2).Negate(2) // J = -(2*Y1*J) (mag: 3)
|
|
y3.Set(&v).Add(&negX3).Mul(&r).Add(&j) // Y3 = r*(V-X3)-2*Y1*J (mag: 4)
|
|
z3.Set(&h).MulInt(2) // Z3 = 2*H (mag: 6)
|
|
|
|
// Normalize the resulting field values to a magnitude of 1 as needed.
|
|
x3.Normalize()
|
|
y3.Normalize()
|
|
z3.Normalize()
|
|
}
|
|
|
|
// addZ1EqualsZ2 adds two Jacobian points that are already known to have the
|
|
// same z value and stores the result in (x3, y3, z3). That is to say
|
|
// (x1, y1, z1) + (x2, y2, z1) = (x3, y3, z3). It performs faster addition than
|
|
// the generic add routine since less arithmetic is needed due to the known
|
|
// equivalence.
|
|
func (curve *KoblitzCurve) addZ1EqualsZ2(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) {
|
|
// To compute the point addition efficiently, this implementation splits
|
|
// the equation into intermediate elements which are used to minimize
|
|
// the number of field multiplications using a slightly modified version
|
|
// of the method shown at:
|
|
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl
|
|
//
|
|
// In particular it performs the calculations using the following:
|
|
// A = X2-X1, B = A^2, C=Y2-Y1, D = C^2, E = X1*B, F = X2*B
|
|
// X3 = D-E-F, Y3 = C*(E-X3)-Y1*(F-E), Z3 = Z1*A
|
|
//
|
|
// This results in a cost of 5 field multiplications, 2 field squarings,
|
|
// 9 field additions, and 0 integer multiplications.
|
|
|
|
// When the x coordinates are the same for two points on the curve, the
|
|
// y coordinates either must be the same, in which case it is point
|
|
// doubling, or they are opposite and the result is the point at
|
|
// infinity per the group law for elliptic curve cryptography.
|
|
x1.Normalize()
|
|
y1.Normalize()
|
|
x2.Normalize()
|
|
y2.Normalize()
|
|
if x1.Equals(x2) {
|
|
if y1.Equals(y2) {
|
|
// Since x1 == x2 and y1 == y2, point doubling must be
|
|
// done, otherwise the addition would end up dividing
|
|
// by zero.
|
|
curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
|
|
return
|
|
}
|
|
|
|
// Since x1 == x2 and y1 == -y2, the sum is the point at
|
|
// infinity per the group law.
|
|
x3.SetInt(0)
|
|
y3.SetInt(0)
|
|
z3.SetInt(0)
|
|
return
|
|
}
|
|
|
|
// Calculate X3, Y3, and Z3 according to the intermediate elements
|
|
// breakdown above.
|
|
var a, b, c, d, e, f fieldVal
|
|
var negX1, negY1, negE, negX3 fieldVal
|
|
negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2)
|
|
negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2)
|
|
a.Set(&negX1).Add(x2) // A = X2-X1 (mag: 3)
|
|
b.SquareVal(&a) // B = A^2 (mag: 1)
|
|
c.Set(&negY1).Add(y2) // C = Y2-Y1 (mag: 3)
|
|
d.SquareVal(&c) // D = C^2 (mag: 1)
|
|
e.Mul2(x1, &b) // E = X1*B (mag: 1)
|
|
negE.Set(&e).Negate(1) // negE = -E (mag: 2)
|
|
f.Mul2(x2, &b) // F = X2*B (mag: 1)
|
|
x3.Add2(&e, &f).Negate(3).Add(&d) // X3 = D-E-F (mag: 5)
|
|
negX3.Set(x3).Negate(5).Normalize() // negX3 = -X3 (mag: 1)
|
|
y3.Set(y1).Mul(f.Add(&negE)).Negate(3) // Y3 = -(Y1*(F-E)) (mag: 4)
|
|
y3.Add(e.Add(&negX3).Mul(&c)) // Y3 = C*(E-X3)+Y3 (mag: 5)
|
|
z3.Mul2(z1, &a) // Z3 = Z1*A (mag: 1)
|
|
|
|
// Normalize the resulting field values to a magnitude of 1 as needed.
|
|
x3.Normalize()
|
|
y3.Normalize()
|
|
}
|
|
|
|
// addZ2EqualsOne adds two Jacobian points when the second point is already
|
|
// known to have a z value of 1 (and the z value for the first point is not 1)
|
|
// and stores the result in (x3, y3, z3). That is to say (x1, y1, z1) +
|
|
// (x2, y2, 1) = (x3, y3, z3). It performs faster addition than the generic
|
|
// add routine since less arithmetic is needed due to the ability to avoid
|
|
// multiplications by the second point's z value.
|
|
func (curve *KoblitzCurve) addZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) {
|
|
// To compute the point addition efficiently, this implementation splits
|
|
// the equation into intermediate elements which are used to minimize
|
|
// the number of field multiplications using the method shown at:
|
|
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-madd-2007-bl
|
|
//
|
|
// In particular it performs the calculations using the following:
|
|
// Z1Z1 = Z1^2, U2 = X2*Z1Z1, S2 = Y2*Z1*Z1Z1, H = U2-X1, HH = H^2,
|
|
// I = 4*HH, J = H*I, r = 2*(S2-Y1), V = X1*I
|
|
// X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = (Z1+H)^2-Z1Z1-HH
|
|
//
|
|
// This results in a cost of 7 field multiplications, 4 field squarings,
|
|
// 9 field additions, and 4 integer multiplications.
|
|
|
|
// When the x coordinates are the same for two points on the curve, the
|
|
// y coordinates either must be the same, in which case it is point
|
|
// doubling, or they are opposite and the result is the point at
|
|
// infinity per the group law for elliptic curve cryptography. Since
|
|
// any number of Jacobian coordinates can represent the same affine
|
|
// point, the x and y values need to be converted to like terms. Due to
|
|
// the assumption made for this function that the second point has a z
|
|
// value of 1 (z2=1), the first point is already "converted".
|
|
var z1z1, u2, s2 fieldVal
|
|
x1.Normalize()
|
|
y1.Normalize()
|
|
z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1)
|
|
u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1)
|
|
s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1)
|
|
if x1.Equals(&u2) {
|
|
if y1.Equals(&s2) {
|
|
// Since x1 == x2 and y1 == y2, point doubling must be
|
|
// done, otherwise the addition would end up dividing
|
|
// by zero.
|
|
curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
|
|
return
|
|
}
|
|
|
|
// Since x1 == x2 and y1 == -y2, the sum is the point at
|
|
// infinity per the group law.
|
|
x3.SetInt(0)
|
|
y3.SetInt(0)
|
|
z3.SetInt(0)
|
|
return
|
|
}
|
|
|
|
// Calculate X3, Y3, and Z3 according to the intermediate elements
|
|
// breakdown above.
|
|
var h, hh, i, j, r, rr, v fieldVal
|
|
var negX1, negY1, negX3 fieldVal
|
|
negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2)
|
|
h.Add2(&u2, &negX1) // H = U2-X1 (mag: 3)
|
|
hh.SquareVal(&h) // HH = H^2 (mag: 1)
|
|
i.Set(&hh).MulInt(4) // I = 4 * HH (mag: 4)
|
|
j.Mul2(&h, &i) // J = H*I (mag: 1)
|
|
negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2)
|
|
r.Set(&s2).Add(&negY1).MulInt(2) // r = 2*(S2-Y1) (mag: 6)
|
|
rr.SquareVal(&r) // rr = r^2 (mag: 1)
|
|
v.Mul2(x1, &i) // V = X1*I (mag: 1)
|
|
x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4)
|
|
x3.Add(&rr) // X3 = r^2+X3 (mag: 5)
|
|
negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6)
|
|
y3.Set(y1).Mul(&j).MulInt(2).Negate(2) // Y3 = -(2*Y1*J) (mag: 3)
|
|
y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4)
|
|
z3.Add2(z1, &h).Square() // Z3 = (Z1+H)^2 (mag: 1)
|
|
z3.Add(z1z1.Add(&hh).Negate(2)) // Z3 = Z3-(Z1Z1+HH) (mag: 4)
|
|
|
|
// Normalize the resulting field values to a magnitude of 1 as needed.
|
|
x3.Normalize()
|
|
y3.Normalize()
|
|
z3.Normalize()
|
|
}
|
|
|
|
// addGeneric adds two Jacobian points (x1, y1, z1) and (x2, y2, z2) without any
|
|
// assumptions about the z values of the two points and stores the result in
|
|
// (x3, y3, z3). That is to say (x1, y1, z1) + (x2, y2, z2) = (x3, y3, z3). It
|
|
// is the slowest of the add routines due to requiring the most arithmetic.
|
|
func (curve *KoblitzCurve) addGeneric(x1, y1, z1, x2, y2, z2, x3, y3, z3 *fieldVal) {
|
|
// To compute the point addition efficiently, this implementation splits
|
|
// the equation into intermediate elements which are used to minimize
|
|
// the number of field multiplications using the method shown at:
|
|
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
|
|
//
|
|
// In particular it performs the calculations using the following:
|
|
// Z1Z1 = Z1^2, Z2Z2 = Z2^2, U1 = X1*Z2Z2, U2 = X2*Z1Z1, S1 = Y1*Z2*Z2Z2
|
|
// S2 = Y2*Z1*Z1Z1, H = U2-U1, I = (2*H)^2, J = H*I, r = 2*(S2-S1)
|
|
// V = U1*I
|
|
// X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*S1*J, Z3 = ((Z1+Z2)^2-Z1Z1-Z2Z2)*H
|
|
//
|
|
// This results in a cost of 11 field multiplications, 5 field squarings,
|
|
// 9 field additions, and 4 integer multiplications.
|
|
|
|
// When the x coordinates are the same for two points on the curve, the
|
|
// y coordinates either must be the same, in which case it is point
|
|
// doubling, or they are opposite and the result is the point at
|
|
// infinity. Since any number of Jacobian coordinates can represent the
|
|
// same affine point, the x and y values need to be converted to like
|
|
// terms.
|
|
var z1z1, z2z2, u1, u2, s1, s2 fieldVal
|
|
z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1)
|
|
z2z2.SquareVal(z2) // Z2Z2 = Z2^2 (mag: 1)
|
|
u1.Set(x1).Mul(&z2z2).Normalize() // U1 = X1*Z2Z2 (mag: 1)
|
|
u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1)
|
|
s1.Set(y1).Mul(&z2z2).Mul(z2).Normalize() // S1 = Y1*Z2*Z2Z2 (mag: 1)
|
|
s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1)
|
|
if u1.Equals(&u2) {
|
|
if s1.Equals(&s2) {
|
|
// Since x1 == x2 and y1 == y2, point doubling must be
|
|
// done, otherwise the addition would end up dividing
|
|
// by zero.
|
|
curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
|
|
return
|
|
}
|
|
|
|
// Since x1 == x2 and y1 == -y2, the sum is the point at
|
|
// infinity per the group law.
|
|
x3.SetInt(0)
|
|
y3.SetInt(0)
|
|
z3.SetInt(0)
|
|
return
|
|
}
|
|
|
|
// Calculate X3, Y3, and Z3 according to the intermediate elements
|
|
// breakdown above.
|
|
var h, i, j, r, rr, v fieldVal
|
|
var negU1, negS1, negX3 fieldVal
|
|
negU1.Set(&u1).Negate(1) // negU1 = -U1 (mag: 2)
|
|
h.Add2(&u2, &negU1) // H = U2-U1 (mag: 3)
|
|
i.Set(&h).MulInt(2).Square() // I = (2*H)^2 (mag: 2)
|
|
j.Mul2(&h, &i) // J = H*I (mag: 1)
|
|
negS1.Set(&s1).Negate(1) // negS1 = -S1 (mag: 2)
|
|
r.Set(&s2).Add(&negS1).MulInt(2) // r = 2*(S2-S1) (mag: 6)
|
|
rr.SquareVal(&r) // rr = r^2 (mag: 1)
|
|
v.Mul2(&u1, &i) // V = U1*I (mag: 1)
|
|
x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4)
|
|
x3.Add(&rr) // X3 = r^2+X3 (mag: 5)
|
|
negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6)
|
|
y3.Mul2(&s1, &j).MulInt(2).Negate(2) // Y3 = -(2*S1*J) (mag: 3)
|
|
y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4)
|
|
z3.Add2(z1, z2).Square() // Z3 = (Z1+Z2)^2 (mag: 1)
|
|
z3.Add(z1z1.Add(&z2z2).Negate(2)) // Z3 = Z3-(Z1Z1+Z2Z2) (mag: 4)
|
|
z3.Mul(&h) // Z3 = Z3*H (mag: 1)
|
|
|
|
// Normalize the resulting field values to a magnitude of 1 as needed.
|
|
x3.Normalize()
|
|
y3.Normalize()
|
|
}
|
|
|
|
// addJacobian adds the passed Jacobian points (x1, y1, z1) and (x2, y2, z2)
|
|
// together and stores the result in (x3, y3, z3).
|
|
func (curve *KoblitzCurve) addJacobian(x1, y1, z1, x2, y2, z2, x3, y3, z3 *fieldVal) {
|
|
// A point at infinity is the identity according to the group law for
|
|
// elliptic curve cryptography. Thus, ∞ + P = P and P + ∞ = P.
|
|
if (x1.IsZero() && y1.IsZero()) || z1.IsZero() {
|
|
x3.Set(x2)
|
|
y3.Set(y2)
|
|
z3.Set(z2)
|
|
return
|
|
}
|
|
if (x2.IsZero() && y2.IsZero()) || z2.IsZero() {
|
|
x3.Set(x1)
|
|
y3.Set(y1)
|
|
z3.Set(z1)
|
|
return
|
|
}
|
|
|
|
// Faster point addition can be achieved when certain assumptions are
|
|
// met. For example, when both points have the same z value, arithmetic
|
|
// on the z values can be avoided. This section thus checks for these
|
|
// conditions and calls an appropriate add function which is accelerated
|
|
// by using those assumptions.
|
|
z1.Normalize()
|
|
z2.Normalize()
|
|
isZ1One := z1.Equals(fieldOne)
|
|
isZ2One := z2.Equals(fieldOne)
|
|
switch {
|
|
case isZ1One && isZ2One:
|
|
curve.addZ1AndZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3)
|
|
return
|
|
case z1.Equals(z2):
|
|
curve.addZ1EqualsZ2(x1, y1, z1, x2, y2, x3, y3, z3)
|
|
return
|
|
case isZ2One:
|
|
curve.addZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3)
|
|
return
|
|
}
|
|
|
|
// None of the above assumptions are true, so fall back to generic
|
|
// point addition.
|
|
curve.addGeneric(x1, y1, z1, x2, y2, z2, x3, y3, z3)
|
|
}
|
|
|
|
// Add returns the sum of (x1,y1) and (x2,y2). Part of the elliptic.Curve
|
|
// interface.
|
|
func (curve *KoblitzCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
|
|
// A point at infinity is the identity according to the group law for
|
|
// elliptic curve cryptography. Thus, ∞ + P = P and P + ∞ = P.
|
|
if x1.Sign() == 0 && y1.Sign() == 0 {
|
|
return x2, y2
|
|
}
|
|
if x2.Sign() == 0 && y2.Sign() == 0 {
|
|
return x1, y1
|
|
}
|
|
|
|
// Convert the affine coordinates from big integers to field values
|
|
// and do the point addition in Jacobian projective space.
|
|
fx1, fy1 := curve.bigAffineToField(x1, y1)
|
|
fx2, fy2 := curve.bigAffineToField(x2, y2)
|
|
fx3, fy3, fz3 := new(fieldVal), new(fieldVal), new(fieldVal)
|
|
fOne := new(fieldVal).SetInt(1)
|
|
curve.addJacobian(fx1, fy1, fOne, fx2, fy2, fOne, fx3, fy3, fz3)
|
|
|
|
// Convert the Jacobian coordinate field values back to affine big
|
|
// integers.
|
|
return curve.fieldJacobianToBigAffine(fx3, fy3, fz3)
|
|
}
|
|
|
|
// doubleZ1EqualsOne performs point doubling on the passed Jacobian point
|
|
// when the point is already known to have a z value of 1 and stores
|
|
// the result in (x3, y3, z3). That is to say (x3, y3, z3) = 2*(x1, y1, 1). It
|
|
// performs faster point doubling than the generic routine since less arithmetic
|
|
// is needed due to the ability to avoid multiplication by the z value.
|
|
func (curve *KoblitzCurve) doubleZ1EqualsOne(x1, y1, x3, y3, z3 *fieldVal) {
|
|
// This function uses the assumptions that z1 is 1, thus the point
|
|
// doubling formulas reduce to:
|
|
//
|
|
// X3 = (3*X1^2)^2 - 8*X1*Y1^2
|
|
// Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4
|
|
// Z3 = 2*Y1
|
|
//
|
|
// To compute the above efficiently, this implementation splits the
|
|
// equation into intermediate elements which are used to minimize the
|
|
// number of field multiplications in favor of field squarings which
|
|
// are roughly 35% faster than field multiplications with the current
|
|
// implementation at the time this was written.
|
|
//
|
|
// This uses a slightly modified version of the method shown at:
|
|
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-mdbl-2007-bl
|
|
//
|
|
// In particular it performs the calculations using the following:
|
|
// A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C)
|
|
// E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C
|
|
// Z3 = 2*Y1
|
|
//
|
|
// This results in a cost of 1 field multiplication, 5 field squarings,
|
|
// 6 field additions, and 5 integer multiplications.
|
|
var a, b, c, d, e, f fieldVal
|
|
z3.Set(y1).MulInt(2) // Z3 = 2*Y1 (mag: 2)
|
|
a.SquareVal(x1) // A = X1^2 (mag: 1)
|
|
b.SquareVal(y1) // B = Y1^2 (mag: 1)
|
|
c.SquareVal(&b) // C = B^2 (mag: 1)
|
|
b.Add(x1).Square() // B = (X1+B)^2 (mag: 1)
|
|
d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3)
|
|
d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8)
|
|
e.Set(&a).MulInt(3) // E = 3*A (mag: 3)
|
|
f.SquareVal(&e) // F = E^2 (mag: 1)
|
|
x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17)
|
|
x3.Add(&f) // X3 = F+X3 (mag: 18)
|
|
f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1)
|
|
y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9)
|
|
y3.Add(f.Mul(&e)) // Y3 = E*F+Y3 (mag: 10)
|
|
|
|
// Normalize the field values back to a magnitude of 1.
|
|
x3.Normalize()
|
|
y3.Normalize()
|
|
z3.Normalize()
|
|
}
|
|
|
|
// doubleGeneric performs point doubling on the passed Jacobian point without
|
|
// any assumptions about the z value and stores the result in (x3, y3, z3).
|
|
// That is to say (x3, y3, z3) = 2*(x1, y1, z1). It is the slowest of the point
|
|
// doubling routines due to requiring the most arithmetic.
|
|
func (cuve *KoblitzCurve) doubleGeneric(x1, y1, z1, x3, y3, z3 *fieldVal) {
|
|
// Point doubling formula for Jacobian coordinates for the secp256k1
|
|
// curve:
|
|
// X3 = (3*X1^2)^2 - 8*X1*Y1^2
|
|
// Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4
|
|
// Z3 = 2*Y1*Z1
|
|
//
|
|
// To compute the above efficiently, this implementation splits the
|
|
// equation into intermediate elements which are used to minimize the
|
|
// number of field multiplications in favor of field squarings which
|
|
// are roughly 35% faster than field multiplications with the current
|
|
// implementation at the time this was written.
|
|
//
|
|
// This uses a slightly modified version of the method shown at:
|
|
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
|
|
//
|
|
// In particular it performs the calculations using the following:
|
|
// A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C)
|
|
// E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C
|
|
// Z3 = 2*Y1*Z1
|
|
//
|
|
// This results in a cost of 1 field multiplication, 5 field squarings,
|
|
// 6 field additions, and 5 integer multiplications.
|
|
var a, b, c, d, e, f fieldVal
|
|
z3.Mul2(y1, z1).MulInt(2) // Z3 = 2*Y1*Z1 (mag: 2)
|
|
a.SquareVal(x1) // A = X1^2 (mag: 1)
|
|
b.SquareVal(y1) // B = Y1^2 (mag: 1)
|
|
c.SquareVal(&b) // C = B^2 (mag: 1)
|
|
b.Add(x1).Square() // B = (X1+B)^2 (mag: 1)
|
|
d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3)
|
|
d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8)
|
|
e.Set(&a).MulInt(3) // E = 3*A (mag: 3)
|
|
f.SquareVal(&e) // F = E^2 (mag: 1)
|
|
x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17)
|
|
x3.Add(&f) // X3 = F+X3 (mag: 18)
|
|
f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1)
|
|
y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9)
|
|
y3.Add(f.Mul(&e)) // Y3 = E*F+Y3 (mag: 10)
|
|
|
|
// Normalize the field values back to a magnitude of 1.
|
|
x3.Normalize()
|
|
y3.Normalize()
|
|
z3.Normalize()
|
|
}
|
|
|
|
// doubleJacobian doubles the passed Jacobian point (x1, y1, z1) and stores the
|
|
// result in (x3, y3, z3).
|
|
func (curve *KoblitzCurve) doubleJacobian(x1, y1, z1, x3, y3, z3 *fieldVal) {
|
|
// Doubling a point at infinity is still infinity.
|
|
if y1.IsZero() || z1.IsZero() {
|
|
x3.SetInt(0)
|
|
y3.SetInt(0)
|
|
z3.SetInt(0)
|
|
return
|
|
}
|
|
|
|
// Slightly faster point doubling can be achieved when the z value is 1
|
|
// by avoiding the multiplication on the z value. This section calls
|
|
// a point doubling function which is accelerated by using that
|
|
// assumption when possible.
|
|
if z1.Normalize().Equals(fieldOne) {
|
|
curve.doubleZ1EqualsOne(x1, y1, x3, y3, z3)
|
|
return
|
|
}
|
|
|
|
// Fall back to generic point doubling which works with arbitrary z
|
|
// values.
|
|
curve.doubleGeneric(x1, y1, z1, x3, y3, z3)
|
|
}
|
|
|
|
// Double returns 2*(x1,y1). Part of the elliptic.Curve interface.
|
|
func (curve *KoblitzCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
|
|
if y1.Sign() == 0 {
|
|
return new(big.Int), new(big.Int)
|
|
}
|
|
|
|
// Convert the affine coordinates from big integers to field values
|
|
// and do the point doubling in Jacobian projective space.
|
|
fx1, fy1 := curve.bigAffineToField(x1, y1)
|
|
fx3, fy3, fz3 := new(fieldVal), new(fieldVal), new(fieldVal)
|
|
fOne := new(fieldVal).SetInt(1)
|
|
curve.doubleJacobian(fx1, fy1, fOne, fx3, fy3, fz3)
|
|
|
|
// Convert the Jacobian coordinate field values back to affine big
|
|
// integers.
|
|
return curve.fieldJacobianToBigAffine(fx3, fy3, fz3)
|
|
}
|
|
|
|
// ScalarMult returns k*(Bx, By) where k is a big endian integer.
|
|
// Part of the elliptic.Curve interface.
|
|
func (curve *KoblitzCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
|
|
// This uses the left to right binary method for point multiplication:
|
|
|
|
// Point Q = ∞ (point at infinity).
|
|
qx, qy, qz := new(fieldVal), new(fieldVal), new(fieldVal)
|
|
|
|
// Point P = the point to multiply the scalar with.
|
|
px, py := curve.bigAffineToField(Bx, By)
|
|
pz := new(fieldVal).SetInt(1)
|
|
|
|
// Double and add as necessary depending on the bits set in the scalar.
|
|
for _, byteVal := range k {
|
|
for bitNum := 0; bitNum < 8; bitNum++ {
|
|
// Q = 2*Q
|
|
curve.doubleJacobian(qx, qy, qz, qx, qy, qz)
|
|
if byteVal&0x80 == 0x80 {
|
|
// Q = Q + P
|
|
curve.addJacobian(qx, qy, qz, px, py, pz, qx,
|
|
qy, qz)
|
|
}
|
|
byteVal <<= 1
|
|
}
|
|
}
|
|
|
|
// Convert the Jacobian coordinate field values back to affine big.Ints.
|
|
return curve.fieldJacobianToBigAffine(qx, qy, qz)
|
|
}
|
|
|
|
// ScalarBaseMult returns k*G where G is the base point of the group and k is a
|
|
// big endian integer.
|
|
// Part of the elliptic.Curve interface.
|
|
func (curve *KoblitzCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
|
|
return curve.ScalarMult(curve.Gx, curve.Gy, k)
|
|
}
|
|
|
|
// QPlus1Div4 returns the Q+1/4 constant for the curve for use in calculating
|
|
// square roots via exponention.
|
|
func (curve *KoblitzCurve) QPlus1Div4() *big.Int {
|
|
return curve.q
|
|
}
|
|
|
|
// Curve parameters taken from: http://www.secg.org/collateral/sec2_final.pdf
|
|
var initonce sync.Once
|
|
var secp256k1 KoblitzCurve
|
|
|
|
func initAll() {
|
|
initS256()
|
|
}
|
|
|
|
func initS256() {
|
|
// See [SECG] section 2.7.1
|
|
secp256k1.CurveParams = new(elliptic.CurveParams)
|
|
secp256k1.P, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F", 16)
|
|
secp256k1.N, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", 16)
|
|
secp256k1.B, _ = new(big.Int).SetString("0000000000000000000000000000000000000000000000000000000000000007", 16)
|
|
secp256k1.Gx, _ = new(big.Int).SetString("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798", 16)
|
|
secp256k1.Gy, _ = new(big.Int).SetString("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8", 16)
|
|
secp256k1.BitSize = 256
|
|
secp256k1.H = 1
|
|
secp256k1.q = new(big.Int).Div(new(big.Int).Add(secp256k1.P,
|
|
big.NewInt(1)), big.NewInt(4))
|
|
}
|
|
|
|
// S256 returns a Curve which implements secp256k1.
|
|
func S256() *KoblitzCurve {
|
|
initonce.Do(initAll)
|
|
return &secp256k1
|
|
}
|