btcd/blockchain/chainview.go
Calvin Kim ba5407615d multi: Run gofmt on the entire repository
The doc formatting changes introduced in the recent go version is
increasing the diff for all of the new commits.  Formatting it all in
this commit will help the readability of future PRs by reducing the
diff.
2023-06-21 22:31:09 +09:00

430 lines
14 KiB
Go

// Copyright (c) 2017 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package blockchain
import (
"sync"
)
// approxNodesPerWeek is an approximation of the number of new blocks there are
// in a week on average.
const approxNodesPerWeek = 6 * 24 * 7
// log2FloorMasks defines the masks to use when quickly calculating
// floor(log2(x)) in a constant log2(32) = 5 steps, where x is a uint32, using
// shifts. They are derived from (2^(2^x) - 1) * (2^(2^x)), for x in 4..0.
var log2FloorMasks = []uint32{0xffff0000, 0xff00, 0xf0, 0xc, 0x2}
// fastLog2Floor calculates and returns floor(log2(x)) in a constant 5 steps.
func fastLog2Floor(n uint32) uint8 {
rv := uint8(0)
exponent := uint8(16)
for i := 0; i < 5; i++ {
if n&log2FloorMasks[i] != 0 {
rv += exponent
n >>= exponent
}
exponent >>= 1
}
return rv
}
// chainView provides a flat view of a specific branch of the block chain from
// its tip back to the genesis block and provides various convenience functions
// for comparing chains.
//
// For example, assume a block chain with a side chain as depicted below:
//
// genesis -> 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> 8
// \-> 4a -> 5a -> 6a
//
// The chain view for the branch ending in 6a consists of:
//
// genesis -> 1 -> 2 -> 3 -> 4a -> 5a -> 6a
type chainView struct {
mtx sync.Mutex
nodes []*blockNode
}
// newChainView returns a new chain view for the given tip block node. Passing
// nil as the tip will result in a chain view that is not initialized. The tip
// can be updated at any time via the setTip function.
func newChainView(tip *blockNode) *chainView {
// The mutex is intentionally not held since this is a constructor.
var c chainView
c.setTip(tip)
return &c
}
// genesis returns the genesis block for the chain view. This only differs from
// the exported version in that it is up to the caller to ensure the lock is
// held.
//
// This function MUST be called with the view mutex locked (for reads).
func (c *chainView) genesis() *blockNode {
if len(c.nodes) == 0 {
return nil
}
return c.nodes[0]
}
// Genesis returns the genesis block for the chain view.
//
// This function is safe for concurrent access.
func (c *chainView) Genesis() *blockNode {
c.mtx.Lock()
genesis := c.genesis()
c.mtx.Unlock()
return genesis
}
// tip returns the current tip block node for the chain view. It will return
// nil if there is no tip. This only differs from the exported version in that
// it is up to the caller to ensure the lock is held.
//
// This function MUST be called with the view mutex locked (for reads).
func (c *chainView) tip() *blockNode {
if len(c.nodes) == 0 {
return nil
}
return c.nodes[len(c.nodes)-1]
}
// Tip returns the current tip block node for the chain view. It will return
// nil if there is no tip.
//
// This function is safe for concurrent access.
func (c *chainView) Tip() *blockNode {
c.mtx.Lock()
tip := c.tip()
c.mtx.Unlock()
return tip
}
// setTip sets the chain view to use the provided block node as the current tip
// and ensures the view is consistent by populating it with the nodes obtained
// by walking backwards all the way to genesis block as necessary. Further
// calls will only perform the minimum work needed, so switching between chain
// tips is efficient. This only differs from the exported version in that it is
// up to the caller to ensure the lock is held.
//
// This function MUST be called with the view mutex locked (for writes).
func (c *chainView) setTip(node *blockNode) {
if node == nil {
// Keep the backing array around for potential future use.
c.nodes = c.nodes[:0]
return
}
// Create or resize the slice that will hold the block nodes to the
// provided tip height. When creating the slice, it is created with
// some additional capacity for the underlying array as append would do
// in order to reduce overhead when extending the chain later. As long
// as the underlying array already has enough capacity, simply expand or
// contract the slice accordingly. The additional capacity is chosen
// such that the array should only have to be extended about once a
// week.
needed := node.height + 1
if int32(cap(c.nodes)) < needed {
nodes := make([]*blockNode, needed, needed+approxNodesPerWeek)
copy(nodes, c.nodes)
c.nodes = nodes
} else {
prevLen := int32(len(c.nodes))
c.nodes = c.nodes[0:needed]
for i := prevLen; i < needed; i++ {
c.nodes[i] = nil
}
}
for node != nil && c.nodes[node.height] != node {
c.nodes[node.height] = node
node = node.parent
}
}
// SetTip sets the chain view to use the provided block node as the current tip
// and ensures the view is consistent by populating it with the nodes obtained
// by walking backwards all the way to genesis block as necessary. Further
// calls will only perform the minimum work needed, so switching between chain
// tips is efficient.
//
// This function is safe for concurrent access.
func (c *chainView) SetTip(node *blockNode) {
c.mtx.Lock()
c.setTip(node)
c.mtx.Unlock()
}
// height returns the height of the tip of the chain view. It will return -1 if
// there is no tip (which only happens if the chain view has not been
// initialized). This only differs from the exported version in that it is up
// to the caller to ensure the lock is held.
//
// This function MUST be called with the view mutex locked (for reads).
func (c *chainView) height() int32 {
return int32(len(c.nodes) - 1)
}
// Height returns the height of the tip of the chain view. It will return -1 if
// there is no tip (which only happens if the chain view has not been
// initialized).
//
// This function is safe for concurrent access.
func (c *chainView) Height() int32 {
c.mtx.Lock()
height := c.height()
c.mtx.Unlock()
return height
}
// nodeByHeight returns the block node at the specified height. Nil will be
// returned if the height does not exist. This only differs from the exported
// version in that it is up to the caller to ensure the lock is held.
//
// This function MUST be called with the view mutex locked (for reads).
func (c *chainView) nodeByHeight(height int32) *blockNode {
if height < 0 || height >= int32(len(c.nodes)) {
return nil
}
return c.nodes[height]
}
// NodeByHeight returns the block node at the specified height. Nil will be
// returned if the height does not exist.
//
// This function is safe for concurrent access.
func (c *chainView) NodeByHeight(height int32) *blockNode {
c.mtx.Lock()
node := c.nodeByHeight(height)
c.mtx.Unlock()
return node
}
// Equals returns whether or not two chain views are the same. Uninitialized
// views (tip set to nil) are considered equal.
//
// This function is safe for concurrent access.
func (c *chainView) Equals(other *chainView) bool {
c.mtx.Lock()
other.mtx.Lock()
equals := len(c.nodes) == len(other.nodes) && c.tip() == other.tip()
other.mtx.Unlock()
c.mtx.Unlock()
return equals
}
// contains returns whether or not the chain view contains the passed block
// node. This only differs from the exported version in that it is up to the
// caller to ensure the lock is held.
//
// This function MUST be called with the view mutex locked (for reads).
func (c *chainView) contains(node *blockNode) bool {
return c.nodeByHeight(node.height) == node
}
// Contains returns whether or not the chain view contains the passed block
// node.
//
// This function is safe for concurrent access.
func (c *chainView) Contains(node *blockNode) bool {
c.mtx.Lock()
contains := c.contains(node)
c.mtx.Unlock()
return contains
}
// next returns the successor to the provided node for the chain view. It will
// return nil if there is no successor or the provided node is not part of the
// view. This only differs from the exported version in that it is up to the
// caller to ensure the lock is held.
//
// See the comment on the exported function for more details.
//
// This function MUST be called with the view mutex locked (for reads).
func (c *chainView) next(node *blockNode) *blockNode {
if node == nil || !c.contains(node) {
return nil
}
return c.nodeByHeight(node.height + 1)
}
// Next returns the successor to the provided node for the chain view. It will
// return nil if there is no successfor or the provided node is not part of the
// view.
//
// For example, assume a block chain with a side chain as depicted below:
//
// genesis -> 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> 8
// \-> 4a -> 5a -> 6a
//
// Further, assume the view is for the longer chain depicted above. That is to
// say it consists of:
//
// genesis -> 1 -> 2 -> 3 -> 4 -> 5 -> 6 -> 7 -> 8
//
// Invoking this function with block node 5 would return block node 6 while
// invoking it with block node 5a would return nil since that node is not part
// of the view.
//
// This function is safe for concurrent access.
func (c *chainView) Next(node *blockNode) *blockNode {
c.mtx.Lock()
next := c.next(node)
c.mtx.Unlock()
return next
}
// findFork returns the final common block between the provided node and the
// the chain view. It will return nil if there is no common block. This only
// differs from the exported version in that it is up to the caller to ensure
// the lock is held.
//
// See the exported FindFork comments for more details.
//
// This function MUST be called with the view mutex locked (for reads).
func (c *chainView) findFork(node *blockNode) *blockNode {
// No fork point for node that doesn't exist.
if node == nil {
return nil
}
// When the height of the passed node is higher than the height of the
// tip of the current chain view, walk backwards through the nodes of
// the other chain until the heights match (or there or no more nodes in
// which case there is no common node between the two).
//
// NOTE: This isn't strictly necessary as the following section will
// find the node as well, however, it is more efficient to avoid the
// contains check since it is already known that the common node can't
// possibly be past the end of the current chain view. It also allows
// this code to take advantage of any potential future optimizations to
// the Ancestor function such as using an O(log n) skip list.
chainHeight := c.height()
if node.height > chainHeight {
node = node.Ancestor(chainHeight)
}
// Walk the other chain backwards as long as the current one does not
// contain the node or there are no more nodes in which case there is no
// common node between the two.
for node != nil && !c.contains(node) {
node = node.parent
}
return node
}
// FindFork returns the final common block between the provided node and the
// the chain view. It will return nil if there is no common block.
//
// For example, assume a block chain with a side chain as depicted below:
//
// genesis -> 1 -> 2 -> ... -> 5 -> 6 -> 7 -> 8
// \-> 6a -> 7a
//
// Further, assume the view is for the longer chain depicted above. That is to
// say it consists of:
//
// genesis -> 1 -> 2 -> ... -> 5 -> 6 -> 7 -> 8.
//
// Invoking this function with block node 7a would return block node 5 while
// invoking it with block node 7 would return itself since it is already part of
// the branch formed by the view.
//
// This function is safe for concurrent access.
func (c *chainView) FindFork(node *blockNode) *blockNode {
c.mtx.Lock()
fork := c.findFork(node)
c.mtx.Unlock()
return fork
}
// blockLocator returns a block locator for the passed block node. The passed
// node can be nil in which case the block locator for the current tip
// associated with the view will be returned. This only differs from the
// exported version in that it is up to the caller to ensure the lock is held.
//
// See the exported BlockLocator function comments for more details.
//
// This function MUST be called with the view mutex locked (for reads).
func (c *chainView) blockLocator(node *blockNode) BlockLocator {
// Use the current tip if requested.
if node == nil {
node = c.tip()
}
if node == nil {
return nil
}
// Calculate the max number of entries that will ultimately be in the
// block locator. See the description of the algorithm for how these
// numbers are derived.
var maxEntries uint8
if node.height <= 12 {
maxEntries = uint8(node.height) + 1
} else {
// Requested hash itself + previous 10 entries + genesis block.
// Then floor(log2(height-10)) entries for the skip portion.
adjustedHeight := uint32(node.height) - 10
maxEntries = 12 + fastLog2Floor(adjustedHeight)
}
locator := make(BlockLocator, 0, maxEntries)
step := int32(1)
for node != nil {
locator = append(locator, &node.hash)
// Nothing more to add once the genesis block has been added.
if node.height == 0 {
break
}
// Calculate height of previous node to include ensuring the
// final node is the genesis block.
height := node.height - step
if height < 0 {
height = 0
}
// When the node is in the current chain view, all of its
// ancestors must be too, so use a much faster O(1) lookup in
// that case. Otherwise, fall back to walking backwards through
// the nodes of the other chain to the correct ancestor.
if c.contains(node) {
node = c.nodes[height]
} else {
node = node.Ancestor(height)
}
// Once 11 entries have been included, start doubling the
// distance between included hashes.
if len(locator) > 10 {
step *= 2
}
}
return locator
}
// BlockLocator returns a block locator for the passed block node. The passed
// node can be nil in which case the block locator for the current tip
// associated with the view will be returned.
//
// See the BlockLocator type for details on the algorithm used to create a block
// locator.
//
// This function is safe for concurrent access.
func (c *chainView) BlockLocator(node *blockNode) BlockLocator {
c.mtx.Lock()
locator := c.blockLocator(node)
c.mtx.Unlock()
return locator
}