mirror of
https://github.com/btcsuite/btcd.git
synced 2025-01-19 05:33:36 +01:00
fdfa07b0be
Putting the test code in the same package makes it easier for forks since they don't have to change the import paths as much and it also gets rid of the need for internal_test.go to bridge. Also, remove the exception from the lint checks about returning the unexported type since it is no longer required.
856 lines
31 KiB
Go
856 lines
31 KiB
Go
// Copyright 2011 The Go Authors. All rights reserved.
|
|
// Copyright 2011 ThePiachu. All rights reserved.
|
|
// Copyright 2013-2016 The btcsuite developers
|
|
// Use of this source code is governed by an ISC
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package btcec
|
|
|
|
import (
|
|
"crypto/rand"
|
|
"crypto/sha1"
|
|
"encoding/hex"
|
|
"fmt"
|
|
"math/big"
|
|
"testing"
|
|
)
|
|
|
|
// isJacobianOnS256Curve returns boolean if the point (x,y,z) is on the
|
|
// secp256k1 curve.
|
|
func isJacobianOnS256Curve(x, y, z *fieldVal) bool {
|
|
// Elliptic curve equation for secp256k1 is: y^2 = x^3 + 7
|
|
// In Jacobian coordinates, Y = y/z^3 and X = x/z^2
|
|
// Thus:
|
|
// (y/z^3)^2 = (x/z^2)^3 + 7
|
|
// y^2/z^6 = x^3/z^6 + 7
|
|
// y^2 = x^3 + 7*z^6
|
|
var y2, z2, x3, result fieldVal
|
|
y2.SquareVal(y).Normalize()
|
|
z2.SquareVal(z)
|
|
x3.SquareVal(x).Mul(x)
|
|
result.SquareVal(&z2).Mul(&z2).MulInt(7).Add(&x3).Normalize()
|
|
return y2.Equals(&result)
|
|
}
|
|
|
|
// TestAddJacobian tests addition of points projected in Jacobian coordinates.
|
|
func TestAddJacobian(t *testing.T) {
|
|
tests := []struct {
|
|
x1, y1, z1 string // Coordinates (in hex) of first point to add
|
|
x2, y2, z2 string // Coordinates (in hex) of second point to add
|
|
x3, y3, z3 string // Coordinates (in hex) of expected point
|
|
}{
|
|
// Addition with a point at infinity (left hand side).
|
|
// ∞ + P = P
|
|
{
|
|
"0",
|
|
"0",
|
|
"0",
|
|
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
|
|
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
|
|
"1",
|
|
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
|
|
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
|
|
"1",
|
|
},
|
|
// Addition with a point at infinity (right hand side).
|
|
// P + ∞ = P
|
|
{
|
|
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
|
|
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
|
|
"1",
|
|
"0",
|
|
"0",
|
|
"0",
|
|
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
|
|
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
|
|
"1",
|
|
},
|
|
|
|
// Addition with z1=z2=1 different x values.
|
|
{
|
|
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
|
|
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
|
|
"1",
|
|
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
|
|
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
|
|
"1",
|
|
"0cfbc7da1e569b334460788faae0286e68b3af7379d5504efc25e4dba16e46a6",
|
|
"e205f79361bbe0346b037b4010985dbf4f9e1e955e7d0d14aca876bfa79aad87",
|
|
"44a5646b446e3877a648d6d381370d9ef55a83b666ebce9df1b1d7d65b817b2f",
|
|
},
|
|
// Addition with z1=z2=1 same x opposite y.
|
|
// P(x, y, z) + P(x, -y, z) = infinity
|
|
{
|
|
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
|
|
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
|
|
"1",
|
|
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
|
|
"f48e156428cf0276dc092da5856e182288d7569f97934a56fe44be60f0d359fd",
|
|
"1",
|
|
"0",
|
|
"0",
|
|
"0",
|
|
},
|
|
// Addition with z1=z2=1 same point.
|
|
// P(x, y, z) + P(x, y, z) = 2P
|
|
{
|
|
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
|
|
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
|
|
"1",
|
|
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
|
|
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
|
|
"1",
|
|
"ec9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee64f87c50c27",
|
|
"b082b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd0755c8f2a",
|
|
"16e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c1e594464",
|
|
},
|
|
|
|
// Addition with z1=z2 (!=1) different x values.
|
|
{
|
|
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
|
|
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
|
|
"2",
|
|
"5d2fe112c21891d440f65a98473cb626111f8a234d2cd82f22172e369f002147",
|
|
"98e3386a0a622a35c4561ffb32308d8e1c6758e10ebb1b4ebd3d04b4eb0ecbe8",
|
|
"2",
|
|
"cfbc7da1e569b334460788faae0286e68b3af7379d5504efc25e4dba16e46a60",
|
|
"817de4d86ef80d1ac0ded00426176fd3e787a5579f43452b2a1db021e6ac3778",
|
|
"129591ad11b8e1de99235b4e04dc367bd56a0ed99baf3a77c6c75f5a6e05f08d",
|
|
},
|
|
// Addition with z1=z2 (!=1) same x opposite y.
|
|
// P(x, y, z) + P(x, -y, z) = infinity
|
|
{
|
|
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
|
|
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
|
|
"2",
|
|
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
|
|
"a470ab21467813b6e0496d2c2b70c11446bab4fcbc9a52b7f225f30e869aea9f",
|
|
"2",
|
|
"0",
|
|
"0",
|
|
"0",
|
|
},
|
|
// Addition with z1=z2 (!=1) same point.
|
|
// P(x, y, z) + P(x, y, z) = 2P
|
|
{
|
|
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
|
|
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
|
|
"2",
|
|
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
|
|
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
|
|
"2",
|
|
"9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee65073c50fabac",
|
|
"2b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd125dc91cb988",
|
|
"6e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c2e5944a11",
|
|
},
|
|
|
|
// Addition with z1!=z2 and z2=1 different x values.
|
|
{
|
|
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
|
|
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
|
|
"2",
|
|
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
|
|
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
|
|
"1",
|
|
"3ef1f68795a6ccd1181e23eab80a1b9a2cebdcde755413bf097936eb5b91b4f3",
|
|
"0bef26c377c068d606f6802130bb7e9f3c3d2abcfa1a295950ed81133561cb04",
|
|
"252b235a2371c3bd3246b69c09b86cf7aad41db3375e74ef8d8ebeb4dc0be11a",
|
|
},
|
|
// Addition with z1!=z2 and z2=1 same x opposite y.
|
|
// P(x, y, z) + P(x, -y, z) = infinity
|
|
{
|
|
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
|
|
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
|
|
"2",
|
|
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
|
|
"f48e156428cf0276dc092da5856e182288d7569f97934a56fe44be60f0d359fd",
|
|
"1",
|
|
"0",
|
|
"0",
|
|
"0",
|
|
},
|
|
// Addition with z1!=z2 and z2=1 same point.
|
|
// P(x, y, z) + P(x, y, z) = 2P
|
|
{
|
|
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
|
|
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
|
|
"2",
|
|
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
|
|
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
|
|
"1",
|
|
"9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee65073c50fabac",
|
|
"2b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd125dc91cb988",
|
|
"6e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c2e5944a11",
|
|
},
|
|
|
|
// Addition with z1!=z2 and z2!=1 different x values.
|
|
// P(x, y, z) + P(x, y, z) = 2P
|
|
{
|
|
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
|
|
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
|
|
"2",
|
|
"91abba6a34b7481d922a4bd6a04899d5a686f6cf6da4e66a0cb427fb25c04bd4",
|
|
"03fede65e30b4e7576a2abefc963ddbf9fdccbf791b77c29beadefe49951f7d1",
|
|
"3",
|
|
"3f07081927fd3f6dadd4476614c89a09eba7f57c1c6c3b01fa2d64eac1eef31e",
|
|
"949166e04ebc7fd95a9d77e5dfd88d1492ecffd189792e3944eb2b765e09e031",
|
|
"eb8cba81bcffa4f44d75427506737e1f045f21e6d6f65543ee0e1d163540c931",
|
|
}, // Addition with z1!=z2 and z2!=1 same x opposite y.
|
|
// P(x, y, z) + P(x, -y, z) = infinity
|
|
{
|
|
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
|
|
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
|
|
"2",
|
|
"dcc3768780c74a0325e2851edad0dc8a566fa61a9e7fc4a34d13dcb509f99bc7",
|
|
"cafc41904dd5428934f7d075129c8ba46eb622d4fc88d72cd1401452664add18",
|
|
"3",
|
|
"0",
|
|
"0",
|
|
"0",
|
|
},
|
|
// Addition with z1!=z2 and z2!=1 same point.
|
|
// P(x, y, z) + P(x, y, z) = 2P
|
|
{
|
|
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
|
|
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
|
|
"2",
|
|
"dcc3768780c74a0325e2851edad0dc8a566fa61a9e7fc4a34d13dcb509f99bc7",
|
|
"3503be6fb22abd76cb082f8aed63745b9149dd2b037728d32ebfebac99b51f17",
|
|
"3",
|
|
"9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee65073c50fabac",
|
|
"2b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd125dc91cb988",
|
|
"6e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c2e5944a11",
|
|
},
|
|
}
|
|
|
|
t.Logf("Running %d tests", len(tests))
|
|
for i, test := range tests {
|
|
// Convert hex to field values.
|
|
x1 := new(fieldVal).SetHex(test.x1)
|
|
y1 := new(fieldVal).SetHex(test.y1)
|
|
z1 := new(fieldVal).SetHex(test.z1)
|
|
x2 := new(fieldVal).SetHex(test.x2)
|
|
y2 := new(fieldVal).SetHex(test.y2)
|
|
z2 := new(fieldVal).SetHex(test.z2)
|
|
x3 := new(fieldVal).SetHex(test.x3)
|
|
y3 := new(fieldVal).SetHex(test.y3)
|
|
z3 := new(fieldVal).SetHex(test.z3)
|
|
|
|
// Ensure the test data is using points that are actually on
|
|
// the curve (or the point at infinity).
|
|
if !z1.IsZero() && !isJacobianOnS256Curve(x1, y1, z1) {
|
|
t.Errorf("#%d first point is not on the curve -- "+
|
|
"invalid test data", i)
|
|
continue
|
|
}
|
|
if !z2.IsZero() && !isJacobianOnS256Curve(x2, y2, z2) {
|
|
t.Errorf("#%d second point is not on the curve -- "+
|
|
"invalid test data", i)
|
|
continue
|
|
}
|
|
if !z3.IsZero() && !isJacobianOnS256Curve(x3, y3, z3) {
|
|
t.Errorf("#%d expected point is not on the curve -- "+
|
|
"invalid test data", i)
|
|
continue
|
|
}
|
|
|
|
// Add the two points.
|
|
rx, ry, rz := new(fieldVal), new(fieldVal), new(fieldVal)
|
|
S256().addJacobian(x1, y1, z1, x2, y2, z2, rx, ry, rz)
|
|
|
|
// Ensure result matches expected.
|
|
if !rx.Equals(x3) || !ry.Equals(y3) || !rz.Equals(z3) {
|
|
t.Errorf("#%d wrong result\ngot: (%v, %v, %v)\n"+
|
|
"want: (%v, %v, %v)", i, rx, ry, rz, x3, y3, z3)
|
|
continue
|
|
}
|
|
}
|
|
}
|
|
|
|
// TestAddAffine tests addition of points in affine coordinates.
|
|
func TestAddAffine(t *testing.T) {
|
|
tests := []struct {
|
|
x1, y1 string // Coordinates (in hex) of first point to add
|
|
x2, y2 string // Coordinates (in hex) of second point to add
|
|
x3, y3 string // Coordinates (in hex) of expected point
|
|
}{
|
|
// Addition with a point at infinity (left hand side).
|
|
// ∞ + P = P
|
|
{
|
|
"0",
|
|
"0",
|
|
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
|
|
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
|
|
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
|
|
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
|
|
},
|
|
// Addition with a point at infinity (right hand side).
|
|
// P + ∞ = P
|
|
{
|
|
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
|
|
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
|
|
"0",
|
|
"0",
|
|
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
|
|
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
|
|
},
|
|
|
|
// Addition with different x values.
|
|
{
|
|
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
|
|
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
|
|
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
|
|
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
|
|
"fd5b88c21d3143518d522cd2796f3d726793c88b3e05636bc829448e053fed69",
|
|
"21cf4f6a5be5ff6380234c50424a970b1f7e718f5eb58f68198c108d642a137f",
|
|
},
|
|
// Addition with same x opposite y.
|
|
// P(x, y) + P(x, -y) = infinity
|
|
{
|
|
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
|
|
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
|
|
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
|
|
"f48e156428cf0276dc092da5856e182288d7569f97934a56fe44be60f0d359fd",
|
|
"0",
|
|
"0",
|
|
},
|
|
// Addition with same point.
|
|
// P(x, y) + P(x, y) = 2P
|
|
{
|
|
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
|
|
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
|
|
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
|
|
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
|
|
"59477d88ae64a104dbb8d31ec4ce2d91b2fe50fa628fb6a064e22582196b365b",
|
|
"938dc8c0f13d1e75c987cb1a220501bd614b0d3dd9eb5c639847e1240216e3b6",
|
|
},
|
|
}
|
|
|
|
t.Logf("Running %d tests", len(tests))
|
|
for i, test := range tests {
|
|
// Convert hex to field values.
|
|
x1, y1 := fromHex(test.x1), fromHex(test.y1)
|
|
x2, y2 := fromHex(test.x2), fromHex(test.y2)
|
|
x3, y3 := fromHex(test.x3), fromHex(test.y3)
|
|
|
|
// Ensure the test data is using points that are actually on
|
|
// the curve (or the point at infinity).
|
|
if !(x1.Sign() == 0 && y1.Sign() == 0) && !S256().IsOnCurve(x1, y1) {
|
|
t.Errorf("#%d first point is not on the curve -- "+
|
|
"invalid test data", i)
|
|
continue
|
|
}
|
|
if !(x2.Sign() == 0 && y2.Sign() == 0) && !S256().IsOnCurve(x2, y2) {
|
|
t.Errorf("#%d second point is not on the curve -- "+
|
|
"invalid test data", i)
|
|
continue
|
|
}
|
|
if !(x3.Sign() == 0 && y3.Sign() == 0) && !S256().IsOnCurve(x3, y3) {
|
|
t.Errorf("#%d expected point is not on the curve -- "+
|
|
"invalid test data", i)
|
|
continue
|
|
}
|
|
|
|
// Add the two points.
|
|
rx, ry := S256().Add(x1, y1, x2, y2)
|
|
|
|
// Ensure result matches expected.
|
|
if rx.Cmp(x3) != 00 || ry.Cmp(y3) != 0 {
|
|
t.Errorf("#%d wrong result\ngot: (%x, %x)\n"+
|
|
"want: (%x, %x)", i, rx, ry, x3, y3)
|
|
continue
|
|
}
|
|
}
|
|
}
|
|
|
|
// TestDoubleJacobian tests doubling of points projected in Jacobian
|
|
// coordinates.
|
|
func TestDoubleJacobian(t *testing.T) {
|
|
tests := []struct {
|
|
x1, y1, z1 string // Coordinates (in hex) of point to double
|
|
x3, y3, z3 string // Coordinates (in hex) of expected point
|
|
}{
|
|
// Doubling a point at infinity is still infinity.
|
|
{
|
|
"0",
|
|
"0",
|
|
"0",
|
|
"0",
|
|
"0",
|
|
"0",
|
|
},
|
|
// Doubling with z1=1.
|
|
{
|
|
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
|
|
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
|
|
"1",
|
|
"ec9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee64f87c50c27",
|
|
"b082b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd0755c8f2a",
|
|
"16e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c1e594464",
|
|
},
|
|
// Doubling with z1!=1.
|
|
{
|
|
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
|
|
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
|
|
"2",
|
|
"9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee65073c50fabac",
|
|
"2b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd125dc91cb988",
|
|
"6e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c2e5944a11",
|
|
},
|
|
}
|
|
|
|
t.Logf("Running %d tests", len(tests))
|
|
for i, test := range tests {
|
|
// Convert hex to field values.
|
|
x1 := new(fieldVal).SetHex(test.x1)
|
|
y1 := new(fieldVal).SetHex(test.y1)
|
|
z1 := new(fieldVal).SetHex(test.z1)
|
|
x3 := new(fieldVal).SetHex(test.x3)
|
|
y3 := new(fieldVal).SetHex(test.y3)
|
|
z3 := new(fieldVal).SetHex(test.z3)
|
|
|
|
// Ensure the test data is using points that are actually on
|
|
// the curve (or the point at infinity).
|
|
if !z1.IsZero() && !isJacobianOnS256Curve(x1, y1, z1) {
|
|
t.Errorf("#%d first point is not on the curve -- "+
|
|
"invalid test data", i)
|
|
continue
|
|
}
|
|
if !z3.IsZero() && !isJacobianOnS256Curve(x3, y3, z3) {
|
|
t.Errorf("#%d expected point is not on the curve -- "+
|
|
"invalid test data", i)
|
|
continue
|
|
}
|
|
|
|
// Double the point.
|
|
rx, ry, rz := new(fieldVal), new(fieldVal), new(fieldVal)
|
|
S256().doubleJacobian(x1, y1, z1, rx, ry, rz)
|
|
|
|
// Ensure result matches expected.
|
|
if !rx.Equals(x3) || !ry.Equals(y3) || !rz.Equals(z3) {
|
|
t.Errorf("#%d wrong result\ngot: (%v, %v, %v)\n"+
|
|
"want: (%v, %v, %v)", i, rx, ry, rz, x3, y3, z3)
|
|
continue
|
|
}
|
|
}
|
|
}
|
|
|
|
// TestDoubleAffine tests doubling of points in affine coordinates.
|
|
func TestDoubleAffine(t *testing.T) {
|
|
tests := []struct {
|
|
x1, y1 string // Coordinates (in hex) of point to double
|
|
x3, y3 string // Coordinates (in hex) of expected point
|
|
}{
|
|
// Doubling a point at infinity is still infinity.
|
|
// 2*∞ = ∞ (point at infinity)
|
|
|
|
{
|
|
"0",
|
|
"0",
|
|
"0",
|
|
"0",
|
|
},
|
|
|
|
// Random points.
|
|
{
|
|
"e41387ffd8baaeeb43c2faa44e141b19790e8ac1f7ff43d480dc132230536f86",
|
|
"1b88191d430f559896149c86cbcb703193105e3cf3213c0c3556399836a2b899",
|
|
"88da47a089d333371bd798c548ef7caae76e737c1980b452d367b3cfe3082c19",
|
|
"3b6f659b09a362821dfcfefdbfbc2e59b935ba081b6c249eb147b3c2100b1bc1",
|
|
},
|
|
{
|
|
"b3589b5d984f03ef7c80aeae444f919374799edf18d375cab10489a3009cff0c",
|
|
"c26cf343875b3630e15bccc61202815b5d8f1fd11308934a584a5babe69db36a",
|
|
"e193860172998751e527bb12563855602a227fc1f612523394da53b746bb2fb1",
|
|
"2bfcf13d2f5ab8bb5c611fab5ebbed3dc2f057062b39a335224c22f090c04789",
|
|
},
|
|
{
|
|
"2b31a40fbebe3440d43ac28dba23eee71c62762c3fe3dbd88b4ab82dc6a82340",
|
|
"9ba7deb02f5c010e217607fd49d58db78ec273371ea828b49891ce2fd74959a1",
|
|
"2c8d5ef0d343b1a1a48aa336078eadda8481cb048d9305dc4fdf7ee5f65973a2",
|
|
"bb4914ac729e26d3cd8f8dc8f702f3f4bb7e0e9c5ae43335f6e94c2de6c3dc95",
|
|
},
|
|
{
|
|
"61c64b760b51981fab54716d5078ab7dffc93730b1d1823477e27c51f6904c7a",
|
|
"ef6eb16ea1a36af69d7f66524c75a3a5e84c13be8fbc2e811e0563c5405e49bd",
|
|
"5f0dcdd2595f5ad83318a0f9da481039e36f135005420393e72dfca985b482f4",
|
|
"a01c849b0837065c1cb481b0932c441f49d1cab1b4b9f355c35173d93f110ae0",
|
|
},
|
|
}
|
|
|
|
t.Logf("Running %d tests", len(tests))
|
|
for i, test := range tests {
|
|
// Convert hex to field values.
|
|
x1, y1 := fromHex(test.x1), fromHex(test.y1)
|
|
x3, y3 := fromHex(test.x3), fromHex(test.y3)
|
|
|
|
// Ensure the test data is using points that are actually on
|
|
// the curve (or the point at infinity).
|
|
if !(x1.Sign() == 0 && y1.Sign() == 0) && !S256().IsOnCurve(x1, y1) {
|
|
t.Errorf("#%d first point is not on the curve -- "+
|
|
"invalid test data", i)
|
|
continue
|
|
}
|
|
if !(x3.Sign() == 0 && y3.Sign() == 0) && !S256().IsOnCurve(x3, y3) {
|
|
t.Errorf("#%d expected point is not on the curve -- "+
|
|
"invalid test data", i)
|
|
continue
|
|
}
|
|
|
|
// Double the point.
|
|
rx, ry := S256().Double(x1, y1)
|
|
|
|
// Ensure result matches expected.
|
|
if rx.Cmp(x3) != 00 || ry.Cmp(y3) != 0 {
|
|
t.Errorf("#%d wrong result\ngot: (%x, %x)\n"+
|
|
"want: (%x, %x)", i, rx, ry, x3, y3)
|
|
continue
|
|
}
|
|
}
|
|
}
|
|
|
|
func TestOnCurve(t *testing.T) {
|
|
s256 := S256()
|
|
if !s256.IsOnCurve(s256.Params().Gx, s256.Params().Gy) {
|
|
t.Errorf("FAIL S256")
|
|
}
|
|
}
|
|
|
|
type baseMultTest struct {
|
|
k string
|
|
x, y string
|
|
}
|
|
|
|
//TODO: add more test vectors
|
|
var s256BaseMultTests = []baseMultTest{
|
|
{
|
|
"AA5E28D6A97A2479A65527F7290311A3624D4CC0FA1578598EE3C2613BF99522",
|
|
"34F9460F0E4F08393D192B3C5133A6BA099AA0AD9FD54EBCCFACDFA239FF49C6",
|
|
"B71EA9BD730FD8923F6D25A7A91E7DD7728A960686CB5A901BB419E0F2CA232",
|
|
},
|
|
{
|
|
"7E2B897B8CEBC6361663AD410835639826D590F393D90A9538881735256DFAE3",
|
|
"D74BF844B0862475103D96A611CF2D898447E288D34B360BC885CB8CE7C00575",
|
|
"131C670D414C4546B88AC3FF664611B1C38CEB1C21D76369D7A7A0969D61D97D",
|
|
},
|
|
{
|
|
"6461E6DF0FE7DFD05329F41BF771B86578143D4DD1F7866FB4CA7E97C5FA945D",
|
|
"E8AECC370AEDD953483719A116711963CE201AC3EB21D3F3257BB48668C6A72F",
|
|
"C25CAF2F0EBA1DDB2F0F3F47866299EF907867B7D27E95B3873BF98397B24EE1",
|
|
},
|
|
{
|
|
"376A3A2CDCD12581EFFF13EE4AD44C4044B8A0524C42422A7E1E181E4DEECCEC",
|
|
"14890E61FCD4B0BD92E5B36C81372CA6FED471EF3AA60A3E415EE4FE987DABA1",
|
|
"297B858D9F752AB42D3BCA67EE0EB6DCD1C2B7B0DBE23397E66ADC272263F982",
|
|
},
|
|
{
|
|
"1B22644A7BE026548810C378D0B2994EEFA6D2B9881803CB02CEFF865287D1B9",
|
|
"F73C65EAD01C5126F28F442D087689BFA08E12763E0CEC1D35B01751FD735ED3",
|
|
"F449A8376906482A84ED01479BD18882B919C140D638307F0C0934BA12590BDE",
|
|
},
|
|
}
|
|
|
|
//TODO: test different curves as well?
|
|
func TestBaseMult(t *testing.T) {
|
|
s256 := S256()
|
|
for i, e := range s256BaseMultTests {
|
|
k, ok := new(big.Int).SetString(e.k, 16)
|
|
if !ok {
|
|
t.Errorf("%d: bad value for k: %s", i, e.k)
|
|
}
|
|
x, y := s256.ScalarBaseMult(k.Bytes())
|
|
if fmt.Sprintf("%X", x) != e.x || fmt.Sprintf("%X", y) != e.y {
|
|
t.Errorf("%d: bad output for k=%s: got (%X, %X), want (%s, %s)", i, e.k, x, y, e.x, e.y)
|
|
}
|
|
if testing.Short() && i > 5 {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
func TestBaseMultVerify(t *testing.T) {
|
|
s256 := S256()
|
|
for bytes := 1; bytes < 40; bytes++ {
|
|
for i := 0; i < 30; i++ {
|
|
data := make([]byte, bytes)
|
|
_, err := rand.Read(data)
|
|
if err != nil {
|
|
t.Errorf("failed to read random data for %d", i)
|
|
continue
|
|
}
|
|
x, y := s256.ScalarBaseMult(data)
|
|
xWant, yWant := s256.ScalarMult(s256.Gx, s256.Gy, data)
|
|
if x.Cmp(xWant) != 0 || y.Cmp(yWant) != 0 {
|
|
t.Errorf("%d: bad output for %X: got (%X, %X), want (%X, %X)", i, data, x, y, xWant, yWant)
|
|
}
|
|
if testing.Short() && i > 2 {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func TestScalarMult(t *testing.T) {
|
|
// Strategy for this test:
|
|
// Get a random exponent from the generator point at first
|
|
// This creates a new point which is used in the next iteration
|
|
// Use another random exponent on the new point.
|
|
// We use BaseMult to verify by multiplying the previous exponent
|
|
// and the new random exponent together (mod N)
|
|
s256 := S256()
|
|
x, y := s256.Gx, s256.Gy
|
|
exponent := big.NewInt(1)
|
|
for i := 0; i < 1024; i++ {
|
|
data := make([]byte, 32)
|
|
_, err := rand.Read(data)
|
|
if err != nil {
|
|
t.Fatalf("failed to read random data at %d", i)
|
|
break
|
|
}
|
|
x, y = s256.ScalarMult(x, y, data)
|
|
exponent.Mul(exponent, new(big.Int).SetBytes(data))
|
|
xWant, yWant := s256.ScalarBaseMult(exponent.Bytes())
|
|
if x.Cmp(xWant) != 0 || y.Cmp(yWant) != 0 {
|
|
t.Fatalf("%d: bad output for %X: got (%X, %X), want (%X, %X)", i, data, x, y, xWant, yWant)
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
// Test this curve's usage with the ecdsa package.
|
|
|
|
func testKeyGeneration(t *testing.T, c *KoblitzCurve, tag string) {
|
|
priv, err := NewPrivateKey(c)
|
|
if err != nil {
|
|
t.Errorf("%s: error: %s", tag, err)
|
|
return
|
|
}
|
|
if !c.IsOnCurve(priv.PublicKey.X, priv.PublicKey.Y) {
|
|
t.Errorf("%s: public key invalid: %s", tag, err)
|
|
}
|
|
}
|
|
|
|
func TestKeyGeneration(t *testing.T) {
|
|
testKeyGeneration(t, S256(), "S256")
|
|
}
|
|
|
|
func testSignAndVerify(t *testing.T, c *KoblitzCurve, tag string) {
|
|
priv, _ := NewPrivateKey(c)
|
|
pub := priv.PubKey()
|
|
|
|
hashed := []byte("testing")
|
|
sig, err := priv.Sign(hashed)
|
|
if err != nil {
|
|
t.Errorf("%s: error signing: %s", tag, err)
|
|
return
|
|
}
|
|
|
|
if !sig.Verify(hashed, pub) {
|
|
t.Errorf("%s: Verify failed", tag)
|
|
}
|
|
|
|
hashed[0] ^= 0xff
|
|
if sig.Verify(hashed, pub) {
|
|
t.Errorf("%s: Verify always works!", tag)
|
|
}
|
|
}
|
|
|
|
func TestSignAndVerify(t *testing.T) {
|
|
testSignAndVerify(t, S256(), "S256")
|
|
}
|
|
|
|
func TestNAF(t *testing.T) {
|
|
negOne := big.NewInt(-1)
|
|
one := big.NewInt(1)
|
|
two := big.NewInt(2)
|
|
for i := 0; i < 1024; i++ {
|
|
data := make([]byte, 32)
|
|
_, err := rand.Read(data)
|
|
if err != nil {
|
|
t.Fatalf("failed to read random data at %d", i)
|
|
break
|
|
}
|
|
nafPos, nafNeg := NAF(data)
|
|
want := new(big.Int).SetBytes(data)
|
|
got := big.NewInt(0)
|
|
// Check that the NAF representation comes up with the right number
|
|
for i := 0; i < len(nafPos); i++ {
|
|
bytePos := nafPos[i]
|
|
byteNeg := nafNeg[i]
|
|
for j := 7; j >= 0; j-- {
|
|
got.Mul(got, two)
|
|
if bytePos&0x80 == 0x80 {
|
|
got.Add(got, one)
|
|
} else if byteNeg&0x80 == 0x80 {
|
|
got.Add(got, negOne)
|
|
}
|
|
bytePos <<= 1
|
|
byteNeg <<= 1
|
|
}
|
|
}
|
|
if got.Cmp(want) != 0 {
|
|
t.Errorf("%d: Failed NAF got %X want %X", i, got, want)
|
|
}
|
|
}
|
|
}
|
|
|
|
// These test vectors were taken from
|
|
// http://csrc.nist.gov/groups/STM/cavp/documents/dss/ecdsatestvectors.zip
|
|
var testVectors = []struct {
|
|
msg string
|
|
Qx, Qy string
|
|
r, s string
|
|
ok bool
|
|
}{
|
|
/*
|
|
* All of these tests are disabled since they are for P224, not sec256k1.
|
|
* they are left here as an example of test vectors for when some *real*
|
|
* vectors may be found.
|
|
* - oga@conformal.com
|
|
{
|
|
"09626b45493672e48f3d1226a3aff3201960e577d33a7f72c7eb055302db8fe8ed61685dd036b554942a5737cd1512cdf811ee0c00e6dd2f08c69f08643be396e85dafda664801e772cdb7396868ac47b172245b41986aa2648cb77fbbfa562581be06651355a0c4b090f9d17d8f0ab6cced4e0c9d386cf465a516630f0231bd",
|
|
"9504b5b82d97a264d8b3735e0568decabc4b6ca275bc53cbadfc1c40",
|
|
"03426f80e477603b10dee670939623e3da91a94267fc4e51726009ed",
|
|
"81d3ac609f9575d742028dd496450a58a60eea2dcf8b9842994916e1",
|
|
"96a8c5f382c992e8f30ccce9af120b067ec1d74678fa8445232f75a5",
|
|
false,
|
|
},
|
|
{
|
|
"96b2b6536f6df29be8567a72528aceeaccbaa66c66c534f3868ca9778b02faadb182e4ed34662e73b9d52ecbe9dc8e875fc05033c493108b380689ebf47e5b062e6a0cdb3dd34ce5fe347d92768d72f7b9b377c20aea927043b509c078ed2467d7113405d2ddd458811e6faf41c403a2a239240180f1430a6f4330df5d77de37",
|
|
"851e3100368a22478a0029353045ae40d1d8202ef4d6533cfdddafd8",
|
|
"205302ac69457dd345e86465afa72ee8c74ca97e2b0b999aec1f10c2",
|
|
"4450c2d38b697e990721aa2dbb56578d32b4f5aeb3b9072baa955ee0",
|
|
"e26d4b589166f7b4ba4b1c8fce823fa47aad22f8c9c396b8c6526e12",
|
|
false,
|
|
},
|
|
{
|
|
"86778dbb4a068a01047a8d245d632f636c11d2ad350740b36fad90428b454ad0f120cb558d12ea5c8a23db595d87543d06d1ef489263d01ee529871eb68737efdb8ff85bc7787b61514bed85b7e01d6be209e0a4eb0db5c8df58a5c5bf706d76cb2bdf7800208639e05b89517155d11688236e6a47ed37d8e5a2b1e0adea338e",
|
|
"ad5bda09d319a717c1721acd6688d17020b31b47eef1edea57ceeffc",
|
|
"c8ce98e181770a7c9418c73c63d01494b8b80a41098c5ea50692c984",
|
|
"de5558c257ab4134e52c19d8db3b224a1899cbd08cc508ce8721d5e9",
|
|
"745db7af5a477e5046705c0a5eff1f52cb94a79d481f0c5a5e108ecd",
|
|
true,
|
|
},
|
|
{
|
|
"4bc6ef1958556686dab1e39c3700054a304cbd8f5928603dcd97fafd1f29e69394679b638f71c9344ce6a535d104803d22119f57b5f9477e253817a52afa9bfbc9811d6cc8c8be6b6566c6ef48b439bbb532abe30627548c598867f3861ba0b154dc1c3deca06eb28df8efd28258554b5179883a36fbb1eecf4f93ee19d41e3d",
|
|
"cc5eea2edf964018bdc0504a3793e4d2145142caa09a72ac5fb8d3e8",
|
|
"a48d78ae5d08aa725342773975a00d4219cf7a8029bb8cf3c17c374a",
|
|
"67b861344b4e416d4094472faf4272f6d54a497177fbc5f9ef292836",
|
|
"1d54f3fcdad795bf3b23408ecbac3e1321d1d66f2e4e3d05f41f7020",
|
|
false,
|
|
},
|
|
{
|
|
"bb658732acbf3147729959eb7318a2058308b2739ec58907dd5b11cfa3ecf69a1752b7b7d806fe00ec402d18f96039f0b78dbb90a59c4414fb33f1f4e02e4089de4122cd93df5263a95be4d7084e2126493892816e6a5b4ed123cb705bf930c8f67af0fb4514d5769232a9b008a803af225160ce63f675bd4872c4c97b146e5e",
|
|
"6234c936e27bf141fc7534bfc0a7eedc657f91308203f1dcbd642855",
|
|
"27983d87ca785ef4892c3591ef4a944b1deb125dd58bd351034a6f84",
|
|
"e94e05b42d01d0b965ffdd6c3a97a36a771e8ea71003de76c4ecb13f",
|
|
"1dc6464ffeefbd7872a081a5926e9fc3e66d123f1784340ba17737e9",
|
|
false,
|
|
},
|
|
{
|
|
"7c00be9123bfa2c4290be1d8bc2942c7f897d9a5b7917e3aabd97ef1aab890f148400a89abd554d19bec9d8ed911ce57b22fbcf6d30ca2115f13ce0a3f569a23bad39ee645f624c49c60dcfc11e7d2be24de9c905596d8f23624d63dc46591d1f740e46f982bfae453f107e80db23545782be23ce43708245896fc54e1ee5c43",
|
|
"9f3f037282aaf14d4772edffff331bbdda845c3f65780498cde334f1",
|
|
"8308ee5a16e3bcb721b6bc30000a0419bc1aaedd761be7f658334066",
|
|
"6381d7804a8808e3c17901e4d283b89449096a8fba993388fa11dc54",
|
|
"8e858f6b5b253686a86b757bad23658cda53115ac565abca4e3d9f57",
|
|
false,
|
|
},
|
|
{
|
|
"cffc122a44840dc705bb37130069921be313d8bde0b66201aebc48add028ca131914ef2e705d6bedd19dc6cf9459bbb0f27cdfe3c50483808ffcdaffbeaa5f062e097180f07a40ef4ab6ed03fe07ed6bcfb8afeb42c97eafa2e8a8df469de07317c5e1494c41547478eff4d8c7d9f0f484ad90fedf6e1c35ee68fa73f1691601",
|
|
"a03b88a10d930002c7b17ca6af2fd3e88fa000edf787dc594f8d4fd4",
|
|
"e0cf7acd6ddc758e64847fe4df9915ebda2f67cdd5ec979aa57421f5",
|
|
"387b84dcf37dc343c7d2c5beb82f0bf8bd894b395a7b894565d296c1",
|
|
"4adc12ce7d20a89ce3925e10491c731b15ddb3f339610857a21b53b4",
|
|
false,
|
|
},
|
|
{
|
|
"26e0e0cafd85b43d16255908ccfd1f061c680df75aba3081246b337495783052ba06c60f4a486c1591a4048bae11b4d7fec4f161d80bdc9a7b79d23e44433ed625eab280521a37f23dd3e1bdc5c6a6cfaa026f3c45cf703e76dab57add93fe844dd4cda67dc3bddd01f9152579e49df60969b10f09ce9372fdd806b0c7301866",
|
|
"9a8983c42f2b5a87c37a00458b5970320d247f0c8a88536440173f7d",
|
|
"15e489ec6355351361900299088cfe8359f04fe0cab78dde952be80c",
|
|
"929a21baa173d438ec9f28d6a585a2f9abcfc0a4300898668e476dc0",
|
|
"59a853f046da8318de77ff43f26fe95a92ee296fa3f7e56ce086c872",
|
|
true,
|
|
},
|
|
{
|
|
"1078eac124f48ae4f807e946971d0de3db3748dd349b14cca5c942560fb25401b2252744f18ad5e455d2d97ed5ae745f55ff509c6c8e64606afe17809affa855c4c4cdcaf6b69ab4846aa5624ed0687541aee6f2224d929685736c6a23906d974d3c257abce1a3fb8db5951b89ecb0cda92b5207d93f6618fd0f893c32cf6a6e",
|
|
"d6e55820bb62c2be97650302d59d667a411956138306bd566e5c3c2b",
|
|
"631ab0d64eaf28a71b9cbd27a7a88682a2167cee6251c44e3810894f",
|
|
"65af72bc7721eb71c2298a0eb4eed3cec96a737cc49125706308b129",
|
|
"bd5a987c78e2d51598dbd9c34a9035b0069c580edefdacee17ad892a",
|
|
false,
|
|
},
|
|
{
|
|
"919deb1fdd831c23481dfdb2475dcbe325b04c34f82561ced3d2df0b3d749b36e255c4928973769d46de8b95f162b53cd666cad9ae145e7fcfba97919f703d864efc11eac5f260a5d920d780c52899e5d76f8fe66936ff82130761231f536e6a3d59792f784902c469aa897aabf9a0678f93446610d56d5e0981e4c8a563556b",
|
|
"269b455b1024eb92d860a420f143ac1286b8cce43031562ae7664574",
|
|
"baeb6ca274a77c44a0247e5eb12ca72bdd9a698b3f3ae69c9f1aaa57",
|
|
"cb4ec2160f04613eb0dfe4608486091a25eb12aa4dec1afe91cfb008",
|
|
"40b01d8cd06589481574f958b98ca08ade9d2a8fe31024375c01bb40",
|
|
false,
|
|
},
|
|
{
|
|
"6e012361250dacf6166d2dd1aa7be544c3206a9d43464b3fcd90f3f8cf48d08ec099b59ba6fe7d9bdcfaf244120aed1695d8be32d1b1cd6f143982ab945d635fb48a7c76831c0460851a3d62b7209c30cd9c2abdbe3d2a5282a9fcde1a6f418dd23c409bc351896b9b34d7d3a1a63bbaf3d677e612d4a80fa14829386a64b33f",
|
|
"6d2d695efc6b43b13c14111f2109608f1020e3e03b5e21cfdbc82fcd",
|
|
"26a4859296b7e360b69cf40be7bd97ceaffa3d07743c8489fc47ca1b",
|
|
"9a8cb5f2fdc288b7183c5b32d8e546fc2ed1ca4285eeae00c8b572ad",
|
|
"8c623f357b5d0057b10cdb1a1593dab57cda7bdec9cf868157a79b97",
|
|
true,
|
|
},
|
|
{
|
|
"bf6bd7356a52b234fe24d25557200971fc803836f6fec3cade9642b13a8e7af10ab48b749de76aada9d8927f9b12f75a2c383ca7358e2566c4bb4f156fce1fd4e87ef8c8d2b6b1bdd351460feb22cdca0437ac10ca5e0abbbce9834483af20e4835386f8b1c96daaa41554ceee56730aac04f23a5c765812efa746051f396566",
|
|
"14250131b2599939cf2d6bc491be80ddfe7ad9de644387ee67de2d40",
|
|
"b5dc473b5d014cd504022043c475d3f93c319a8bdcb7262d9e741803",
|
|
"4f21642f2201278a95339a80f75cc91f8321fcb3c9462562f6cbf145",
|
|
"452a5f816ea1f75dee4fd514fa91a0d6a43622981966c59a1b371ff8",
|
|
false,
|
|
},
|
|
{
|
|
"0eb7f4032f90f0bd3cf9473d6d9525d264d14c031a10acd31a053443ed5fe919d5ac35e0be77813071b4062f0b5fdf58ad5f637b76b0b305aec18f82441b6e607b44cdf6e0e3c7c57f24e6fd565e39430af4a6b1d979821ed0175fa03e3125506847654d7e1ae904ce1190ae38dc5919e257bdac2db142a6e7cd4da6c2e83770",
|
|
"d1f342b7790a1667370a1840255ac5bbbdc66f0bc00ae977d99260ac",
|
|
"76416cabae2de9a1000b4646338b774baabfa3db4673790771220cdb",
|
|
"bc85e3fc143d19a7271b2f9e1c04b86146073f3fab4dda1c3b1f35ca",
|
|
"9a5c70ede3c48d5f43307a0c2a4871934424a3303b815df4bb0f128e",
|
|
false,
|
|
},
|
|
{
|
|
"5cc25348a05d85e56d4b03cec450128727bc537c66ec3a9fb613c151033b5e86878632249cba83adcefc6c1e35dcd31702929c3b57871cda5c18d1cf8f9650a25b917efaed56032e43b6fc398509f0d2997306d8f26675f3a8683b79ce17128e006aa0903b39eeb2f1001be65de0520115e6f919de902b32c38d691a69c58c92",
|
|
"7e49a7abf16a792e4c7bbc4d251820a2abd22d9f2fc252a7bf59c9a6",
|
|
"44236a8fb4791c228c26637c28ae59503a2f450d4cfb0dc42aa843b9",
|
|
"084461b4050285a1a85b2113be76a17878d849e6bc489f4d84f15cd8",
|
|
"079b5bddcc4d45de8dbdfd39f69817c7e5afa454a894d03ee1eaaac3",
|
|
false,
|
|
},
|
|
{
|
|
"1951533ce33afb58935e39e363d8497a8dd0442018fd96dff167b3b23d7206a3ee182a3194765df4768a3284e23b8696c199b4686e670d60c9d782f08794a4bccc05cffffbd1a12acd9eb1cfa01f7ebe124da66ecff4599ea7720c3be4bb7285daa1a86ebf53b042bd23208d468c1b3aa87381f8e1ad63e2b4c2ba5efcf05845",
|
|
"31945d12ebaf4d81f02be2b1768ed80784bf35cf5e2ff53438c11493",
|
|
"a62bebffac987e3b9d3ec451eb64c462cdf7b4aa0b1bbb131ceaa0a4",
|
|
"bc3c32b19e42b710bca5c6aaa128564da3ddb2726b25f33603d2af3c",
|
|
"ed1a719cc0c507edc5239d76fe50e2306c145ad252bd481da04180c0",
|
|
false,
|
|
},
|
|
*/
|
|
}
|
|
|
|
func TestVectors(t *testing.T) {
|
|
sha := sha1.New()
|
|
|
|
for i, test := range testVectors {
|
|
pub := PublicKey{
|
|
Curve: S256(),
|
|
X: fromHex(test.Qx),
|
|
Y: fromHex(test.Qy),
|
|
}
|
|
msg, _ := hex.DecodeString(test.msg)
|
|
sha.Reset()
|
|
sha.Write(msg)
|
|
hashed := sha.Sum(nil)
|
|
sig := Signature{R: fromHex(test.r), S: fromHex(test.s)}
|
|
if verified := sig.Verify(hashed, &pub); verified != test.ok {
|
|
t.Errorf("%d: bad result %v instead of %v", i, verified,
|
|
test.ok)
|
|
}
|
|
if testing.Short() {
|
|
break
|
|
}
|
|
}
|
|
}
|