mirror of
https://github.com/btcsuite/btcd.git
synced 2024-11-19 09:50:08 +01:00
caac0f821a
In this commit, we update all the btcutil imports to point to the new sub-module. In the same commit, we also modify the recently added `btcutil/go.mod` file as we need to continue pointing to the _old_ version of btcd, until we merge this PR and push a new tag.
3279 lines
100 KiB
Go
3279 lines
100 KiB
Go
// Copyright (c) 2013-2017 The btcsuite developers
|
|
// Copyright (c) 2015-2018 The Decred developers
|
|
// Use of this source code is governed by an ISC
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package main
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto/rand"
|
|
"crypto/tls"
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"math"
|
|
"net"
|
|
"runtime"
|
|
"sort"
|
|
"strconv"
|
|
"strings"
|
|
"sync"
|
|
"sync/atomic"
|
|
"time"
|
|
|
|
"github.com/btcsuite/btcd/addrmgr"
|
|
"github.com/btcsuite/btcd/blockchain"
|
|
"github.com/btcsuite/btcd/blockchain/indexers"
|
|
"github.com/btcsuite/btcd/chaincfg"
|
|
"github.com/btcsuite/btcd/chaincfg/chainhash"
|
|
"github.com/btcsuite/btcd/connmgr"
|
|
"github.com/btcsuite/btcd/database"
|
|
"github.com/btcsuite/btcd/mempool"
|
|
"github.com/btcsuite/btcd/mining"
|
|
"github.com/btcsuite/btcd/mining/cpuminer"
|
|
"github.com/btcsuite/btcd/netsync"
|
|
"github.com/btcsuite/btcd/peer"
|
|
"github.com/btcsuite/btcd/txscript"
|
|
"github.com/btcsuite/btcd/wire"
|
|
"github.com/btcsuite/btcd/btcutil"
|
|
"github.com/btcsuite/btcd/btcutil/bloom"
|
|
)
|
|
|
|
const (
|
|
// defaultServices describes the default services that are supported by
|
|
// the server.
|
|
defaultServices = wire.SFNodeNetwork | wire.SFNodeBloom |
|
|
wire.SFNodeWitness | wire.SFNodeCF
|
|
|
|
// defaultRequiredServices describes the default services that are
|
|
// required to be supported by outbound peers.
|
|
defaultRequiredServices = wire.SFNodeNetwork
|
|
|
|
// defaultTargetOutbound is the default number of outbound peers to target.
|
|
defaultTargetOutbound = 8
|
|
|
|
// connectionRetryInterval is the base amount of time to wait in between
|
|
// retries when connecting to persistent peers. It is adjusted by the
|
|
// number of retries such that there is a retry backoff.
|
|
connectionRetryInterval = time.Second * 5
|
|
)
|
|
|
|
var (
|
|
// userAgentName is the user agent name and is used to help identify
|
|
// ourselves to other bitcoin peers.
|
|
userAgentName = "btcd"
|
|
|
|
// userAgentVersion is the user agent version and is used to help
|
|
// identify ourselves to other bitcoin peers.
|
|
userAgentVersion = fmt.Sprintf("%d.%d.%d", appMajor, appMinor, appPatch)
|
|
)
|
|
|
|
// zeroHash is the zero value hash (all zeros). It is defined as a convenience.
|
|
var zeroHash chainhash.Hash
|
|
|
|
// onionAddr implements the net.Addr interface and represents a tor address.
|
|
type onionAddr struct {
|
|
addr string
|
|
}
|
|
|
|
// String returns the onion address.
|
|
//
|
|
// This is part of the net.Addr interface.
|
|
func (oa *onionAddr) String() string {
|
|
return oa.addr
|
|
}
|
|
|
|
// Network returns "onion".
|
|
//
|
|
// This is part of the net.Addr interface.
|
|
func (oa *onionAddr) Network() string {
|
|
return "onion"
|
|
}
|
|
|
|
// Ensure onionAddr implements the net.Addr interface.
|
|
var _ net.Addr = (*onionAddr)(nil)
|
|
|
|
// simpleAddr implements the net.Addr interface with two struct fields
|
|
type simpleAddr struct {
|
|
net, addr string
|
|
}
|
|
|
|
// String returns the address.
|
|
//
|
|
// This is part of the net.Addr interface.
|
|
func (a simpleAddr) String() string {
|
|
return a.addr
|
|
}
|
|
|
|
// Network returns the network.
|
|
//
|
|
// This is part of the net.Addr interface.
|
|
func (a simpleAddr) Network() string {
|
|
return a.net
|
|
}
|
|
|
|
// Ensure simpleAddr implements the net.Addr interface.
|
|
var _ net.Addr = simpleAddr{}
|
|
|
|
// broadcastMsg provides the ability to house a bitcoin message to be broadcast
|
|
// to all connected peers except specified excluded peers.
|
|
type broadcastMsg struct {
|
|
message wire.Message
|
|
excludePeers []*serverPeer
|
|
}
|
|
|
|
// broadcastInventoryAdd is a type used to declare that the InvVect it contains
|
|
// needs to be added to the rebroadcast map
|
|
type broadcastInventoryAdd relayMsg
|
|
|
|
// broadcastInventoryDel is a type used to declare that the InvVect it contains
|
|
// needs to be removed from the rebroadcast map
|
|
type broadcastInventoryDel *wire.InvVect
|
|
|
|
// relayMsg packages an inventory vector along with the newly discovered
|
|
// inventory so the relay has access to that information.
|
|
type relayMsg struct {
|
|
invVect *wire.InvVect
|
|
data interface{}
|
|
}
|
|
|
|
// updatePeerHeightsMsg is a message sent from the blockmanager to the server
|
|
// after a new block has been accepted. The purpose of the message is to update
|
|
// the heights of peers that were known to announce the block before we
|
|
// connected it to the main chain or recognized it as an orphan. With these
|
|
// updates, peer heights will be kept up to date, allowing for fresh data when
|
|
// selecting sync peer candidacy.
|
|
type updatePeerHeightsMsg struct {
|
|
newHash *chainhash.Hash
|
|
newHeight int32
|
|
originPeer *peer.Peer
|
|
}
|
|
|
|
// peerState maintains state of inbound, persistent, outbound peers as well
|
|
// as banned peers and outbound groups.
|
|
type peerState struct {
|
|
inboundPeers map[int32]*serverPeer
|
|
outboundPeers map[int32]*serverPeer
|
|
persistentPeers map[int32]*serverPeer
|
|
banned map[string]time.Time
|
|
outboundGroups map[string]int
|
|
}
|
|
|
|
// Count returns the count of all known peers.
|
|
func (ps *peerState) Count() int {
|
|
return len(ps.inboundPeers) + len(ps.outboundPeers) +
|
|
len(ps.persistentPeers)
|
|
}
|
|
|
|
// forAllOutboundPeers is a helper function that runs closure on all outbound
|
|
// peers known to peerState.
|
|
func (ps *peerState) forAllOutboundPeers(closure func(sp *serverPeer)) {
|
|
for _, e := range ps.outboundPeers {
|
|
closure(e)
|
|
}
|
|
for _, e := range ps.persistentPeers {
|
|
closure(e)
|
|
}
|
|
}
|
|
|
|
// forAllPeers is a helper function that runs closure on all peers known to
|
|
// peerState.
|
|
func (ps *peerState) forAllPeers(closure func(sp *serverPeer)) {
|
|
for _, e := range ps.inboundPeers {
|
|
closure(e)
|
|
}
|
|
ps.forAllOutboundPeers(closure)
|
|
}
|
|
|
|
// cfHeaderKV is a tuple of a filter header and its associated block hash. The
|
|
// struct is used to cache cfcheckpt responses.
|
|
type cfHeaderKV struct {
|
|
blockHash chainhash.Hash
|
|
filterHeader chainhash.Hash
|
|
}
|
|
|
|
// server provides a bitcoin server for handling communications to and from
|
|
// bitcoin peers.
|
|
type server struct {
|
|
// The following variables must only be used atomically.
|
|
// Putting the uint64s first makes them 64-bit aligned for 32-bit systems.
|
|
bytesReceived uint64 // Total bytes received from all peers since start.
|
|
bytesSent uint64 // Total bytes sent by all peers since start.
|
|
started int32
|
|
shutdown int32
|
|
shutdownSched int32
|
|
startupTime int64
|
|
|
|
chainParams *chaincfg.Params
|
|
addrManager *addrmgr.AddrManager
|
|
connManager *connmgr.ConnManager
|
|
sigCache *txscript.SigCache
|
|
hashCache *txscript.HashCache
|
|
rpcServer *rpcServer
|
|
syncManager *netsync.SyncManager
|
|
chain *blockchain.BlockChain
|
|
txMemPool *mempool.TxPool
|
|
cpuMiner *cpuminer.CPUMiner
|
|
modifyRebroadcastInv chan interface{}
|
|
newPeers chan *serverPeer
|
|
donePeers chan *serverPeer
|
|
banPeers chan *serverPeer
|
|
query chan interface{}
|
|
relayInv chan relayMsg
|
|
broadcast chan broadcastMsg
|
|
peerHeightsUpdate chan updatePeerHeightsMsg
|
|
wg sync.WaitGroup
|
|
quit chan struct{}
|
|
nat NAT
|
|
db database.DB
|
|
timeSource blockchain.MedianTimeSource
|
|
services wire.ServiceFlag
|
|
|
|
// The following fields are used for optional indexes. They will be nil
|
|
// if the associated index is not enabled. These fields are set during
|
|
// initial creation of the server and never changed afterwards, so they
|
|
// do not need to be protected for concurrent access.
|
|
txIndex *indexers.TxIndex
|
|
addrIndex *indexers.AddrIndex
|
|
cfIndex *indexers.CfIndex
|
|
|
|
// The fee estimator keeps track of how long transactions are left in
|
|
// the mempool before they are mined into blocks.
|
|
feeEstimator *mempool.FeeEstimator
|
|
|
|
// cfCheckptCaches stores a cached slice of filter headers for cfcheckpt
|
|
// messages for each filter type.
|
|
cfCheckptCaches map[wire.FilterType][]cfHeaderKV
|
|
cfCheckptCachesMtx sync.RWMutex
|
|
|
|
// agentBlacklist is a list of blacklisted substrings by which to filter
|
|
// user agents.
|
|
agentBlacklist []string
|
|
|
|
// agentWhitelist is a list of whitelisted user agent substrings, no
|
|
// whitelisting will be applied if the list is empty or nil.
|
|
agentWhitelist []string
|
|
}
|
|
|
|
// serverPeer extends the peer to maintain state shared by the server and
|
|
// the blockmanager.
|
|
type serverPeer struct {
|
|
// The following variables must only be used atomically
|
|
feeFilter int64
|
|
|
|
*peer.Peer
|
|
|
|
connReq *connmgr.ConnReq
|
|
server *server
|
|
persistent bool
|
|
continueHash *chainhash.Hash
|
|
relayMtx sync.Mutex
|
|
disableRelayTx bool
|
|
sentAddrs bool
|
|
isWhitelisted bool
|
|
filter *bloom.Filter
|
|
addressesMtx sync.RWMutex
|
|
knownAddresses map[string]struct{}
|
|
banScore connmgr.DynamicBanScore
|
|
quit chan struct{}
|
|
// The following chans are used to sync blockmanager and server.
|
|
txProcessed chan struct{}
|
|
blockProcessed chan struct{}
|
|
}
|
|
|
|
// newServerPeer returns a new serverPeer instance. The peer needs to be set by
|
|
// the caller.
|
|
func newServerPeer(s *server, isPersistent bool) *serverPeer {
|
|
return &serverPeer{
|
|
server: s,
|
|
persistent: isPersistent,
|
|
filter: bloom.LoadFilter(nil),
|
|
knownAddresses: make(map[string]struct{}),
|
|
quit: make(chan struct{}),
|
|
txProcessed: make(chan struct{}, 1),
|
|
blockProcessed: make(chan struct{}, 1),
|
|
}
|
|
}
|
|
|
|
// newestBlock returns the current best block hash and height using the format
|
|
// required by the configuration for the peer package.
|
|
func (sp *serverPeer) newestBlock() (*chainhash.Hash, int32, error) {
|
|
best := sp.server.chain.BestSnapshot()
|
|
return &best.Hash, best.Height, nil
|
|
}
|
|
|
|
// addKnownAddresses adds the given addresses to the set of known addresses to
|
|
// the peer to prevent sending duplicate addresses.
|
|
func (sp *serverPeer) addKnownAddresses(addresses []*wire.NetAddress) {
|
|
sp.addressesMtx.Lock()
|
|
for _, na := range addresses {
|
|
sp.knownAddresses[addrmgr.NetAddressKey(na)] = struct{}{}
|
|
}
|
|
sp.addressesMtx.Unlock()
|
|
}
|
|
|
|
// addressKnown true if the given address is already known to the peer.
|
|
func (sp *serverPeer) addressKnown(na *wire.NetAddress) bool {
|
|
sp.addressesMtx.RLock()
|
|
_, exists := sp.knownAddresses[addrmgr.NetAddressKey(na)]
|
|
sp.addressesMtx.RUnlock()
|
|
return exists
|
|
}
|
|
|
|
// setDisableRelayTx toggles relaying of transactions for the given peer.
|
|
// It is safe for concurrent access.
|
|
func (sp *serverPeer) setDisableRelayTx(disable bool) {
|
|
sp.relayMtx.Lock()
|
|
sp.disableRelayTx = disable
|
|
sp.relayMtx.Unlock()
|
|
}
|
|
|
|
// relayTxDisabled returns whether or not relaying of transactions for the given
|
|
// peer is disabled.
|
|
// It is safe for concurrent access.
|
|
func (sp *serverPeer) relayTxDisabled() bool {
|
|
sp.relayMtx.Lock()
|
|
isDisabled := sp.disableRelayTx
|
|
sp.relayMtx.Unlock()
|
|
|
|
return isDisabled
|
|
}
|
|
|
|
// pushAddrMsg sends an addr message to the connected peer using the provided
|
|
// addresses.
|
|
func (sp *serverPeer) pushAddrMsg(addresses []*wire.NetAddress) {
|
|
// Filter addresses already known to the peer.
|
|
addrs := make([]*wire.NetAddress, 0, len(addresses))
|
|
for _, addr := range addresses {
|
|
if !sp.addressKnown(addr) {
|
|
addrs = append(addrs, addr)
|
|
}
|
|
}
|
|
known, err := sp.PushAddrMsg(addrs)
|
|
if err != nil {
|
|
peerLog.Errorf("Can't push address message to %s: %v", sp.Peer, err)
|
|
sp.Disconnect()
|
|
return
|
|
}
|
|
sp.addKnownAddresses(known)
|
|
}
|
|
|
|
// addBanScore increases the persistent and decaying ban score fields by the
|
|
// values passed as parameters. If the resulting score exceeds half of the ban
|
|
// threshold, a warning is logged including the reason provided. Further, if
|
|
// the score is above the ban threshold, the peer will be banned and
|
|
// disconnected.
|
|
func (sp *serverPeer) addBanScore(persistent, transient uint32, reason string) bool {
|
|
// No warning is logged and no score is calculated if banning is disabled.
|
|
if cfg.DisableBanning {
|
|
return false
|
|
}
|
|
if sp.isWhitelisted {
|
|
peerLog.Debugf("Misbehaving whitelisted peer %s: %s", sp, reason)
|
|
return false
|
|
}
|
|
|
|
warnThreshold := cfg.BanThreshold >> 1
|
|
if transient == 0 && persistent == 0 {
|
|
// The score is not being increased, but a warning message is still
|
|
// logged if the score is above the warn threshold.
|
|
score := sp.banScore.Int()
|
|
if score > warnThreshold {
|
|
peerLog.Warnf("Misbehaving peer %s: %s -- ban score is %d, "+
|
|
"it was not increased this time", sp, reason, score)
|
|
}
|
|
return false
|
|
}
|
|
score := sp.banScore.Increase(persistent, transient)
|
|
if score > warnThreshold {
|
|
peerLog.Warnf("Misbehaving peer %s: %s -- ban score increased to %d",
|
|
sp, reason, score)
|
|
if score > cfg.BanThreshold {
|
|
peerLog.Warnf("Misbehaving peer %s -- banning and disconnecting",
|
|
sp)
|
|
sp.server.BanPeer(sp)
|
|
sp.Disconnect()
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// hasServices returns whether or not the provided advertised service flags have
|
|
// all of the provided desired service flags set.
|
|
func hasServices(advertised, desired wire.ServiceFlag) bool {
|
|
return advertised&desired == desired
|
|
}
|
|
|
|
// OnVersion is invoked when a peer receives a version bitcoin message
|
|
// and is used to negotiate the protocol version details as well as kick start
|
|
// the communications.
|
|
func (sp *serverPeer) OnVersion(_ *peer.Peer, msg *wire.MsgVersion) *wire.MsgReject {
|
|
// Update the address manager with the advertised services for outbound
|
|
// connections in case they have changed. This is not done for inbound
|
|
// connections to help prevent malicious behavior and is skipped when
|
|
// running on the simulation test network since it is only intended to
|
|
// connect to specified peers and actively avoids advertising and
|
|
// connecting to discovered peers.
|
|
//
|
|
// NOTE: This is done before rejecting peers that are too old to ensure
|
|
// it is updated regardless in the case a new minimum protocol version is
|
|
// enforced and the remote node has not upgraded yet.
|
|
isInbound := sp.Inbound()
|
|
remoteAddr := sp.NA()
|
|
addrManager := sp.server.addrManager
|
|
if !cfg.SimNet && !isInbound {
|
|
addrManager.SetServices(remoteAddr, msg.Services)
|
|
}
|
|
|
|
// Ignore peers that have a protcol version that is too old. The peer
|
|
// negotiation logic will disconnect it after this callback returns.
|
|
if msg.ProtocolVersion < int32(peer.MinAcceptableProtocolVersion) {
|
|
return nil
|
|
}
|
|
|
|
// Reject outbound peers that are not full nodes.
|
|
wantServices := wire.SFNodeNetwork
|
|
if !isInbound && !hasServices(msg.Services, wantServices) {
|
|
missingServices := wantServices & ^msg.Services
|
|
srvrLog.Debugf("Rejecting peer %s with services %v due to not "+
|
|
"providing desired services %v", sp.Peer, msg.Services,
|
|
missingServices)
|
|
reason := fmt.Sprintf("required services %#x not offered",
|
|
uint64(missingServices))
|
|
return wire.NewMsgReject(msg.Command(), wire.RejectNonstandard, reason)
|
|
}
|
|
|
|
if !cfg.SimNet && !isInbound {
|
|
// After soft-fork activation, only make outbound
|
|
// connection to peers if they flag that they're segwit
|
|
// enabled.
|
|
chain := sp.server.chain
|
|
segwitActive, err := chain.IsDeploymentActive(chaincfg.DeploymentSegwit)
|
|
if err != nil {
|
|
peerLog.Errorf("Unable to query for segwit soft-fork state: %v",
|
|
err)
|
|
return nil
|
|
}
|
|
|
|
if segwitActive && !sp.IsWitnessEnabled() {
|
|
peerLog.Infof("Disconnecting non-segwit peer %v, isn't segwit "+
|
|
"enabled and we need more segwit enabled peers", sp)
|
|
sp.Disconnect()
|
|
return nil
|
|
}
|
|
}
|
|
|
|
// Add the remote peer time as a sample for creating an offset against
|
|
// the local clock to keep the network time in sync.
|
|
sp.server.timeSource.AddTimeSample(sp.Addr(), msg.Timestamp)
|
|
|
|
// Choose whether or not to relay transactions before a filter command
|
|
// is received.
|
|
sp.setDisableRelayTx(msg.DisableRelayTx)
|
|
|
|
return nil
|
|
}
|
|
|
|
// OnVerAck is invoked when a peer receives a verack bitcoin message and is used
|
|
// to kick start communication with them.
|
|
func (sp *serverPeer) OnVerAck(_ *peer.Peer, _ *wire.MsgVerAck) {
|
|
sp.server.AddPeer(sp)
|
|
}
|
|
|
|
// OnMemPool is invoked when a peer receives a mempool bitcoin message.
|
|
// It creates and sends an inventory message with the contents of the memory
|
|
// pool up to the maximum inventory allowed per message. When the peer has a
|
|
// bloom filter loaded, the contents are filtered accordingly.
|
|
func (sp *serverPeer) OnMemPool(_ *peer.Peer, msg *wire.MsgMemPool) {
|
|
// Only allow mempool requests if the server has bloom filtering
|
|
// enabled.
|
|
if sp.server.services&wire.SFNodeBloom != wire.SFNodeBloom {
|
|
peerLog.Debugf("peer %v sent mempool request with bloom "+
|
|
"filtering disabled -- disconnecting", sp)
|
|
sp.Disconnect()
|
|
return
|
|
}
|
|
|
|
// A decaying ban score increase is applied to prevent flooding.
|
|
// The ban score accumulates and passes the ban threshold if a burst of
|
|
// mempool messages comes from a peer. The score decays each minute to
|
|
// half of its value.
|
|
if sp.addBanScore(0, 33, "mempool") {
|
|
return
|
|
}
|
|
|
|
// Generate inventory message with the available transactions in the
|
|
// transaction memory pool. Limit it to the max allowed inventory
|
|
// per message. The NewMsgInvSizeHint function automatically limits
|
|
// the passed hint to the maximum allowed, so it's safe to pass it
|
|
// without double checking it here.
|
|
txMemPool := sp.server.txMemPool
|
|
txDescs := txMemPool.TxDescs()
|
|
invMsg := wire.NewMsgInvSizeHint(uint(len(txDescs)))
|
|
|
|
for _, txDesc := range txDescs {
|
|
// Either add all transactions when there is no bloom filter,
|
|
// or only the transactions that match the filter when there is
|
|
// one.
|
|
if !sp.filter.IsLoaded() || sp.filter.MatchTxAndUpdate(txDesc.Tx) {
|
|
iv := wire.NewInvVect(wire.InvTypeTx, txDesc.Tx.Hash())
|
|
invMsg.AddInvVect(iv)
|
|
if len(invMsg.InvList)+1 > wire.MaxInvPerMsg {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
// Send the inventory message if there is anything to send.
|
|
if len(invMsg.InvList) > 0 {
|
|
sp.QueueMessage(invMsg, nil)
|
|
}
|
|
}
|
|
|
|
// OnTx is invoked when a peer receives a tx bitcoin message. It blocks
|
|
// until the bitcoin transaction has been fully processed. Unlock the block
|
|
// handler this does not serialize all transactions through a single thread
|
|
// transactions don't rely on the previous one in a linear fashion like blocks.
|
|
func (sp *serverPeer) OnTx(_ *peer.Peer, msg *wire.MsgTx) {
|
|
if cfg.BlocksOnly {
|
|
peerLog.Tracef("Ignoring tx %v from %v - blocksonly enabled",
|
|
msg.TxHash(), sp)
|
|
return
|
|
}
|
|
|
|
// Add the transaction to the known inventory for the peer.
|
|
// Convert the raw MsgTx to a btcutil.Tx which provides some convenience
|
|
// methods and things such as hash caching.
|
|
tx := btcutil.NewTx(msg)
|
|
iv := wire.NewInvVect(wire.InvTypeTx, tx.Hash())
|
|
sp.AddKnownInventory(iv)
|
|
|
|
// Queue the transaction up to be handled by the sync manager and
|
|
// intentionally block further receives until the transaction is fully
|
|
// processed and known good or bad. This helps prevent a malicious peer
|
|
// from queuing up a bunch of bad transactions before disconnecting (or
|
|
// being disconnected) and wasting memory.
|
|
sp.server.syncManager.QueueTx(tx, sp.Peer, sp.txProcessed)
|
|
<-sp.txProcessed
|
|
}
|
|
|
|
// OnBlock is invoked when a peer receives a block bitcoin message. It
|
|
// blocks until the bitcoin block has been fully processed.
|
|
func (sp *serverPeer) OnBlock(_ *peer.Peer, msg *wire.MsgBlock, buf []byte) {
|
|
// Convert the raw MsgBlock to a btcutil.Block which provides some
|
|
// convenience methods and things such as hash caching.
|
|
block := btcutil.NewBlockFromBlockAndBytes(msg, buf)
|
|
|
|
// Add the block to the known inventory for the peer.
|
|
iv := wire.NewInvVect(wire.InvTypeBlock, block.Hash())
|
|
sp.AddKnownInventory(iv)
|
|
|
|
// Queue the block up to be handled by the block
|
|
// manager and intentionally block further receives
|
|
// until the bitcoin block is fully processed and known
|
|
// good or bad. This helps prevent a malicious peer
|
|
// from queuing up a bunch of bad blocks before
|
|
// disconnecting (or being disconnected) and wasting
|
|
// memory. Additionally, this behavior is depended on
|
|
// by at least the block acceptance test tool as the
|
|
// reference implementation processes blocks in the same
|
|
// thread and therefore blocks further messages until
|
|
// the bitcoin block has been fully processed.
|
|
sp.server.syncManager.QueueBlock(block, sp.Peer, sp.blockProcessed)
|
|
<-sp.blockProcessed
|
|
}
|
|
|
|
// OnInv is invoked when a peer receives an inv bitcoin message and is
|
|
// used to examine the inventory being advertised by the remote peer and react
|
|
// accordingly. We pass the message down to blockmanager which will call
|
|
// QueueMessage with any appropriate responses.
|
|
func (sp *serverPeer) OnInv(_ *peer.Peer, msg *wire.MsgInv) {
|
|
if !cfg.BlocksOnly {
|
|
if len(msg.InvList) > 0 {
|
|
sp.server.syncManager.QueueInv(msg, sp.Peer)
|
|
}
|
|
return
|
|
}
|
|
|
|
newInv := wire.NewMsgInvSizeHint(uint(len(msg.InvList)))
|
|
for _, invVect := range msg.InvList {
|
|
if invVect.Type == wire.InvTypeTx {
|
|
peerLog.Tracef("Ignoring tx %v in inv from %v -- "+
|
|
"blocksonly enabled", invVect.Hash, sp)
|
|
if sp.ProtocolVersion() >= wire.BIP0037Version {
|
|
peerLog.Infof("Peer %v is announcing "+
|
|
"transactions -- disconnecting", sp)
|
|
sp.Disconnect()
|
|
return
|
|
}
|
|
continue
|
|
}
|
|
err := newInv.AddInvVect(invVect)
|
|
if err != nil {
|
|
peerLog.Errorf("Failed to add inventory vector: %v", err)
|
|
break
|
|
}
|
|
}
|
|
|
|
if len(newInv.InvList) > 0 {
|
|
sp.server.syncManager.QueueInv(newInv, sp.Peer)
|
|
}
|
|
}
|
|
|
|
// OnHeaders is invoked when a peer receives a headers bitcoin
|
|
// message. The message is passed down to the sync manager.
|
|
func (sp *serverPeer) OnHeaders(_ *peer.Peer, msg *wire.MsgHeaders) {
|
|
sp.server.syncManager.QueueHeaders(msg, sp.Peer)
|
|
}
|
|
|
|
// handleGetData is invoked when a peer receives a getdata bitcoin message and
|
|
// is used to deliver block and transaction information.
|
|
func (sp *serverPeer) OnGetData(_ *peer.Peer, msg *wire.MsgGetData) {
|
|
numAdded := 0
|
|
notFound := wire.NewMsgNotFound()
|
|
|
|
length := len(msg.InvList)
|
|
// A decaying ban score increase is applied to prevent exhausting resources
|
|
// with unusually large inventory queries.
|
|
// Requesting more than the maximum inventory vector length within a short
|
|
// period of time yields a score above the default ban threshold. Sustained
|
|
// bursts of small requests are not penalized as that would potentially ban
|
|
// peers performing IBD.
|
|
// This incremental score decays each minute to half of its value.
|
|
if sp.addBanScore(0, uint32(length)*99/wire.MaxInvPerMsg, "getdata") {
|
|
return
|
|
}
|
|
|
|
// We wait on this wait channel periodically to prevent queuing
|
|
// far more data than we can send in a reasonable time, wasting memory.
|
|
// The waiting occurs after the database fetch for the next one to
|
|
// provide a little pipelining.
|
|
var waitChan chan struct{}
|
|
doneChan := make(chan struct{}, 1)
|
|
|
|
for i, iv := range msg.InvList {
|
|
var c chan struct{}
|
|
// If this will be the last message we send.
|
|
if i == length-1 && len(notFound.InvList) == 0 {
|
|
c = doneChan
|
|
} else if (i+1)%3 == 0 {
|
|
// Buffered so as to not make the send goroutine block.
|
|
c = make(chan struct{}, 1)
|
|
}
|
|
var err error
|
|
switch iv.Type {
|
|
case wire.InvTypeWitnessTx:
|
|
err = sp.server.pushTxMsg(sp, &iv.Hash, c, waitChan, wire.WitnessEncoding)
|
|
case wire.InvTypeTx:
|
|
err = sp.server.pushTxMsg(sp, &iv.Hash, c, waitChan, wire.BaseEncoding)
|
|
case wire.InvTypeWitnessBlock:
|
|
err = sp.server.pushBlockMsg(sp, &iv.Hash, c, waitChan, wire.WitnessEncoding)
|
|
case wire.InvTypeBlock:
|
|
err = sp.server.pushBlockMsg(sp, &iv.Hash, c, waitChan, wire.BaseEncoding)
|
|
case wire.InvTypeFilteredWitnessBlock:
|
|
err = sp.server.pushMerkleBlockMsg(sp, &iv.Hash, c, waitChan, wire.WitnessEncoding)
|
|
case wire.InvTypeFilteredBlock:
|
|
err = sp.server.pushMerkleBlockMsg(sp, &iv.Hash, c, waitChan, wire.BaseEncoding)
|
|
default:
|
|
peerLog.Warnf("Unknown type in inventory request %d",
|
|
iv.Type)
|
|
continue
|
|
}
|
|
if err != nil {
|
|
notFound.AddInvVect(iv)
|
|
|
|
// When there is a failure fetching the final entry
|
|
// and the done channel was sent in due to there
|
|
// being no outstanding not found inventory, consume
|
|
// it here because there is now not found inventory
|
|
// that will use the channel momentarily.
|
|
if i == len(msg.InvList)-1 && c != nil {
|
|
<-c
|
|
}
|
|
}
|
|
numAdded++
|
|
waitChan = c
|
|
}
|
|
if len(notFound.InvList) != 0 {
|
|
sp.QueueMessage(notFound, doneChan)
|
|
}
|
|
|
|
// Wait for messages to be sent. We can send quite a lot of data at this
|
|
// point and this will keep the peer busy for a decent amount of time.
|
|
// We don't process anything else by them in this time so that we
|
|
// have an idea of when we should hear back from them - else the idle
|
|
// timeout could fire when we were only half done sending the blocks.
|
|
if numAdded > 0 {
|
|
<-doneChan
|
|
}
|
|
}
|
|
|
|
// OnGetBlocks is invoked when a peer receives a getblocks bitcoin
|
|
// message.
|
|
func (sp *serverPeer) OnGetBlocks(_ *peer.Peer, msg *wire.MsgGetBlocks) {
|
|
// Find the most recent known block in the best chain based on the block
|
|
// locator and fetch all of the block hashes after it until either
|
|
// wire.MaxBlocksPerMsg have been fetched or the provided stop hash is
|
|
// encountered.
|
|
//
|
|
// Use the block after the genesis block if no other blocks in the
|
|
// provided locator are known. This does mean the client will start
|
|
// over with the genesis block if unknown block locators are provided.
|
|
//
|
|
// This mirrors the behavior in the reference implementation.
|
|
chain := sp.server.chain
|
|
hashList := chain.LocateBlocks(msg.BlockLocatorHashes, &msg.HashStop,
|
|
wire.MaxBlocksPerMsg)
|
|
|
|
// Generate inventory message.
|
|
invMsg := wire.NewMsgInv()
|
|
for i := range hashList {
|
|
iv := wire.NewInvVect(wire.InvTypeBlock, &hashList[i])
|
|
invMsg.AddInvVect(iv)
|
|
}
|
|
|
|
// Send the inventory message if there is anything to send.
|
|
if len(invMsg.InvList) > 0 {
|
|
invListLen := len(invMsg.InvList)
|
|
if invListLen == wire.MaxBlocksPerMsg {
|
|
// Intentionally use a copy of the final hash so there
|
|
// is not a reference into the inventory slice which
|
|
// would prevent the entire slice from being eligible
|
|
// for GC as soon as it's sent.
|
|
continueHash := invMsg.InvList[invListLen-1].Hash
|
|
sp.continueHash = &continueHash
|
|
}
|
|
sp.QueueMessage(invMsg, nil)
|
|
}
|
|
}
|
|
|
|
// OnGetHeaders is invoked when a peer receives a getheaders bitcoin
|
|
// message.
|
|
func (sp *serverPeer) OnGetHeaders(_ *peer.Peer, msg *wire.MsgGetHeaders) {
|
|
// Ignore getheaders requests if not in sync.
|
|
if !sp.server.syncManager.IsCurrent() {
|
|
return
|
|
}
|
|
|
|
// Find the most recent known block in the best chain based on the block
|
|
// locator and fetch all of the headers after it until either
|
|
// wire.MaxBlockHeadersPerMsg have been fetched or the provided stop
|
|
// hash is encountered.
|
|
//
|
|
// Use the block after the genesis block if no other blocks in the
|
|
// provided locator are known. This does mean the client will start
|
|
// over with the genesis block if unknown block locators are provided.
|
|
//
|
|
// This mirrors the behavior in the reference implementation.
|
|
chain := sp.server.chain
|
|
headers := chain.LocateHeaders(msg.BlockLocatorHashes, &msg.HashStop)
|
|
|
|
// Send found headers to the requesting peer.
|
|
blockHeaders := make([]*wire.BlockHeader, len(headers))
|
|
for i := range headers {
|
|
blockHeaders[i] = &headers[i]
|
|
}
|
|
sp.QueueMessage(&wire.MsgHeaders{Headers: blockHeaders}, nil)
|
|
}
|
|
|
|
// OnGetCFilters is invoked when a peer receives a getcfilters bitcoin message.
|
|
func (sp *serverPeer) OnGetCFilters(_ *peer.Peer, msg *wire.MsgGetCFilters) {
|
|
// Ignore getcfilters requests if not in sync.
|
|
if !sp.server.syncManager.IsCurrent() {
|
|
return
|
|
}
|
|
|
|
// We'll also ensure that the remote party is requesting a set of
|
|
// filters that we actually currently maintain.
|
|
switch msg.FilterType {
|
|
case wire.GCSFilterRegular:
|
|
break
|
|
|
|
default:
|
|
peerLog.Debug("Filter request for unknown filter: %v",
|
|
msg.FilterType)
|
|
return
|
|
}
|
|
|
|
hashes, err := sp.server.chain.HeightToHashRange(
|
|
int32(msg.StartHeight), &msg.StopHash, wire.MaxGetCFiltersReqRange,
|
|
)
|
|
if err != nil {
|
|
peerLog.Debugf("Invalid getcfilters request: %v", err)
|
|
return
|
|
}
|
|
|
|
// Create []*chainhash.Hash from []chainhash.Hash to pass to
|
|
// FiltersByBlockHashes.
|
|
hashPtrs := make([]*chainhash.Hash, len(hashes))
|
|
for i := range hashes {
|
|
hashPtrs[i] = &hashes[i]
|
|
}
|
|
|
|
filters, err := sp.server.cfIndex.FiltersByBlockHashes(
|
|
hashPtrs, msg.FilterType,
|
|
)
|
|
if err != nil {
|
|
peerLog.Errorf("Error retrieving cfilters: %v", err)
|
|
return
|
|
}
|
|
|
|
for i, filterBytes := range filters {
|
|
if len(filterBytes) == 0 {
|
|
peerLog.Warnf("Could not obtain cfilter for %v",
|
|
hashes[i])
|
|
return
|
|
}
|
|
|
|
filterMsg := wire.NewMsgCFilter(
|
|
msg.FilterType, &hashes[i], filterBytes,
|
|
)
|
|
sp.QueueMessage(filterMsg, nil)
|
|
}
|
|
}
|
|
|
|
// OnGetCFHeaders is invoked when a peer receives a getcfheader bitcoin message.
|
|
func (sp *serverPeer) OnGetCFHeaders(_ *peer.Peer, msg *wire.MsgGetCFHeaders) {
|
|
// Ignore getcfilterheader requests if not in sync.
|
|
if !sp.server.syncManager.IsCurrent() {
|
|
return
|
|
}
|
|
|
|
// We'll also ensure that the remote party is requesting a set of
|
|
// headers for filters that we actually currently maintain.
|
|
switch msg.FilterType {
|
|
case wire.GCSFilterRegular:
|
|
break
|
|
|
|
default:
|
|
peerLog.Debug("Filter request for unknown headers for "+
|
|
"filter: %v", msg.FilterType)
|
|
return
|
|
}
|
|
|
|
startHeight := int32(msg.StartHeight)
|
|
maxResults := wire.MaxCFHeadersPerMsg
|
|
|
|
// If StartHeight is positive, fetch the predecessor block hash so we
|
|
// can populate the PrevFilterHeader field.
|
|
if msg.StartHeight > 0 {
|
|
startHeight--
|
|
maxResults++
|
|
}
|
|
|
|
// Fetch the hashes from the block index.
|
|
hashList, err := sp.server.chain.HeightToHashRange(
|
|
startHeight, &msg.StopHash, maxResults,
|
|
)
|
|
if err != nil {
|
|
peerLog.Debugf("Invalid getcfheaders request: %v", err)
|
|
}
|
|
|
|
// This is possible if StartHeight is one greater that the height of
|
|
// StopHash, and we pull a valid range of hashes including the previous
|
|
// filter header.
|
|
if len(hashList) == 0 || (msg.StartHeight > 0 && len(hashList) == 1) {
|
|
peerLog.Debug("No results for getcfheaders request")
|
|
return
|
|
}
|
|
|
|
// Create []*chainhash.Hash from []chainhash.Hash to pass to
|
|
// FilterHeadersByBlockHashes.
|
|
hashPtrs := make([]*chainhash.Hash, len(hashList))
|
|
for i := range hashList {
|
|
hashPtrs[i] = &hashList[i]
|
|
}
|
|
|
|
// Fetch the raw filter hash bytes from the database for all blocks.
|
|
filterHashes, err := sp.server.cfIndex.FilterHashesByBlockHashes(
|
|
hashPtrs, msg.FilterType,
|
|
)
|
|
if err != nil {
|
|
peerLog.Errorf("Error retrieving cfilter hashes: %v", err)
|
|
return
|
|
}
|
|
|
|
// Generate cfheaders message and send it.
|
|
headersMsg := wire.NewMsgCFHeaders()
|
|
|
|
// Populate the PrevFilterHeader field.
|
|
if msg.StartHeight > 0 {
|
|
prevBlockHash := &hashList[0]
|
|
|
|
// Fetch the raw committed filter header bytes from the
|
|
// database.
|
|
headerBytes, err := sp.server.cfIndex.FilterHeaderByBlockHash(
|
|
prevBlockHash, msg.FilterType)
|
|
if err != nil {
|
|
peerLog.Errorf("Error retrieving CF header: %v", err)
|
|
return
|
|
}
|
|
if len(headerBytes) == 0 {
|
|
peerLog.Warnf("Could not obtain CF header for %v", prevBlockHash)
|
|
return
|
|
}
|
|
|
|
// Deserialize the hash into PrevFilterHeader.
|
|
err = headersMsg.PrevFilterHeader.SetBytes(headerBytes)
|
|
if err != nil {
|
|
peerLog.Warnf("Committed filter header deserialize "+
|
|
"failed: %v", err)
|
|
return
|
|
}
|
|
|
|
hashList = hashList[1:]
|
|
filterHashes = filterHashes[1:]
|
|
}
|
|
|
|
// Populate HeaderHashes.
|
|
for i, hashBytes := range filterHashes {
|
|
if len(hashBytes) == 0 {
|
|
peerLog.Warnf("Could not obtain CF hash for %v", hashList[i])
|
|
return
|
|
}
|
|
|
|
// Deserialize the hash.
|
|
filterHash, err := chainhash.NewHash(hashBytes)
|
|
if err != nil {
|
|
peerLog.Warnf("Committed filter hash deserialize "+
|
|
"failed: %v", err)
|
|
return
|
|
}
|
|
|
|
headersMsg.AddCFHash(filterHash)
|
|
}
|
|
|
|
headersMsg.FilterType = msg.FilterType
|
|
headersMsg.StopHash = msg.StopHash
|
|
|
|
sp.QueueMessage(headersMsg, nil)
|
|
}
|
|
|
|
// OnGetCFCheckpt is invoked when a peer receives a getcfcheckpt bitcoin message.
|
|
func (sp *serverPeer) OnGetCFCheckpt(_ *peer.Peer, msg *wire.MsgGetCFCheckpt) {
|
|
// Ignore getcfcheckpt requests if not in sync.
|
|
if !sp.server.syncManager.IsCurrent() {
|
|
return
|
|
}
|
|
|
|
// We'll also ensure that the remote party is requesting a set of
|
|
// checkpoints for filters that we actually currently maintain.
|
|
switch msg.FilterType {
|
|
case wire.GCSFilterRegular:
|
|
break
|
|
|
|
default:
|
|
peerLog.Debug("Filter request for unknown checkpoints for "+
|
|
"filter: %v", msg.FilterType)
|
|
return
|
|
}
|
|
|
|
// Now that we know the client is fetching a filter that we know of,
|
|
// we'll fetch the block hashes et each check point interval so we can
|
|
// compare against our cache, and create new check points if necessary.
|
|
blockHashes, err := sp.server.chain.IntervalBlockHashes(
|
|
&msg.StopHash, wire.CFCheckptInterval,
|
|
)
|
|
if err != nil {
|
|
peerLog.Debugf("Invalid getcfilters request: %v", err)
|
|
return
|
|
}
|
|
|
|
checkptMsg := wire.NewMsgCFCheckpt(
|
|
msg.FilterType, &msg.StopHash, len(blockHashes),
|
|
)
|
|
|
|
// Fetch the current existing cache so we can decide if we need to
|
|
// extend it or if its adequate as is.
|
|
sp.server.cfCheckptCachesMtx.RLock()
|
|
checkptCache := sp.server.cfCheckptCaches[msg.FilterType]
|
|
|
|
// If the set of block hashes is beyond the current size of the cache,
|
|
// then we'll expand the size of the cache and also retain the write
|
|
// lock.
|
|
var updateCache bool
|
|
if len(blockHashes) > len(checkptCache) {
|
|
// Now that we know we'll need to modify the size of the cache,
|
|
// we'll release the read lock and grab the write lock to
|
|
// possibly expand the cache size.
|
|
sp.server.cfCheckptCachesMtx.RUnlock()
|
|
|
|
sp.server.cfCheckptCachesMtx.Lock()
|
|
defer sp.server.cfCheckptCachesMtx.Unlock()
|
|
|
|
// Now that we have the write lock, we'll check again as it's
|
|
// possible that the cache has already been expanded.
|
|
checkptCache = sp.server.cfCheckptCaches[msg.FilterType]
|
|
|
|
// If we still need to expand the cache, then We'll mark that
|
|
// we need to update the cache for below and also expand the
|
|
// size of the cache in place.
|
|
if len(blockHashes) > len(checkptCache) {
|
|
updateCache = true
|
|
|
|
additionalLength := len(blockHashes) - len(checkptCache)
|
|
newEntries := make([]cfHeaderKV, additionalLength)
|
|
|
|
peerLog.Infof("Growing size of checkpoint cache from %v to %v "+
|
|
"block hashes", len(checkptCache), len(blockHashes))
|
|
|
|
checkptCache = append(
|
|
sp.server.cfCheckptCaches[msg.FilterType],
|
|
newEntries...,
|
|
)
|
|
}
|
|
} else {
|
|
// Otherwise, we'll hold onto the read lock for the remainder
|
|
// of this method.
|
|
defer sp.server.cfCheckptCachesMtx.RUnlock()
|
|
|
|
peerLog.Tracef("Serving stale cache of size %v",
|
|
len(checkptCache))
|
|
}
|
|
|
|
// Now that we know the cache is of an appropriate size, we'll iterate
|
|
// backwards until the find the block hash. We do this as it's possible
|
|
// a re-org has occurred so items in the db are now in the main china
|
|
// while the cache has been partially invalidated.
|
|
var forkIdx int
|
|
for forkIdx = len(blockHashes); forkIdx > 0; forkIdx-- {
|
|
if checkptCache[forkIdx-1].blockHash == blockHashes[forkIdx-1] {
|
|
break
|
|
}
|
|
}
|
|
|
|
// Now that we know the how much of the cache is relevant for this
|
|
// query, we'll populate our check point message with the cache as is.
|
|
// Shortly below, we'll populate the new elements of the cache.
|
|
for i := 0; i < forkIdx; i++ {
|
|
checkptMsg.AddCFHeader(&checkptCache[i].filterHeader)
|
|
}
|
|
|
|
// We'll now collect the set of hashes that are beyond our cache so we
|
|
// can look up the filter headers to populate the final cache.
|
|
blockHashPtrs := make([]*chainhash.Hash, 0, len(blockHashes)-forkIdx)
|
|
for i := forkIdx; i < len(blockHashes); i++ {
|
|
blockHashPtrs = append(blockHashPtrs, &blockHashes[i])
|
|
}
|
|
filterHeaders, err := sp.server.cfIndex.FilterHeadersByBlockHashes(
|
|
blockHashPtrs, msg.FilterType,
|
|
)
|
|
if err != nil {
|
|
peerLog.Errorf("Error retrieving cfilter headers: %v", err)
|
|
return
|
|
}
|
|
|
|
// Now that we have the full set of filter headers, we'll add them to
|
|
// the checkpoint message, and also update our cache in line.
|
|
for i, filterHeaderBytes := range filterHeaders {
|
|
if len(filterHeaderBytes) == 0 {
|
|
peerLog.Warnf("Could not obtain CF header for %v",
|
|
blockHashPtrs[i])
|
|
return
|
|
}
|
|
|
|
filterHeader, err := chainhash.NewHash(filterHeaderBytes)
|
|
if err != nil {
|
|
peerLog.Warnf("Committed filter header deserialize "+
|
|
"failed: %v", err)
|
|
return
|
|
}
|
|
|
|
checkptMsg.AddCFHeader(filterHeader)
|
|
|
|
// If the new main chain is longer than what's in the cache,
|
|
// then we'll override it beyond the fork point.
|
|
if updateCache {
|
|
checkptCache[forkIdx+i] = cfHeaderKV{
|
|
blockHash: blockHashes[forkIdx+i],
|
|
filterHeader: *filterHeader,
|
|
}
|
|
}
|
|
}
|
|
|
|
// Finally, we'll update the cache if we need to, and send the final
|
|
// message back to the requesting peer.
|
|
if updateCache {
|
|
sp.server.cfCheckptCaches[msg.FilterType] = checkptCache
|
|
}
|
|
|
|
sp.QueueMessage(checkptMsg, nil)
|
|
}
|
|
|
|
// enforceNodeBloomFlag disconnects the peer if the server is not configured to
|
|
// allow bloom filters. Additionally, if the peer has negotiated to a protocol
|
|
// version that is high enough to observe the bloom filter service support bit,
|
|
// it will be banned since it is intentionally violating the protocol.
|
|
func (sp *serverPeer) enforceNodeBloomFlag(cmd string) bool {
|
|
if sp.server.services&wire.SFNodeBloom != wire.SFNodeBloom {
|
|
// Ban the peer if the protocol version is high enough that the
|
|
// peer is knowingly violating the protocol and banning is
|
|
// enabled.
|
|
//
|
|
// NOTE: Even though the addBanScore function already examines
|
|
// whether or not banning is enabled, it is checked here as well
|
|
// to ensure the violation is logged and the peer is
|
|
// disconnected regardless.
|
|
if sp.ProtocolVersion() >= wire.BIP0111Version &&
|
|
!cfg.DisableBanning {
|
|
|
|
// Disconnect the peer regardless of whether it was
|
|
// banned.
|
|
sp.addBanScore(100, 0, cmd)
|
|
sp.Disconnect()
|
|
return false
|
|
}
|
|
|
|
// Disconnect the peer regardless of protocol version or banning
|
|
// state.
|
|
peerLog.Debugf("%s sent an unsupported %s request -- "+
|
|
"disconnecting", sp, cmd)
|
|
sp.Disconnect()
|
|
return false
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
// OnFeeFilter is invoked when a peer receives a feefilter bitcoin message and
|
|
// is used by remote peers to request that no transactions which have a fee rate
|
|
// lower than provided value are inventoried to them. The peer will be
|
|
// disconnected if an invalid fee filter value is provided.
|
|
func (sp *serverPeer) OnFeeFilter(_ *peer.Peer, msg *wire.MsgFeeFilter) {
|
|
// Check that the passed minimum fee is a valid amount.
|
|
if msg.MinFee < 0 || msg.MinFee > btcutil.MaxSatoshi {
|
|
peerLog.Debugf("Peer %v sent an invalid feefilter '%v' -- "+
|
|
"disconnecting", sp, btcutil.Amount(msg.MinFee))
|
|
sp.Disconnect()
|
|
return
|
|
}
|
|
|
|
atomic.StoreInt64(&sp.feeFilter, msg.MinFee)
|
|
}
|
|
|
|
// OnFilterAdd is invoked when a peer receives a filteradd bitcoin
|
|
// message and is used by remote peers to add data to an already loaded bloom
|
|
// filter. The peer will be disconnected if a filter is not loaded when this
|
|
// message is received or the server is not configured to allow bloom filters.
|
|
func (sp *serverPeer) OnFilterAdd(_ *peer.Peer, msg *wire.MsgFilterAdd) {
|
|
// Disconnect and/or ban depending on the node bloom services flag and
|
|
// negotiated protocol version.
|
|
if !sp.enforceNodeBloomFlag(msg.Command()) {
|
|
return
|
|
}
|
|
|
|
if !sp.filter.IsLoaded() {
|
|
peerLog.Debugf("%s sent a filteradd request with no filter "+
|
|
"loaded -- disconnecting", sp)
|
|
sp.Disconnect()
|
|
return
|
|
}
|
|
|
|
sp.filter.Add(msg.Data)
|
|
}
|
|
|
|
// OnFilterClear is invoked when a peer receives a filterclear bitcoin
|
|
// message and is used by remote peers to clear an already loaded bloom filter.
|
|
// The peer will be disconnected if a filter is not loaded when this message is
|
|
// received or the server is not configured to allow bloom filters.
|
|
func (sp *serverPeer) OnFilterClear(_ *peer.Peer, msg *wire.MsgFilterClear) {
|
|
// Disconnect and/or ban depending on the node bloom services flag and
|
|
// negotiated protocol version.
|
|
if !sp.enforceNodeBloomFlag(msg.Command()) {
|
|
return
|
|
}
|
|
|
|
if !sp.filter.IsLoaded() {
|
|
peerLog.Debugf("%s sent a filterclear request with no "+
|
|
"filter loaded -- disconnecting", sp)
|
|
sp.Disconnect()
|
|
return
|
|
}
|
|
|
|
sp.filter.Unload()
|
|
}
|
|
|
|
// OnFilterLoad is invoked when a peer receives a filterload bitcoin
|
|
// message and it used to load a bloom filter that should be used for
|
|
// delivering merkle blocks and associated transactions that match the filter.
|
|
// The peer will be disconnected if the server is not configured to allow bloom
|
|
// filters.
|
|
func (sp *serverPeer) OnFilterLoad(_ *peer.Peer, msg *wire.MsgFilterLoad) {
|
|
// Disconnect and/or ban depending on the node bloom services flag and
|
|
// negotiated protocol version.
|
|
if !sp.enforceNodeBloomFlag(msg.Command()) {
|
|
return
|
|
}
|
|
|
|
sp.setDisableRelayTx(false)
|
|
|
|
sp.filter.Reload(msg)
|
|
}
|
|
|
|
// OnGetAddr is invoked when a peer receives a getaddr bitcoin message
|
|
// and is used to provide the peer with known addresses from the address
|
|
// manager.
|
|
func (sp *serverPeer) OnGetAddr(_ *peer.Peer, msg *wire.MsgGetAddr) {
|
|
// Don't return any addresses when running on the simulation test
|
|
// network. This helps prevent the network from becoming another
|
|
// public test network since it will not be able to learn about other
|
|
// peers that have not specifically been provided.
|
|
if cfg.SimNet {
|
|
return
|
|
}
|
|
|
|
// Do not accept getaddr requests from outbound peers. This reduces
|
|
// fingerprinting attacks.
|
|
if !sp.Inbound() {
|
|
peerLog.Debugf("Ignoring getaddr request from outbound peer "+
|
|
"%v", sp)
|
|
return
|
|
}
|
|
|
|
// Only allow one getaddr request per connection to discourage
|
|
// address stamping of inv announcements.
|
|
if sp.sentAddrs {
|
|
peerLog.Debugf("Ignoring repeated getaddr request from peer "+
|
|
"%v", sp)
|
|
return
|
|
}
|
|
sp.sentAddrs = true
|
|
|
|
// Get the current known addresses from the address manager.
|
|
addrCache := sp.server.addrManager.AddressCache()
|
|
|
|
// Push the addresses.
|
|
sp.pushAddrMsg(addrCache)
|
|
}
|
|
|
|
// OnAddr is invoked when a peer receives an addr bitcoin message and is
|
|
// used to notify the server about advertised addresses.
|
|
func (sp *serverPeer) OnAddr(_ *peer.Peer, msg *wire.MsgAddr) {
|
|
// Ignore addresses when running on the simulation test network. This
|
|
// helps prevent the network from becoming another public test network
|
|
// since it will not be able to learn about other peers that have not
|
|
// specifically been provided.
|
|
if cfg.SimNet {
|
|
return
|
|
}
|
|
|
|
// Ignore old style addresses which don't include a timestamp.
|
|
if sp.ProtocolVersion() < wire.NetAddressTimeVersion {
|
|
return
|
|
}
|
|
|
|
// A message that has no addresses is invalid.
|
|
if len(msg.AddrList) == 0 {
|
|
peerLog.Errorf("Command [%s] from %s does not contain any addresses",
|
|
msg.Command(), sp.Peer)
|
|
sp.Disconnect()
|
|
return
|
|
}
|
|
|
|
for _, na := range msg.AddrList {
|
|
// Don't add more address if we're disconnecting.
|
|
if !sp.Connected() {
|
|
return
|
|
}
|
|
|
|
// Set the timestamp to 5 days ago if it's more than 24 hours
|
|
// in the future so this address is one of the first to be
|
|
// removed when space is needed.
|
|
now := time.Now()
|
|
if na.Timestamp.After(now.Add(time.Minute * 10)) {
|
|
na.Timestamp = now.Add(-1 * time.Hour * 24 * 5)
|
|
}
|
|
|
|
// Add address to known addresses for this peer.
|
|
sp.addKnownAddresses([]*wire.NetAddress{na})
|
|
}
|
|
|
|
// Add addresses to server address manager. The address manager handles
|
|
// the details of things such as preventing duplicate addresses, max
|
|
// addresses, and last seen updates.
|
|
// XXX bitcoind gives a 2 hour time penalty here, do we want to do the
|
|
// same?
|
|
sp.server.addrManager.AddAddresses(msg.AddrList, sp.NA())
|
|
}
|
|
|
|
// OnRead is invoked when a peer receives a message and it is used to update
|
|
// the bytes received by the server.
|
|
func (sp *serverPeer) OnRead(_ *peer.Peer, bytesRead int, msg wire.Message, err error) {
|
|
sp.server.AddBytesReceived(uint64(bytesRead))
|
|
}
|
|
|
|
// OnWrite is invoked when a peer sends a message and it is used to update
|
|
// the bytes sent by the server.
|
|
func (sp *serverPeer) OnWrite(_ *peer.Peer, bytesWritten int, msg wire.Message, err error) {
|
|
sp.server.AddBytesSent(uint64(bytesWritten))
|
|
}
|
|
|
|
// OnNotFound is invoked when a peer sends a notfound message.
|
|
func (sp *serverPeer) OnNotFound(p *peer.Peer, msg *wire.MsgNotFound) {
|
|
if !sp.Connected() {
|
|
return
|
|
}
|
|
|
|
var numBlocks, numTxns uint32
|
|
for _, inv := range msg.InvList {
|
|
switch inv.Type {
|
|
case wire.InvTypeBlock:
|
|
numBlocks++
|
|
case wire.InvTypeWitnessBlock:
|
|
numBlocks++
|
|
case wire.InvTypeTx:
|
|
numTxns++
|
|
case wire.InvTypeWitnessTx:
|
|
numTxns++
|
|
default:
|
|
peerLog.Debugf("Invalid inv type '%d' in notfound message from %s",
|
|
inv.Type, sp)
|
|
sp.Disconnect()
|
|
return
|
|
}
|
|
}
|
|
if numBlocks > 0 {
|
|
blockStr := pickNoun(uint64(numBlocks), "block", "blocks")
|
|
reason := fmt.Sprintf("%d %v not found", numBlocks, blockStr)
|
|
if sp.addBanScore(20*numBlocks, 0, reason) {
|
|
return
|
|
}
|
|
}
|
|
if numTxns > 0 {
|
|
txStr := pickNoun(uint64(numTxns), "transaction", "transactions")
|
|
reason := fmt.Sprintf("%d %v not found", numBlocks, txStr)
|
|
if sp.addBanScore(0, 10*numTxns, reason) {
|
|
return
|
|
}
|
|
}
|
|
|
|
sp.server.syncManager.QueueNotFound(msg, p)
|
|
}
|
|
|
|
// randomUint16Number returns a random uint16 in a specified input range. Note
|
|
// that the range is in zeroth ordering; if you pass it 1800, you will get
|
|
// values from 0 to 1800.
|
|
func randomUint16Number(max uint16) uint16 {
|
|
// In order to avoid modulo bias and ensure every possible outcome in
|
|
// [0, max) has equal probability, the random number must be sampled
|
|
// from a random source that has a range limited to a multiple of the
|
|
// modulus.
|
|
var randomNumber uint16
|
|
var limitRange = (math.MaxUint16 / max) * max
|
|
for {
|
|
binary.Read(rand.Reader, binary.LittleEndian, &randomNumber)
|
|
if randomNumber < limitRange {
|
|
return (randomNumber % max)
|
|
}
|
|
}
|
|
}
|
|
|
|
// AddRebroadcastInventory adds 'iv' to the list of inventories to be
|
|
// rebroadcasted at random intervals until they show up in a block.
|
|
func (s *server) AddRebroadcastInventory(iv *wire.InvVect, data interface{}) {
|
|
// Ignore if shutting down.
|
|
if atomic.LoadInt32(&s.shutdown) != 0 {
|
|
return
|
|
}
|
|
|
|
s.modifyRebroadcastInv <- broadcastInventoryAdd{invVect: iv, data: data}
|
|
}
|
|
|
|
// RemoveRebroadcastInventory removes 'iv' from the list of items to be
|
|
// rebroadcasted if present.
|
|
func (s *server) RemoveRebroadcastInventory(iv *wire.InvVect) {
|
|
// Ignore if shutting down.
|
|
if atomic.LoadInt32(&s.shutdown) != 0 {
|
|
return
|
|
}
|
|
|
|
s.modifyRebroadcastInv <- broadcastInventoryDel(iv)
|
|
}
|
|
|
|
// relayTransactions generates and relays inventory vectors for all of the
|
|
// passed transactions to all connected peers.
|
|
func (s *server) relayTransactions(txns []*mempool.TxDesc) {
|
|
for _, txD := range txns {
|
|
iv := wire.NewInvVect(wire.InvTypeTx, txD.Tx.Hash())
|
|
s.RelayInventory(iv, txD)
|
|
}
|
|
}
|
|
|
|
// AnnounceNewTransactions generates and relays inventory vectors and notifies
|
|
// both websocket and getblocktemplate long poll clients of the passed
|
|
// transactions. This function should be called whenever new transactions
|
|
// are added to the mempool.
|
|
func (s *server) AnnounceNewTransactions(txns []*mempool.TxDesc) {
|
|
// Generate and relay inventory vectors for all newly accepted
|
|
// transactions.
|
|
s.relayTransactions(txns)
|
|
|
|
// Notify both websocket and getblocktemplate long poll clients of all
|
|
// newly accepted transactions.
|
|
if s.rpcServer != nil {
|
|
s.rpcServer.NotifyNewTransactions(txns)
|
|
}
|
|
}
|
|
|
|
// Transaction has one confirmation on the main chain. Now we can mark it as no
|
|
// longer needing rebroadcasting.
|
|
func (s *server) TransactionConfirmed(tx *btcutil.Tx) {
|
|
// Rebroadcasting is only necessary when the RPC server is active.
|
|
if s.rpcServer == nil {
|
|
return
|
|
}
|
|
|
|
iv := wire.NewInvVect(wire.InvTypeTx, tx.Hash())
|
|
s.RemoveRebroadcastInventory(iv)
|
|
}
|
|
|
|
// pushTxMsg sends a tx message for the provided transaction hash to the
|
|
// connected peer. An error is returned if the transaction hash is not known.
|
|
func (s *server) pushTxMsg(sp *serverPeer, hash *chainhash.Hash, doneChan chan<- struct{},
|
|
waitChan <-chan struct{}, encoding wire.MessageEncoding) error {
|
|
|
|
// Attempt to fetch the requested transaction from the pool. A
|
|
// call could be made to check for existence first, but simply trying
|
|
// to fetch a missing transaction results in the same behavior.
|
|
tx, err := s.txMemPool.FetchTransaction(hash)
|
|
if err != nil {
|
|
peerLog.Tracef("Unable to fetch tx %v from transaction "+
|
|
"pool: %v", hash, err)
|
|
|
|
if doneChan != nil {
|
|
doneChan <- struct{}{}
|
|
}
|
|
return err
|
|
}
|
|
|
|
// Once we have fetched data wait for any previous operation to finish.
|
|
if waitChan != nil {
|
|
<-waitChan
|
|
}
|
|
|
|
sp.QueueMessageWithEncoding(tx.MsgTx(), doneChan, encoding)
|
|
|
|
return nil
|
|
}
|
|
|
|
// pushBlockMsg sends a block message for the provided block hash to the
|
|
// connected peer. An error is returned if the block hash is not known.
|
|
func (s *server) pushBlockMsg(sp *serverPeer, hash *chainhash.Hash, doneChan chan<- struct{},
|
|
waitChan <-chan struct{}, encoding wire.MessageEncoding) error {
|
|
|
|
// Fetch the raw block bytes from the database.
|
|
var blockBytes []byte
|
|
err := sp.server.db.View(func(dbTx database.Tx) error {
|
|
var err error
|
|
blockBytes, err = dbTx.FetchBlock(hash)
|
|
return err
|
|
})
|
|
if err != nil {
|
|
peerLog.Tracef("Unable to fetch requested block hash %v: %v",
|
|
hash, err)
|
|
|
|
if doneChan != nil {
|
|
doneChan <- struct{}{}
|
|
}
|
|
return err
|
|
}
|
|
|
|
// Deserialize the block.
|
|
var msgBlock wire.MsgBlock
|
|
err = msgBlock.Deserialize(bytes.NewReader(blockBytes))
|
|
if err != nil {
|
|
peerLog.Tracef("Unable to deserialize requested block hash "+
|
|
"%v: %v", hash, err)
|
|
|
|
if doneChan != nil {
|
|
doneChan <- struct{}{}
|
|
}
|
|
return err
|
|
}
|
|
|
|
// Once we have fetched data wait for any previous operation to finish.
|
|
if waitChan != nil {
|
|
<-waitChan
|
|
}
|
|
|
|
// We only send the channel for this message if we aren't sending
|
|
// an inv straight after.
|
|
var dc chan<- struct{}
|
|
continueHash := sp.continueHash
|
|
sendInv := continueHash != nil && continueHash.IsEqual(hash)
|
|
if !sendInv {
|
|
dc = doneChan
|
|
}
|
|
sp.QueueMessageWithEncoding(&msgBlock, dc, encoding)
|
|
|
|
// When the peer requests the final block that was advertised in
|
|
// response to a getblocks message which requested more blocks than
|
|
// would fit into a single message, send it a new inventory message
|
|
// to trigger it to issue another getblocks message for the next
|
|
// batch of inventory.
|
|
if sendInv {
|
|
best := sp.server.chain.BestSnapshot()
|
|
invMsg := wire.NewMsgInvSizeHint(1)
|
|
iv := wire.NewInvVect(wire.InvTypeBlock, &best.Hash)
|
|
invMsg.AddInvVect(iv)
|
|
sp.QueueMessage(invMsg, doneChan)
|
|
sp.continueHash = nil
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// pushMerkleBlockMsg sends a merkleblock message for the provided block hash to
|
|
// the connected peer. Since a merkle block requires the peer to have a filter
|
|
// loaded, this call will simply be ignored if there is no filter loaded. An
|
|
// error is returned if the block hash is not known.
|
|
func (s *server) pushMerkleBlockMsg(sp *serverPeer, hash *chainhash.Hash,
|
|
doneChan chan<- struct{}, waitChan <-chan struct{}, encoding wire.MessageEncoding) error {
|
|
|
|
// Do not send a response if the peer doesn't have a filter loaded.
|
|
if !sp.filter.IsLoaded() {
|
|
if doneChan != nil {
|
|
doneChan <- struct{}{}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Fetch the raw block bytes from the database.
|
|
blk, err := sp.server.chain.BlockByHash(hash)
|
|
if err != nil {
|
|
peerLog.Tracef("Unable to fetch requested block hash %v: %v",
|
|
hash, err)
|
|
|
|
if doneChan != nil {
|
|
doneChan <- struct{}{}
|
|
}
|
|
return err
|
|
}
|
|
|
|
// Generate a merkle block by filtering the requested block according
|
|
// to the filter for the peer.
|
|
merkle, matchedTxIndices := bloom.NewMerkleBlock(blk, sp.filter)
|
|
|
|
// Once we have fetched data wait for any previous operation to finish.
|
|
if waitChan != nil {
|
|
<-waitChan
|
|
}
|
|
|
|
// Send the merkleblock. Only send the done channel with this message
|
|
// if no transactions will be sent afterwards.
|
|
var dc chan<- struct{}
|
|
if len(matchedTxIndices) == 0 {
|
|
dc = doneChan
|
|
}
|
|
sp.QueueMessage(merkle, dc)
|
|
|
|
// Finally, send any matched transactions.
|
|
blkTransactions := blk.MsgBlock().Transactions
|
|
for i, txIndex := range matchedTxIndices {
|
|
// Only send the done channel on the final transaction.
|
|
var dc chan<- struct{}
|
|
if i == len(matchedTxIndices)-1 {
|
|
dc = doneChan
|
|
}
|
|
if txIndex < uint32(len(blkTransactions)) {
|
|
sp.QueueMessageWithEncoding(blkTransactions[txIndex], dc,
|
|
encoding)
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// handleUpdatePeerHeight updates the heights of all peers who were known to
|
|
// announce a block we recently accepted.
|
|
func (s *server) handleUpdatePeerHeights(state *peerState, umsg updatePeerHeightsMsg) {
|
|
state.forAllPeers(func(sp *serverPeer) {
|
|
// The origin peer should already have the updated height.
|
|
if sp.Peer == umsg.originPeer {
|
|
return
|
|
}
|
|
|
|
// This is a pointer to the underlying memory which doesn't
|
|
// change.
|
|
latestBlkHash := sp.LastAnnouncedBlock()
|
|
|
|
// Skip this peer if it hasn't recently announced any new blocks.
|
|
if latestBlkHash == nil {
|
|
return
|
|
}
|
|
|
|
// If the peer has recently announced a block, and this block
|
|
// matches our newly accepted block, then update their block
|
|
// height.
|
|
if *latestBlkHash == *umsg.newHash {
|
|
sp.UpdateLastBlockHeight(umsg.newHeight)
|
|
sp.UpdateLastAnnouncedBlock(nil)
|
|
}
|
|
})
|
|
}
|
|
|
|
// handleAddPeerMsg deals with adding new peers. It is invoked from the
|
|
// peerHandler goroutine.
|
|
func (s *server) handleAddPeerMsg(state *peerState, sp *serverPeer) bool {
|
|
if sp == nil || !sp.Connected() {
|
|
return false
|
|
}
|
|
|
|
// Disconnect peers with unwanted user agents.
|
|
if sp.HasUndesiredUserAgent(s.agentBlacklist, s.agentWhitelist) {
|
|
sp.Disconnect()
|
|
return false
|
|
}
|
|
|
|
// Ignore new peers if we're shutting down.
|
|
if atomic.LoadInt32(&s.shutdown) != 0 {
|
|
srvrLog.Infof("New peer %s ignored - server is shutting down", sp)
|
|
sp.Disconnect()
|
|
return false
|
|
}
|
|
|
|
// Disconnect banned peers.
|
|
host, _, err := net.SplitHostPort(sp.Addr())
|
|
if err != nil {
|
|
srvrLog.Debugf("can't split hostport %v", err)
|
|
sp.Disconnect()
|
|
return false
|
|
}
|
|
if banEnd, ok := state.banned[host]; ok {
|
|
if time.Now().Before(banEnd) {
|
|
srvrLog.Debugf("Peer %s is banned for another %v - disconnecting",
|
|
host, time.Until(banEnd))
|
|
sp.Disconnect()
|
|
return false
|
|
}
|
|
|
|
srvrLog.Infof("Peer %s is no longer banned", host)
|
|
delete(state.banned, host)
|
|
}
|
|
|
|
// TODO: Check for max peers from a single IP.
|
|
|
|
// Limit max number of total peers.
|
|
if state.Count() >= cfg.MaxPeers {
|
|
srvrLog.Infof("Max peers reached [%d] - disconnecting peer %s",
|
|
cfg.MaxPeers, sp)
|
|
sp.Disconnect()
|
|
// TODO: how to handle permanent peers here?
|
|
// they should be rescheduled.
|
|
return false
|
|
}
|
|
|
|
// Add the new peer and start it.
|
|
srvrLog.Debugf("New peer %s", sp)
|
|
if sp.Inbound() {
|
|
state.inboundPeers[sp.ID()] = sp
|
|
} else {
|
|
state.outboundGroups[addrmgr.GroupKey(sp.NA())]++
|
|
if sp.persistent {
|
|
state.persistentPeers[sp.ID()] = sp
|
|
} else {
|
|
state.outboundPeers[sp.ID()] = sp
|
|
}
|
|
}
|
|
|
|
// Update the address' last seen time if the peer has acknowledged
|
|
// our version and has sent us its version as well.
|
|
if sp.VerAckReceived() && sp.VersionKnown() && sp.NA() != nil {
|
|
s.addrManager.Connected(sp.NA())
|
|
}
|
|
|
|
// Signal the sync manager this peer is a new sync candidate.
|
|
s.syncManager.NewPeer(sp.Peer)
|
|
|
|
// Update the address manager and request known addresses from the
|
|
// remote peer for outbound connections. This is skipped when running on
|
|
// the simulation test network since it is only intended to connect to
|
|
// specified peers and actively avoids advertising and connecting to
|
|
// discovered peers.
|
|
if !cfg.SimNet && !sp.Inbound() {
|
|
// Advertise the local address when the server accepts incoming
|
|
// connections and it believes itself to be close to the best
|
|
// known tip.
|
|
if !cfg.DisableListen && s.syncManager.IsCurrent() {
|
|
// Get address that best matches.
|
|
lna := s.addrManager.GetBestLocalAddress(sp.NA())
|
|
if addrmgr.IsRoutable(lna) {
|
|
// Filter addresses the peer already knows about.
|
|
addresses := []*wire.NetAddress{lna}
|
|
sp.pushAddrMsg(addresses)
|
|
}
|
|
}
|
|
|
|
// Request known addresses if the server address manager needs
|
|
// more and the peer has a protocol version new enough to
|
|
// include a timestamp with addresses.
|
|
hasTimestamp := sp.ProtocolVersion() >= wire.NetAddressTimeVersion
|
|
if s.addrManager.NeedMoreAddresses() && hasTimestamp {
|
|
sp.QueueMessage(wire.NewMsgGetAddr(), nil)
|
|
}
|
|
|
|
// Mark the address as a known good address.
|
|
s.addrManager.Good(sp.NA())
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
// handleDonePeerMsg deals with peers that have signalled they are done. It is
|
|
// invoked from the peerHandler goroutine.
|
|
func (s *server) handleDonePeerMsg(state *peerState, sp *serverPeer) {
|
|
var list map[int32]*serverPeer
|
|
if sp.persistent {
|
|
list = state.persistentPeers
|
|
} else if sp.Inbound() {
|
|
list = state.inboundPeers
|
|
} else {
|
|
list = state.outboundPeers
|
|
}
|
|
|
|
// Regardless of whether the peer was found in our list, we'll inform
|
|
// our connection manager about the disconnection. This can happen if we
|
|
// process a peer's `done` message before its `add`.
|
|
if !sp.Inbound() {
|
|
if sp.persistent {
|
|
s.connManager.Disconnect(sp.connReq.ID())
|
|
} else {
|
|
s.connManager.Remove(sp.connReq.ID())
|
|
go s.connManager.NewConnReq()
|
|
}
|
|
}
|
|
|
|
if _, ok := list[sp.ID()]; ok {
|
|
if !sp.Inbound() && sp.VersionKnown() {
|
|
state.outboundGroups[addrmgr.GroupKey(sp.NA())]--
|
|
}
|
|
delete(list, sp.ID())
|
|
srvrLog.Debugf("Removed peer %s", sp)
|
|
return
|
|
}
|
|
}
|
|
|
|
// handleBanPeerMsg deals with banning peers. It is invoked from the
|
|
// peerHandler goroutine.
|
|
func (s *server) handleBanPeerMsg(state *peerState, sp *serverPeer) {
|
|
host, _, err := net.SplitHostPort(sp.Addr())
|
|
if err != nil {
|
|
srvrLog.Debugf("can't split ban peer %s %v", sp.Addr(), err)
|
|
return
|
|
}
|
|
direction := directionString(sp.Inbound())
|
|
srvrLog.Infof("Banned peer %s (%s) for %v", host, direction,
|
|
cfg.BanDuration)
|
|
state.banned[host] = time.Now().Add(cfg.BanDuration)
|
|
}
|
|
|
|
// handleRelayInvMsg deals with relaying inventory to peers that are not already
|
|
// known to have it. It is invoked from the peerHandler goroutine.
|
|
func (s *server) handleRelayInvMsg(state *peerState, msg relayMsg) {
|
|
state.forAllPeers(func(sp *serverPeer) {
|
|
if !sp.Connected() {
|
|
return
|
|
}
|
|
|
|
// If the inventory is a block and the peer prefers headers,
|
|
// generate and send a headers message instead of an inventory
|
|
// message.
|
|
if msg.invVect.Type == wire.InvTypeBlock && sp.WantsHeaders() {
|
|
blockHeader, ok := msg.data.(wire.BlockHeader)
|
|
if !ok {
|
|
peerLog.Warnf("Underlying data for headers" +
|
|
" is not a block header")
|
|
return
|
|
}
|
|
msgHeaders := wire.NewMsgHeaders()
|
|
if err := msgHeaders.AddBlockHeader(&blockHeader); err != nil {
|
|
peerLog.Errorf("Failed to add block"+
|
|
" header: %v", err)
|
|
return
|
|
}
|
|
sp.QueueMessage(msgHeaders, nil)
|
|
return
|
|
}
|
|
|
|
if msg.invVect.Type == wire.InvTypeTx {
|
|
// Don't relay the transaction to the peer when it has
|
|
// transaction relaying disabled.
|
|
if sp.relayTxDisabled() {
|
|
return
|
|
}
|
|
|
|
txD, ok := msg.data.(*mempool.TxDesc)
|
|
if !ok {
|
|
peerLog.Warnf("Underlying data for tx inv "+
|
|
"relay is not a *mempool.TxDesc: %T",
|
|
msg.data)
|
|
return
|
|
}
|
|
|
|
// Don't relay the transaction if the transaction fee-per-kb
|
|
// is less than the peer's feefilter.
|
|
feeFilter := atomic.LoadInt64(&sp.feeFilter)
|
|
if feeFilter > 0 && txD.FeePerKB < feeFilter {
|
|
return
|
|
}
|
|
|
|
// Don't relay the transaction if there is a bloom
|
|
// filter loaded and the transaction doesn't match it.
|
|
if sp.filter.IsLoaded() {
|
|
if !sp.filter.MatchTxAndUpdate(txD.Tx) {
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// Queue the inventory to be relayed with the next batch.
|
|
// It will be ignored if the peer is already known to
|
|
// have the inventory.
|
|
sp.QueueInventory(msg.invVect)
|
|
})
|
|
}
|
|
|
|
// handleBroadcastMsg deals with broadcasting messages to peers. It is invoked
|
|
// from the peerHandler goroutine.
|
|
func (s *server) handleBroadcastMsg(state *peerState, bmsg *broadcastMsg) {
|
|
state.forAllPeers(func(sp *serverPeer) {
|
|
if !sp.Connected() {
|
|
return
|
|
}
|
|
|
|
for _, ep := range bmsg.excludePeers {
|
|
if sp == ep {
|
|
return
|
|
}
|
|
}
|
|
|
|
sp.QueueMessage(bmsg.message, nil)
|
|
})
|
|
}
|
|
|
|
type getConnCountMsg struct {
|
|
reply chan int32
|
|
}
|
|
|
|
type getPeersMsg struct {
|
|
reply chan []*serverPeer
|
|
}
|
|
|
|
type getOutboundGroup struct {
|
|
key string
|
|
reply chan int
|
|
}
|
|
|
|
type getAddedNodesMsg struct {
|
|
reply chan []*serverPeer
|
|
}
|
|
|
|
type disconnectNodeMsg struct {
|
|
cmp func(*serverPeer) bool
|
|
reply chan error
|
|
}
|
|
|
|
type connectNodeMsg struct {
|
|
addr string
|
|
permanent bool
|
|
reply chan error
|
|
}
|
|
|
|
type removeNodeMsg struct {
|
|
cmp func(*serverPeer) bool
|
|
reply chan error
|
|
}
|
|
|
|
// handleQuery is the central handler for all queries and commands from other
|
|
// goroutines related to peer state.
|
|
func (s *server) handleQuery(state *peerState, querymsg interface{}) {
|
|
switch msg := querymsg.(type) {
|
|
case getConnCountMsg:
|
|
nconnected := int32(0)
|
|
state.forAllPeers(func(sp *serverPeer) {
|
|
if sp.Connected() {
|
|
nconnected++
|
|
}
|
|
})
|
|
msg.reply <- nconnected
|
|
|
|
case getPeersMsg:
|
|
peers := make([]*serverPeer, 0, state.Count())
|
|
state.forAllPeers(func(sp *serverPeer) {
|
|
if !sp.Connected() {
|
|
return
|
|
}
|
|
peers = append(peers, sp)
|
|
})
|
|
msg.reply <- peers
|
|
|
|
case connectNodeMsg:
|
|
// TODO: duplicate oneshots?
|
|
// Limit max number of total peers.
|
|
if state.Count() >= cfg.MaxPeers {
|
|
msg.reply <- errors.New("max peers reached")
|
|
return
|
|
}
|
|
for _, peer := range state.persistentPeers {
|
|
if peer.Addr() == msg.addr {
|
|
if msg.permanent {
|
|
msg.reply <- errors.New("peer already connected")
|
|
} else {
|
|
msg.reply <- errors.New("peer exists as a permanent peer")
|
|
}
|
|
return
|
|
}
|
|
}
|
|
|
|
netAddr, err := addrStringToNetAddr(msg.addr)
|
|
if err != nil {
|
|
msg.reply <- err
|
|
return
|
|
}
|
|
|
|
// TODO: if too many, nuke a non-perm peer.
|
|
go s.connManager.Connect(&connmgr.ConnReq{
|
|
Addr: netAddr,
|
|
Permanent: msg.permanent,
|
|
})
|
|
msg.reply <- nil
|
|
case removeNodeMsg:
|
|
found := disconnectPeer(state.persistentPeers, msg.cmp, func(sp *serverPeer) {
|
|
// Keep group counts ok since we remove from
|
|
// the list now.
|
|
state.outboundGroups[addrmgr.GroupKey(sp.NA())]--
|
|
})
|
|
|
|
if found {
|
|
msg.reply <- nil
|
|
} else {
|
|
msg.reply <- errors.New("peer not found")
|
|
}
|
|
case getOutboundGroup:
|
|
count, ok := state.outboundGroups[msg.key]
|
|
if ok {
|
|
msg.reply <- count
|
|
} else {
|
|
msg.reply <- 0
|
|
}
|
|
// Request a list of the persistent (added) peers.
|
|
case getAddedNodesMsg:
|
|
// Respond with a slice of the relevant peers.
|
|
peers := make([]*serverPeer, 0, len(state.persistentPeers))
|
|
for _, sp := range state.persistentPeers {
|
|
peers = append(peers, sp)
|
|
}
|
|
msg.reply <- peers
|
|
case disconnectNodeMsg:
|
|
// Check inbound peers. We pass a nil callback since we don't
|
|
// require any additional actions on disconnect for inbound peers.
|
|
found := disconnectPeer(state.inboundPeers, msg.cmp, nil)
|
|
if found {
|
|
msg.reply <- nil
|
|
return
|
|
}
|
|
|
|
// Check outbound peers.
|
|
found = disconnectPeer(state.outboundPeers, msg.cmp, func(sp *serverPeer) {
|
|
// Keep group counts ok since we remove from
|
|
// the list now.
|
|
state.outboundGroups[addrmgr.GroupKey(sp.NA())]--
|
|
})
|
|
if found {
|
|
// If there are multiple outbound connections to the same
|
|
// ip:port, continue disconnecting them all until no such
|
|
// peers are found.
|
|
for found {
|
|
found = disconnectPeer(state.outboundPeers, msg.cmp, func(sp *serverPeer) {
|
|
state.outboundGroups[addrmgr.GroupKey(sp.NA())]--
|
|
})
|
|
}
|
|
msg.reply <- nil
|
|
return
|
|
}
|
|
|
|
msg.reply <- errors.New("peer not found")
|
|
}
|
|
}
|
|
|
|
// disconnectPeer attempts to drop the connection of a targeted peer in the
|
|
// passed peer list. Targets are identified via usage of the passed
|
|
// `compareFunc`, which should return `true` if the passed peer is the target
|
|
// peer. This function returns true on success and false if the peer is unable
|
|
// to be located. If the peer is found, and the passed callback: `whenFound'
|
|
// isn't nil, we call it with the peer as the argument before it is removed
|
|
// from the peerList, and is disconnected from the server.
|
|
func disconnectPeer(peerList map[int32]*serverPeer, compareFunc func(*serverPeer) bool, whenFound func(*serverPeer)) bool {
|
|
for addr, peer := range peerList {
|
|
if compareFunc(peer) {
|
|
if whenFound != nil {
|
|
whenFound(peer)
|
|
}
|
|
|
|
// This is ok because we are not continuing
|
|
// to iterate so won't corrupt the loop.
|
|
delete(peerList, addr)
|
|
peer.Disconnect()
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// newPeerConfig returns the configuration for the given serverPeer.
|
|
func newPeerConfig(sp *serverPeer) *peer.Config {
|
|
return &peer.Config{
|
|
Listeners: peer.MessageListeners{
|
|
OnVersion: sp.OnVersion,
|
|
OnVerAck: sp.OnVerAck,
|
|
OnMemPool: sp.OnMemPool,
|
|
OnTx: sp.OnTx,
|
|
OnBlock: sp.OnBlock,
|
|
OnInv: sp.OnInv,
|
|
OnHeaders: sp.OnHeaders,
|
|
OnGetData: sp.OnGetData,
|
|
OnGetBlocks: sp.OnGetBlocks,
|
|
OnGetHeaders: sp.OnGetHeaders,
|
|
OnGetCFilters: sp.OnGetCFilters,
|
|
OnGetCFHeaders: sp.OnGetCFHeaders,
|
|
OnGetCFCheckpt: sp.OnGetCFCheckpt,
|
|
OnFeeFilter: sp.OnFeeFilter,
|
|
OnFilterAdd: sp.OnFilterAdd,
|
|
OnFilterClear: sp.OnFilterClear,
|
|
OnFilterLoad: sp.OnFilterLoad,
|
|
OnGetAddr: sp.OnGetAddr,
|
|
OnAddr: sp.OnAddr,
|
|
OnRead: sp.OnRead,
|
|
OnWrite: sp.OnWrite,
|
|
OnNotFound: sp.OnNotFound,
|
|
|
|
// Note: The reference client currently bans peers that send alerts
|
|
// not signed with its key. We could verify against their key, but
|
|
// since the reference client is currently unwilling to support
|
|
// other implementations' alert messages, we will not relay theirs.
|
|
OnAlert: nil,
|
|
},
|
|
NewestBlock: sp.newestBlock,
|
|
HostToNetAddress: sp.server.addrManager.HostToNetAddress,
|
|
Proxy: cfg.Proxy,
|
|
UserAgentName: userAgentName,
|
|
UserAgentVersion: userAgentVersion,
|
|
UserAgentComments: cfg.UserAgentComments,
|
|
ChainParams: sp.server.chainParams,
|
|
Services: sp.server.services,
|
|
DisableRelayTx: cfg.BlocksOnly,
|
|
ProtocolVersion: peer.MaxProtocolVersion,
|
|
TrickleInterval: cfg.TrickleInterval,
|
|
DisableStallHandler: cfg.DisableStallHandler,
|
|
}
|
|
}
|
|
|
|
// inboundPeerConnected is invoked by the connection manager when a new inbound
|
|
// connection is established. It initializes a new inbound server peer
|
|
// instance, associates it with the connection, and starts a goroutine to wait
|
|
// for disconnection.
|
|
func (s *server) inboundPeerConnected(conn net.Conn) {
|
|
sp := newServerPeer(s, false)
|
|
sp.isWhitelisted = isWhitelisted(conn.RemoteAddr())
|
|
sp.Peer = peer.NewInboundPeer(newPeerConfig(sp))
|
|
sp.AssociateConnection(conn)
|
|
go s.peerDoneHandler(sp)
|
|
}
|
|
|
|
// outboundPeerConnected is invoked by the connection manager when a new
|
|
// outbound connection is established. It initializes a new outbound server
|
|
// peer instance, associates it with the relevant state such as the connection
|
|
// request instance and the connection itself, and finally notifies the address
|
|
// manager of the attempt.
|
|
func (s *server) outboundPeerConnected(c *connmgr.ConnReq, conn net.Conn) {
|
|
sp := newServerPeer(s, c.Permanent)
|
|
p, err := peer.NewOutboundPeer(newPeerConfig(sp), c.Addr.String())
|
|
if err != nil {
|
|
srvrLog.Debugf("Cannot create outbound peer %s: %v", c.Addr, err)
|
|
if c.Permanent {
|
|
s.connManager.Disconnect(c.ID())
|
|
} else {
|
|
s.connManager.Remove(c.ID())
|
|
go s.connManager.NewConnReq()
|
|
}
|
|
return
|
|
}
|
|
sp.Peer = p
|
|
sp.connReq = c
|
|
sp.isWhitelisted = isWhitelisted(conn.RemoteAddr())
|
|
sp.AssociateConnection(conn)
|
|
go s.peerDoneHandler(sp)
|
|
}
|
|
|
|
// peerDoneHandler handles peer disconnects by notifiying the server that it's
|
|
// done along with other performing other desirable cleanup.
|
|
func (s *server) peerDoneHandler(sp *serverPeer) {
|
|
sp.WaitForDisconnect()
|
|
s.donePeers <- sp
|
|
|
|
// Only tell sync manager we are gone if we ever told it we existed.
|
|
if sp.VerAckReceived() {
|
|
s.syncManager.DonePeer(sp.Peer)
|
|
|
|
// Evict any remaining orphans that were sent by the peer.
|
|
numEvicted := s.txMemPool.RemoveOrphansByTag(mempool.Tag(sp.ID()))
|
|
if numEvicted > 0 {
|
|
txmpLog.Debugf("Evicted %d %s from peer %v (id %d)",
|
|
numEvicted, pickNoun(numEvicted, "orphan",
|
|
"orphans"), sp, sp.ID())
|
|
}
|
|
}
|
|
close(sp.quit)
|
|
}
|
|
|
|
// peerHandler is used to handle peer operations such as adding and removing
|
|
// peers to and from the server, banning peers, and broadcasting messages to
|
|
// peers. It must be run in a goroutine.
|
|
func (s *server) peerHandler() {
|
|
// Start the address manager and sync manager, both of which are needed
|
|
// by peers. This is done here since their lifecycle is closely tied
|
|
// to this handler and rather than adding more channels to sychronize
|
|
// things, it's easier and slightly faster to simply start and stop them
|
|
// in this handler.
|
|
s.addrManager.Start()
|
|
s.syncManager.Start()
|
|
|
|
srvrLog.Tracef("Starting peer handler")
|
|
|
|
state := &peerState{
|
|
inboundPeers: make(map[int32]*serverPeer),
|
|
persistentPeers: make(map[int32]*serverPeer),
|
|
outboundPeers: make(map[int32]*serverPeer),
|
|
banned: make(map[string]time.Time),
|
|
outboundGroups: make(map[string]int),
|
|
}
|
|
|
|
if !cfg.DisableDNSSeed {
|
|
// Add peers discovered through DNS to the address manager.
|
|
connmgr.SeedFromDNS(activeNetParams.Params, defaultRequiredServices,
|
|
btcdLookup, func(addrs []*wire.NetAddress) {
|
|
// Bitcoind uses a lookup of the dns seeder here. This
|
|
// is rather strange since the values looked up by the
|
|
// DNS seed lookups will vary quite a lot.
|
|
// to replicate this behaviour we put all addresses as
|
|
// having come from the first one.
|
|
s.addrManager.AddAddresses(addrs, addrs[0])
|
|
})
|
|
}
|
|
go s.connManager.Start()
|
|
|
|
out:
|
|
for {
|
|
select {
|
|
// New peers connected to the server.
|
|
case p := <-s.newPeers:
|
|
s.handleAddPeerMsg(state, p)
|
|
|
|
// Disconnected peers.
|
|
case p := <-s.donePeers:
|
|
s.handleDonePeerMsg(state, p)
|
|
|
|
// Block accepted in mainchain or orphan, update peer height.
|
|
case umsg := <-s.peerHeightsUpdate:
|
|
s.handleUpdatePeerHeights(state, umsg)
|
|
|
|
// Peer to ban.
|
|
case p := <-s.banPeers:
|
|
s.handleBanPeerMsg(state, p)
|
|
|
|
// New inventory to potentially be relayed to other peers.
|
|
case invMsg := <-s.relayInv:
|
|
s.handleRelayInvMsg(state, invMsg)
|
|
|
|
// Message to broadcast to all connected peers except those
|
|
// which are excluded by the message.
|
|
case bmsg := <-s.broadcast:
|
|
s.handleBroadcastMsg(state, &bmsg)
|
|
|
|
case qmsg := <-s.query:
|
|
s.handleQuery(state, qmsg)
|
|
|
|
case <-s.quit:
|
|
// Disconnect all peers on server shutdown.
|
|
state.forAllPeers(func(sp *serverPeer) {
|
|
srvrLog.Tracef("Shutdown peer %s", sp)
|
|
sp.Disconnect()
|
|
})
|
|
break out
|
|
}
|
|
}
|
|
|
|
s.connManager.Stop()
|
|
s.syncManager.Stop()
|
|
s.addrManager.Stop()
|
|
|
|
// Drain channels before exiting so nothing is left waiting around
|
|
// to send.
|
|
cleanup:
|
|
for {
|
|
select {
|
|
case <-s.newPeers:
|
|
case <-s.donePeers:
|
|
case <-s.peerHeightsUpdate:
|
|
case <-s.relayInv:
|
|
case <-s.broadcast:
|
|
case <-s.query:
|
|
default:
|
|
break cleanup
|
|
}
|
|
}
|
|
s.wg.Done()
|
|
srvrLog.Tracef("Peer handler done")
|
|
}
|
|
|
|
// AddPeer adds a new peer that has already been connected to the server.
|
|
func (s *server) AddPeer(sp *serverPeer) {
|
|
s.newPeers <- sp
|
|
}
|
|
|
|
// BanPeer bans a peer that has already been connected to the server by ip.
|
|
func (s *server) BanPeer(sp *serverPeer) {
|
|
s.banPeers <- sp
|
|
}
|
|
|
|
// RelayInventory relays the passed inventory vector to all connected peers
|
|
// that are not already known to have it.
|
|
func (s *server) RelayInventory(invVect *wire.InvVect, data interface{}) {
|
|
s.relayInv <- relayMsg{invVect: invVect, data: data}
|
|
}
|
|
|
|
// BroadcastMessage sends msg to all peers currently connected to the server
|
|
// except those in the passed peers to exclude.
|
|
func (s *server) BroadcastMessage(msg wire.Message, exclPeers ...*serverPeer) {
|
|
// XXX: Need to determine if this is an alert that has already been
|
|
// broadcast and refrain from broadcasting again.
|
|
bmsg := broadcastMsg{message: msg, excludePeers: exclPeers}
|
|
s.broadcast <- bmsg
|
|
}
|
|
|
|
// ConnectedCount returns the number of currently connected peers.
|
|
func (s *server) ConnectedCount() int32 {
|
|
replyChan := make(chan int32)
|
|
|
|
s.query <- getConnCountMsg{reply: replyChan}
|
|
|
|
return <-replyChan
|
|
}
|
|
|
|
// OutboundGroupCount returns the number of peers connected to the given
|
|
// outbound group key.
|
|
func (s *server) OutboundGroupCount(key string) int {
|
|
replyChan := make(chan int)
|
|
s.query <- getOutboundGroup{key: key, reply: replyChan}
|
|
return <-replyChan
|
|
}
|
|
|
|
// AddBytesSent adds the passed number of bytes to the total bytes sent counter
|
|
// for the server. It is safe for concurrent access.
|
|
func (s *server) AddBytesSent(bytesSent uint64) {
|
|
atomic.AddUint64(&s.bytesSent, bytesSent)
|
|
}
|
|
|
|
// AddBytesReceived adds the passed number of bytes to the total bytes received
|
|
// counter for the server. It is safe for concurrent access.
|
|
func (s *server) AddBytesReceived(bytesReceived uint64) {
|
|
atomic.AddUint64(&s.bytesReceived, bytesReceived)
|
|
}
|
|
|
|
// NetTotals returns the sum of all bytes received and sent across the network
|
|
// for all peers. It is safe for concurrent access.
|
|
func (s *server) NetTotals() (uint64, uint64) {
|
|
return atomic.LoadUint64(&s.bytesReceived),
|
|
atomic.LoadUint64(&s.bytesSent)
|
|
}
|
|
|
|
// UpdatePeerHeights updates the heights of all peers who have have announced
|
|
// the latest connected main chain block, or a recognized orphan. These height
|
|
// updates allow us to dynamically refresh peer heights, ensuring sync peer
|
|
// selection has access to the latest block heights for each peer.
|
|
func (s *server) UpdatePeerHeights(latestBlkHash *chainhash.Hash, latestHeight int32, updateSource *peer.Peer) {
|
|
s.peerHeightsUpdate <- updatePeerHeightsMsg{
|
|
newHash: latestBlkHash,
|
|
newHeight: latestHeight,
|
|
originPeer: updateSource,
|
|
}
|
|
}
|
|
|
|
// rebroadcastHandler keeps track of user submitted inventories that we have
|
|
// sent out but have not yet made it into a block. We periodically rebroadcast
|
|
// them in case our peers restarted or otherwise lost track of them.
|
|
func (s *server) rebroadcastHandler() {
|
|
// Wait 5 min before first tx rebroadcast.
|
|
timer := time.NewTimer(5 * time.Minute)
|
|
pendingInvs := make(map[wire.InvVect]interface{})
|
|
|
|
out:
|
|
for {
|
|
select {
|
|
case riv := <-s.modifyRebroadcastInv:
|
|
switch msg := riv.(type) {
|
|
// Incoming InvVects are added to our map of RPC txs.
|
|
case broadcastInventoryAdd:
|
|
pendingInvs[*msg.invVect] = msg.data
|
|
|
|
// When an InvVect has been added to a block, we can
|
|
// now remove it, if it was present.
|
|
case broadcastInventoryDel:
|
|
delete(pendingInvs, *msg)
|
|
}
|
|
|
|
case <-timer.C:
|
|
// Any inventory we have has not made it into a block
|
|
// yet. We periodically resubmit them until they have.
|
|
for iv, data := range pendingInvs {
|
|
ivCopy := iv
|
|
s.RelayInventory(&ivCopy, data)
|
|
}
|
|
|
|
// Process at a random time up to 30mins (in seconds)
|
|
// in the future.
|
|
timer.Reset(time.Second *
|
|
time.Duration(randomUint16Number(1800)))
|
|
|
|
case <-s.quit:
|
|
break out
|
|
}
|
|
}
|
|
|
|
timer.Stop()
|
|
|
|
// Drain channels before exiting so nothing is left waiting around
|
|
// to send.
|
|
cleanup:
|
|
for {
|
|
select {
|
|
case <-s.modifyRebroadcastInv:
|
|
default:
|
|
break cleanup
|
|
}
|
|
}
|
|
s.wg.Done()
|
|
}
|
|
|
|
// Start begins accepting connections from peers.
|
|
func (s *server) Start() {
|
|
// Already started?
|
|
if atomic.AddInt32(&s.started, 1) != 1 {
|
|
return
|
|
}
|
|
|
|
srvrLog.Trace("Starting server")
|
|
|
|
// Server startup time. Used for the uptime command for uptime calculation.
|
|
s.startupTime = time.Now().Unix()
|
|
|
|
// Start the peer handler which in turn starts the address and block
|
|
// managers.
|
|
s.wg.Add(1)
|
|
go s.peerHandler()
|
|
|
|
if s.nat != nil {
|
|
s.wg.Add(1)
|
|
go s.upnpUpdateThread()
|
|
}
|
|
|
|
if !cfg.DisableRPC {
|
|
s.wg.Add(1)
|
|
|
|
// Start the rebroadcastHandler, which ensures user tx received by
|
|
// the RPC server are rebroadcast until being included in a block.
|
|
go s.rebroadcastHandler()
|
|
|
|
s.rpcServer.Start()
|
|
}
|
|
|
|
// Start the CPU miner if generation is enabled.
|
|
if cfg.Generate {
|
|
s.cpuMiner.Start()
|
|
}
|
|
}
|
|
|
|
// Stop gracefully shuts down the server by stopping and disconnecting all
|
|
// peers and the main listener.
|
|
func (s *server) Stop() error {
|
|
// Make sure this only happens once.
|
|
if atomic.AddInt32(&s.shutdown, 1) != 1 {
|
|
srvrLog.Infof("Server is already in the process of shutting down")
|
|
return nil
|
|
}
|
|
|
|
srvrLog.Warnf("Server shutting down")
|
|
|
|
// Stop the CPU miner if needed
|
|
s.cpuMiner.Stop()
|
|
|
|
// Shutdown the RPC server if it's not disabled.
|
|
if !cfg.DisableRPC {
|
|
s.rpcServer.Stop()
|
|
}
|
|
|
|
// Save fee estimator state in the database.
|
|
s.db.Update(func(tx database.Tx) error {
|
|
metadata := tx.Metadata()
|
|
metadata.Put(mempool.EstimateFeeDatabaseKey, s.feeEstimator.Save())
|
|
|
|
return nil
|
|
})
|
|
|
|
// Signal the remaining goroutines to quit.
|
|
close(s.quit)
|
|
return nil
|
|
}
|
|
|
|
// WaitForShutdown blocks until the main listener and peer handlers are stopped.
|
|
func (s *server) WaitForShutdown() {
|
|
s.wg.Wait()
|
|
}
|
|
|
|
// ScheduleShutdown schedules a server shutdown after the specified duration.
|
|
// It also dynamically adjusts how often to warn the server is going down based
|
|
// on remaining duration.
|
|
func (s *server) ScheduleShutdown(duration time.Duration) {
|
|
// Don't schedule shutdown more than once.
|
|
if atomic.AddInt32(&s.shutdownSched, 1) != 1 {
|
|
return
|
|
}
|
|
srvrLog.Warnf("Server shutdown in %v", duration)
|
|
go func() {
|
|
remaining := duration
|
|
tickDuration := dynamicTickDuration(remaining)
|
|
done := time.After(remaining)
|
|
ticker := time.NewTicker(tickDuration)
|
|
out:
|
|
for {
|
|
select {
|
|
case <-done:
|
|
ticker.Stop()
|
|
s.Stop()
|
|
break out
|
|
case <-ticker.C:
|
|
remaining = remaining - tickDuration
|
|
if remaining < time.Second {
|
|
continue
|
|
}
|
|
|
|
// Change tick duration dynamically based on remaining time.
|
|
newDuration := dynamicTickDuration(remaining)
|
|
if tickDuration != newDuration {
|
|
tickDuration = newDuration
|
|
ticker.Stop()
|
|
ticker = time.NewTicker(tickDuration)
|
|
}
|
|
srvrLog.Warnf("Server shutdown in %v", remaining)
|
|
}
|
|
}
|
|
}()
|
|
}
|
|
|
|
// parseListeners determines whether each listen address is IPv4 and IPv6 and
|
|
// returns a slice of appropriate net.Addrs to listen on with TCP. It also
|
|
// properly detects addresses which apply to "all interfaces" and adds the
|
|
// address as both IPv4 and IPv6.
|
|
func parseListeners(addrs []string) ([]net.Addr, error) {
|
|
netAddrs := make([]net.Addr, 0, len(addrs)*2)
|
|
for _, addr := range addrs {
|
|
host, _, err := net.SplitHostPort(addr)
|
|
if err != nil {
|
|
// Shouldn't happen due to already being normalized.
|
|
return nil, err
|
|
}
|
|
|
|
// Empty host or host of * on plan9 is both IPv4 and IPv6.
|
|
if host == "" || (host == "*" && runtime.GOOS == "plan9") {
|
|
netAddrs = append(netAddrs, simpleAddr{net: "tcp4", addr: addr})
|
|
netAddrs = append(netAddrs, simpleAddr{net: "tcp6", addr: addr})
|
|
continue
|
|
}
|
|
|
|
// Strip IPv6 zone id if present since net.ParseIP does not
|
|
// handle it.
|
|
zoneIndex := strings.LastIndex(host, "%")
|
|
if zoneIndex > 0 {
|
|
host = host[:zoneIndex]
|
|
}
|
|
|
|
// Parse the IP.
|
|
ip := net.ParseIP(host)
|
|
if ip == nil {
|
|
return nil, fmt.Errorf("'%s' is not a valid IP address", host)
|
|
}
|
|
|
|
// To4 returns nil when the IP is not an IPv4 address, so use
|
|
// this determine the address type.
|
|
if ip.To4() == nil {
|
|
netAddrs = append(netAddrs, simpleAddr{net: "tcp6", addr: addr})
|
|
} else {
|
|
netAddrs = append(netAddrs, simpleAddr{net: "tcp4", addr: addr})
|
|
}
|
|
}
|
|
return netAddrs, nil
|
|
}
|
|
|
|
func (s *server) upnpUpdateThread() {
|
|
// Go off immediately to prevent code duplication, thereafter we renew
|
|
// lease every 15 minutes.
|
|
timer := time.NewTimer(0 * time.Second)
|
|
lport, _ := strconv.ParseInt(activeNetParams.DefaultPort, 10, 16)
|
|
first := true
|
|
out:
|
|
for {
|
|
select {
|
|
case <-timer.C:
|
|
// TODO: pick external port more cleverly
|
|
// TODO: know which ports we are listening to on an external net.
|
|
// TODO: if specific listen port doesn't work then ask for wildcard
|
|
// listen port?
|
|
// XXX this assumes timeout is in seconds.
|
|
listenPort, err := s.nat.AddPortMapping("tcp", int(lport), int(lport),
|
|
"btcd listen port", 20*60)
|
|
if err != nil {
|
|
srvrLog.Warnf("can't add UPnP port mapping: %v", err)
|
|
}
|
|
if first && err == nil {
|
|
// TODO: look this up periodically to see if upnp domain changed
|
|
// and so did ip.
|
|
externalip, err := s.nat.GetExternalAddress()
|
|
if err != nil {
|
|
srvrLog.Warnf("UPnP can't get external address: %v", err)
|
|
continue out
|
|
}
|
|
na := wire.NewNetAddressIPPort(externalip, uint16(listenPort),
|
|
s.services)
|
|
err = s.addrManager.AddLocalAddress(na, addrmgr.UpnpPrio)
|
|
if err != nil {
|
|
// XXX DeletePortMapping?
|
|
}
|
|
srvrLog.Warnf("Successfully bound via UPnP to %s", addrmgr.NetAddressKey(na))
|
|
first = false
|
|
}
|
|
timer.Reset(time.Minute * 15)
|
|
case <-s.quit:
|
|
break out
|
|
}
|
|
}
|
|
|
|
timer.Stop()
|
|
|
|
if err := s.nat.DeletePortMapping("tcp", int(lport), int(lport)); err != nil {
|
|
srvrLog.Warnf("unable to remove UPnP port mapping: %v", err)
|
|
} else {
|
|
srvrLog.Debugf("successfully disestablished UPnP port mapping")
|
|
}
|
|
|
|
s.wg.Done()
|
|
}
|
|
|
|
// setupRPCListeners returns a slice of listeners that are configured for use
|
|
// with the RPC server depending on the configuration settings for listen
|
|
// addresses and TLS.
|
|
func setupRPCListeners() ([]net.Listener, error) {
|
|
// Setup TLS if not disabled.
|
|
listenFunc := net.Listen
|
|
if !cfg.DisableTLS {
|
|
// Generate the TLS cert and key file if both don't already
|
|
// exist.
|
|
if !fileExists(cfg.RPCKey) && !fileExists(cfg.RPCCert) {
|
|
err := genCertPair(cfg.RPCCert, cfg.RPCKey)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
keypair, err := tls.LoadX509KeyPair(cfg.RPCCert, cfg.RPCKey)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
tlsConfig := tls.Config{
|
|
Certificates: []tls.Certificate{keypair},
|
|
MinVersion: tls.VersionTLS12,
|
|
}
|
|
|
|
// Change the standard net.Listen function to the tls one.
|
|
listenFunc = func(net string, laddr string) (net.Listener, error) {
|
|
return tls.Listen(net, laddr, &tlsConfig)
|
|
}
|
|
}
|
|
|
|
netAddrs, err := parseListeners(cfg.RPCListeners)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
listeners := make([]net.Listener, 0, len(netAddrs))
|
|
for _, addr := range netAddrs {
|
|
listener, err := listenFunc(addr.Network(), addr.String())
|
|
if err != nil {
|
|
rpcsLog.Warnf("Can't listen on %s: %v", addr, err)
|
|
continue
|
|
}
|
|
listeners = append(listeners, listener)
|
|
}
|
|
|
|
return listeners, nil
|
|
}
|
|
|
|
// newServer returns a new btcd server configured to listen on addr for the
|
|
// bitcoin network type specified by chainParams. Use start to begin accepting
|
|
// connections from peers.
|
|
func newServer(listenAddrs, agentBlacklist, agentWhitelist []string,
|
|
db database.DB, chainParams *chaincfg.Params,
|
|
interrupt <-chan struct{}) (*server, error) {
|
|
|
|
services := defaultServices
|
|
if cfg.NoPeerBloomFilters {
|
|
services &^= wire.SFNodeBloom
|
|
}
|
|
if cfg.NoCFilters {
|
|
services &^= wire.SFNodeCF
|
|
}
|
|
|
|
amgr := addrmgr.New(cfg.DataDir, btcdLookup)
|
|
|
|
var listeners []net.Listener
|
|
var nat NAT
|
|
if !cfg.DisableListen {
|
|
var err error
|
|
listeners, nat, err = initListeners(amgr, listenAddrs, services)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if len(listeners) == 0 {
|
|
return nil, errors.New("no valid listen address")
|
|
}
|
|
}
|
|
|
|
if len(agentBlacklist) > 0 {
|
|
srvrLog.Infof("User-agent blacklist %s", agentBlacklist)
|
|
}
|
|
if len(agentWhitelist) > 0 {
|
|
srvrLog.Infof("User-agent whitelist %s", agentWhitelist)
|
|
}
|
|
|
|
s := server{
|
|
chainParams: chainParams,
|
|
addrManager: amgr,
|
|
newPeers: make(chan *serverPeer, cfg.MaxPeers),
|
|
donePeers: make(chan *serverPeer, cfg.MaxPeers),
|
|
banPeers: make(chan *serverPeer, cfg.MaxPeers),
|
|
query: make(chan interface{}),
|
|
relayInv: make(chan relayMsg, cfg.MaxPeers),
|
|
broadcast: make(chan broadcastMsg, cfg.MaxPeers),
|
|
quit: make(chan struct{}),
|
|
modifyRebroadcastInv: make(chan interface{}),
|
|
peerHeightsUpdate: make(chan updatePeerHeightsMsg),
|
|
nat: nat,
|
|
db: db,
|
|
timeSource: blockchain.NewMedianTime(),
|
|
services: services,
|
|
sigCache: txscript.NewSigCache(cfg.SigCacheMaxSize),
|
|
hashCache: txscript.NewHashCache(cfg.SigCacheMaxSize),
|
|
cfCheckptCaches: make(map[wire.FilterType][]cfHeaderKV),
|
|
agentBlacklist: agentBlacklist,
|
|
agentWhitelist: agentWhitelist,
|
|
}
|
|
|
|
// Create the transaction and address indexes if needed.
|
|
//
|
|
// CAUTION: the txindex needs to be first in the indexes array because
|
|
// the addrindex uses data from the txindex during catchup. If the
|
|
// addrindex is run first, it may not have the transactions from the
|
|
// current block indexed.
|
|
var indexes []indexers.Indexer
|
|
if cfg.TxIndex || cfg.AddrIndex {
|
|
// Enable transaction index if address index is enabled since it
|
|
// requires it.
|
|
if !cfg.TxIndex {
|
|
indxLog.Infof("Transaction index enabled because it " +
|
|
"is required by the address index")
|
|
cfg.TxIndex = true
|
|
} else {
|
|
indxLog.Info("Transaction index is enabled")
|
|
}
|
|
|
|
s.txIndex = indexers.NewTxIndex(db)
|
|
indexes = append(indexes, s.txIndex)
|
|
}
|
|
if cfg.AddrIndex {
|
|
indxLog.Info("Address index is enabled")
|
|
s.addrIndex = indexers.NewAddrIndex(db, chainParams)
|
|
indexes = append(indexes, s.addrIndex)
|
|
}
|
|
if !cfg.NoCFilters {
|
|
indxLog.Info("Committed filter index is enabled")
|
|
s.cfIndex = indexers.NewCfIndex(db, chainParams)
|
|
indexes = append(indexes, s.cfIndex)
|
|
}
|
|
|
|
// Create an index manager if any of the optional indexes are enabled.
|
|
var indexManager blockchain.IndexManager
|
|
if len(indexes) > 0 {
|
|
indexManager = indexers.NewManager(db, indexes)
|
|
}
|
|
|
|
// Merge given checkpoints with the default ones unless they are disabled.
|
|
var checkpoints []chaincfg.Checkpoint
|
|
if !cfg.DisableCheckpoints {
|
|
checkpoints = mergeCheckpoints(s.chainParams.Checkpoints, cfg.addCheckpoints)
|
|
}
|
|
|
|
// Create a new block chain instance with the appropriate configuration.
|
|
var err error
|
|
s.chain, err = blockchain.New(&blockchain.Config{
|
|
DB: s.db,
|
|
Interrupt: interrupt,
|
|
ChainParams: s.chainParams,
|
|
Checkpoints: checkpoints,
|
|
TimeSource: s.timeSource,
|
|
SigCache: s.sigCache,
|
|
IndexManager: indexManager,
|
|
HashCache: s.hashCache,
|
|
})
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Search for a FeeEstimator state in the database. If none can be found
|
|
// or if it cannot be loaded, create a new one.
|
|
db.Update(func(tx database.Tx) error {
|
|
metadata := tx.Metadata()
|
|
feeEstimationData := metadata.Get(mempool.EstimateFeeDatabaseKey)
|
|
if feeEstimationData != nil {
|
|
// delete it from the database so that we don't try to restore the
|
|
// same thing again somehow.
|
|
metadata.Delete(mempool.EstimateFeeDatabaseKey)
|
|
|
|
// If there is an error, log it and make a new fee estimator.
|
|
var err error
|
|
s.feeEstimator, err = mempool.RestoreFeeEstimator(feeEstimationData)
|
|
|
|
if err != nil {
|
|
peerLog.Errorf("Failed to restore fee estimator %v", err)
|
|
}
|
|
}
|
|
|
|
return nil
|
|
})
|
|
|
|
// If no feeEstimator has been found, or if the one that has been found
|
|
// is behind somehow, create a new one and start over.
|
|
if s.feeEstimator == nil || s.feeEstimator.LastKnownHeight() != s.chain.BestSnapshot().Height {
|
|
s.feeEstimator = mempool.NewFeeEstimator(
|
|
mempool.DefaultEstimateFeeMaxRollback,
|
|
mempool.DefaultEstimateFeeMinRegisteredBlocks)
|
|
}
|
|
|
|
txC := mempool.Config{
|
|
Policy: mempool.Policy{
|
|
DisableRelayPriority: cfg.NoRelayPriority,
|
|
AcceptNonStd: cfg.RelayNonStd,
|
|
FreeTxRelayLimit: cfg.FreeTxRelayLimit,
|
|
MaxOrphanTxs: cfg.MaxOrphanTxs,
|
|
MaxOrphanTxSize: defaultMaxOrphanTxSize,
|
|
MaxSigOpCostPerTx: blockchain.MaxBlockSigOpsCost / 4,
|
|
MinRelayTxFee: cfg.minRelayTxFee,
|
|
MaxTxVersion: 2,
|
|
RejectReplacement: cfg.RejectReplacement,
|
|
},
|
|
ChainParams: chainParams,
|
|
FetchUtxoView: s.chain.FetchUtxoView,
|
|
BestHeight: func() int32 { return s.chain.BestSnapshot().Height },
|
|
MedianTimePast: func() time.Time { return s.chain.BestSnapshot().MedianTime },
|
|
CalcSequenceLock: func(tx *btcutil.Tx, view *blockchain.UtxoViewpoint) (*blockchain.SequenceLock, error) {
|
|
return s.chain.CalcSequenceLock(tx, view, true)
|
|
},
|
|
IsDeploymentActive: s.chain.IsDeploymentActive,
|
|
SigCache: s.sigCache,
|
|
HashCache: s.hashCache,
|
|
AddrIndex: s.addrIndex,
|
|
FeeEstimator: s.feeEstimator,
|
|
}
|
|
s.txMemPool = mempool.New(&txC)
|
|
|
|
s.syncManager, err = netsync.New(&netsync.Config{
|
|
PeerNotifier: &s,
|
|
Chain: s.chain,
|
|
TxMemPool: s.txMemPool,
|
|
ChainParams: s.chainParams,
|
|
DisableCheckpoints: cfg.DisableCheckpoints,
|
|
MaxPeers: cfg.MaxPeers,
|
|
FeeEstimator: s.feeEstimator,
|
|
})
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Create the mining policy and block template generator based on the
|
|
// configuration options.
|
|
//
|
|
// NOTE: The CPU miner relies on the mempool, so the mempool has to be
|
|
// created before calling the function to create the CPU miner.
|
|
policy := mining.Policy{
|
|
BlockMinWeight: cfg.BlockMinWeight,
|
|
BlockMaxWeight: cfg.BlockMaxWeight,
|
|
BlockMinSize: cfg.BlockMinSize,
|
|
BlockMaxSize: cfg.BlockMaxSize,
|
|
BlockPrioritySize: cfg.BlockPrioritySize,
|
|
TxMinFreeFee: cfg.minRelayTxFee,
|
|
}
|
|
blockTemplateGenerator := mining.NewBlkTmplGenerator(&policy,
|
|
s.chainParams, s.txMemPool, s.chain, s.timeSource,
|
|
s.sigCache, s.hashCache)
|
|
s.cpuMiner = cpuminer.New(&cpuminer.Config{
|
|
ChainParams: chainParams,
|
|
BlockTemplateGenerator: blockTemplateGenerator,
|
|
MiningAddrs: cfg.miningAddrs,
|
|
ProcessBlock: s.syncManager.ProcessBlock,
|
|
ConnectedCount: s.ConnectedCount,
|
|
IsCurrent: s.syncManager.IsCurrent,
|
|
})
|
|
|
|
// Only setup a function to return new addresses to connect to when
|
|
// not running in connect-only mode. The simulation network is always
|
|
// in connect-only mode since it is only intended to connect to
|
|
// specified peers and actively avoid advertising and connecting to
|
|
// discovered peers in order to prevent it from becoming a public test
|
|
// network.
|
|
var newAddressFunc func() (net.Addr, error)
|
|
if !cfg.SimNet && len(cfg.ConnectPeers) == 0 {
|
|
newAddressFunc = func() (net.Addr, error) {
|
|
for tries := 0; tries < 100; tries++ {
|
|
addr := s.addrManager.GetAddress()
|
|
if addr == nil {
|
|
break
|
|
}
|
|
|
|
// Address will not be invalid, local or unroutable
|
|
// because addrmanager rejects those on addition.
|
|
// Just check that we don't already have an address
|
|
// in the same group so that we are not connecting
|
|
// to the same network segment at the expense of
|
|
// others.
|
|
key := addrmgr.GroupKey(addr.NetAddress())
|
|
if s.OutboundGroupCount(key) != 0 {
|
|
continue
|
|
}
|
|
|
|
// only allow recent nodes (10mins) after we failed 30
|
|
// times
|
|
if tries < 30 && time.Since(addr.LastAttempt()) < 10*time.Minute {
|
|
continue
|
|
}
|
|
|
|
// allow nondefault ports after 50 failed tries.
|
|
if tries < 50 && fmt.Sprintf("%d", addr.NetAddress().Port) !=
|
|
activeNetParams.DefaultPort {
|
|
continue
|
|
}
|
|
|
|
// Mark an attempt for the valid address.
|
|
s.addrManager.Attempt(addr.NetAddress())
|
|
|
|
addrString := addrmgr.NetAddressKey(addr.NetAddress())
|
|
return addrStringToNetAddr(addrString)
|
|
}
|
|
|
|
return nil, errors.New("no valid connect address")
|
|
}
|
|
}
|
|
|
|
// Create a connection manager.
|
|
targetOutbound := defaultTargetOutbound
|
|
if cfg.MaxPeers < targetOutbound {
|
|
targetOutbound = cfg.MaxPeers
|
|
}
|
|
cmgr, err := connmgr.New(&connmgr.Config{
|
|
Listeners: listeners,
|
|
OnAccept: s.inboundPeerConnected,
|
|
RetryDuration: connectionRetryInterval,
|
|
TargetOutbound: uint32(targetOutbound),
|
|
Dial: btcdDial,
|
|
OnConnection: s.outboundPeerConnected,
|
|
GetNewAddress: newAddressFunc,
|
|
})
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
s.connManager = cmgr
|
|
|
|
// Start up persistent peers.
|
|
permanentPeers := cfg.ConnectPeers
|
|
if len(permanentPeers) == 0 {
|
|
permanentPeers = cfg.AddPeers
|
|
}
|
|
for _, addr := range permanentPeers {
|
|
netAddr, err := addrStringToNetAddr(addr)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
go s.connManager.Connect(&connmgr.ConnReq{
|
|
Addr: netAddr,
|
|
Permanent: true,
|
|
})
|
|
}
|
|
|
|
if !cfg.DisableRPC {
|
|
// Setup listeners for the configured RPC listen addresses and
|
|
// TLS settings.
|
|
rpcListeners, err := setupRPCListeners()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if len(rpcListeners) == 0 {
|
|
return nil, errors.New("RPCS: No valid listen address")
|
|
}
|
|
|
|
s.rpcServer, err = newRPCServer(&rpcserverConfig{
|
|
Listeners: rpcListeners,
|
|
StartupTime: s.startupTime,
|
|
ConnMgr: &rpcConnManager{&s},
|
|
SyncMgr: &rpcSyncMgr{&s, s.syncManager},
|
|
TimeSource: s.timeSource,
|
|
Chain: s.chain,
|
|
ChainParams: chainParams,
|
|
DB: db,
|
|
TxMemPool: s.txMemPool,
|
|
Generator: blockTemplateGenerator,
|
|
CPUMiner: s.cpuMiner,
|
|
TxIndex: s.txIndex,
|
|
AddrIndex: s.addrIndex,
|
|
CfIndex: s.cfIndex,
|
|
FeeEstimator: s.feeEstimator,
|
|
})
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Signal process shutdown when the RPC server requests it.
|
|
go func() {
|
|
<-s.rpcServer.RequestedProcessShutdown()
|
|
shutdownRequestChannel <- struct{}{}
|
|
}()
|
|
}
|
|
|
|
return &s, nil
|
|
}
|
|
|
|
// initListeners initializes the configured net listeners and adds any bound
|
|
// addresses to the address manager. Returns the listeners and a NAT interface,
|
|
// which is non-nil if UPnP is in use.
|
|
func initListeners(amgr *addrmgr.AddrManager, listenAddrs []string, services wire.ServiceFlag) ([]net.Listener, NAT, error) {
|
|
// Listen for TCP connections at the configured addresses
|
|
netAddrs, err := parseListeners(listenAddrs)
|
|
if err != nil {
|
|
return nil, nil, err
|
|
}
|
|
|
|
listeners := make([]net.Listener, 0, len(netAddrs))
|
|
for _, addr := range netAddrs {
|
|
listener, err := net.Listen(addr.Network(), addr.String())
|
|
if err != nil {
|
|
srvrLog.Warnf("Can't listen on %s: %v", addr, err)
|
|
continue
|
|
}
|
|
listeners = append(listeners, listener)
|
|
}
|
|
|
|
var nat NAT
|
|
if len(cfg.ExternalIPs) != 0 {
|
|
defaultPort, err := strconv.ParseUint(activeNetParams.DefaultPort, 10, 16)
|
|
if err != nil {
|
|
srvrLog.Errorf("Can not parse default port %s for active chain: %v",
|
|
activeNetParams.DefaultPort, err)
|
|
return nil, nil, err
|
|
}
|
|
|
|
for _, sip := range cfg.ExternalIPs {
|
|
eport := uint16(defaultPort)
|
|
host, portstr, err := net.SplitHostPort(sip)
|
|
if err != nil {
|
|
// no port, use default.
|
|
host = sip
|
|
} else {
|
|
port, err := strconv.ParseUint(portstr, 10, 16)
|
|
if err != nil {
|
|
srvrLog.Warnf("Can not parse port from %s for "+
|
|
"externalip: %v", sip, err)
|
|
continue
|
|
}
|
|
eport = uint16(port)
|
|
}
|
|
na, err := amgr.HostToNetAddress(host, eport, services)
|
|
if err != nil {
|
|
srvrLog.Warnf("Not adding %s as externalip: %v", sip, err)
|
|
continue
|
|
}
|
|
|
|
err = amgr.AddLocalAddress(na, addrmgr.ManualPrio)
|
|
if err != nil {
|
|
amgrLog.Warnf("Skipping specified external IP: %v", err)
|
|
}
|
|
}
|
|
} else {
|
|
if cfg.Upnp {
|
|
var err error
|
|
nat, err = Discover()
|
|
if err != nil {
|
|
srvrLog.Warnf("Can't discover upnp: %v", err)
|
|
}
|
|
// nil nat here is fine, just means no upnp on network.
|
|
}
|
|
|
|
// Add bound addresses to address manager to be advertised to peers.
|
|
for _, listener := range listeners {
|
|
addr := listener.Addr().String()
|
|
err := addLocalAddress(amgr, addr, services)
|
|
if err != nil {
|
|
amgrLog.Warnf("Skipping bound address %s: %v", addr, err)
|
|
}
|
|
}
|
|
}
|
|
|
|
return listeners, nat, nil
|
|
}
|
|
|
|
// addrStringToNetAddr takes an address in the form of 'host:port' and returns
|
|
// a net.Addr which maps to the original address with any host names resolved
|
|
// to IP addresses. It also handles tor addresses properly by returning a
|
|
// net.Addr that encapsulates the address.
|
|
func addrStringToNetAddr(addr string) (net.Addr, error) {
|
|
host, strPort, err := net.SplitHostPort(addr)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
port, err := strconv.Atoi(strPort)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Skip if host is already an IP address.
|
|
if ip := net.ParseIP(host); ip != nil {
|
|
return &net.TCPAddr{
|
|
IP: ip,
|
|
Port: port,
|
|
}, nil
|
|
}
|
|
|
|
// Tor addresses cannot be resolved to an IP, so just return an onion
|
|
// address instead.
|
|
if strings.HasSuffix(host, ".onion") {
|
|
if cfg.NoOnion {
|
|
return nil, errors.New("tor has been disabled")
|
|
}
|
|
|
|
return &onionAddr{addr: addr}, nil
|
|
}
|
|
|
|
// Attempt to look up an IP address associated with the parsed host.
|
|
ips, err := btcdLookup(host)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if len(ips) == 0 {
|
|
return nil, fmt.Errorf("no addresses found for %s", host)
|
|
}
|
|
|
|
return &net.TCPAddr{
|
|
IP: ips[0],
|
|
Port: port,
|
|
}, nil
|
|
}
|
|
|
|
// addLocalAddress adds an address that this node is listening on to the
|
|
// address manager so that it may be relayed to peers.
|
|
func addLocalAddress(addrMgr *addrmgr.AddrManager, addr string, services wire.ServiceFlag) error {
|
|
host, portStr, err := net.SplitHostPort(addr)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
port, err := strconv.ParseUint(portStr, 10, 16)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
if ip := net.ParseIP(host); ip != nil && ip.IsUnspecified() {
|
|
// If bound to unspecified address, advertise all local interfaces
|
|
addrs, err := net.InterfaceAddrs()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
for _, addr := range addrs {
|
|
ifaceIP, _, err := net.ParseCIDR(addr.String())
|
|
if err != nil {
|
|
continue
|
|
}
|
|
|
|
// If bound to 0.0.0.0, do not add IPv6 interfaces and if bound to
|
|
// ::, do not add IPv4 interfaces.
|
|
if (ip.To4() == nil) != (ifaceIP.To4() == nil) {
|
|
continue
|
|
}
|
|
|
|
netAddr := wire.NewNetAddressIPPort(ifaceIP, uint16(port), services)
|
|
addrMgr.AddLocalAddress(netAddr, addrmgr.BoundPrio)
|
|
}
|
|
} else {
|
|
netAddr, err := addrMgr.HostToNetAddress(host, uint16(port), services)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
addrMgr.AddLocalAddress(netAddr, addrmgr.BoundPrio)
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// dynamicTickDuration is a convenience function used to dynamically choose a
|
|
// tick duration based on remaining time. It is primarily used during
|
|
// server shutdown to make shutdown warnings more frequent as the shutdown time
|
|
// approaches.
|
|
func dynamicTickDuration(remaining time.Duration) time.Duration {
|
|
switch {
|
|
case remaining <= time.Second*5:
|
|
return time.Second
|
|
case remaining <= time.Second*15:
|
|
return time.Second * 5
|
|
case remaining <= time.Minute:
|
|
return time.Second * 15
|
|
case remaining <= time.Minute*5:
|
|
return time.Minute
|
|
case remaining <= time.Minute*15:
|
|
return time.Minute * 5
|
|
case remaining <= time.Hour:
|
|
return time.Minute * 15
|
|
}
|
|
return time.Hour
|
|
}
|
|
|
|
// isWhitelisted returns whether the IP address is included in the whitelisted
|
|
// networks and IPs.
|
|
func isWhitelisted(addr net.Addr) bool {
|
|
if len(cfg.whitelists) == 0 {
|
|
return false
|
|
}
|
|
|
|
host, _, err := net.SplitHostPort(addr.String())
|
|
if err != nil {
|
|
srvrLog.Warnf("Unable to SplitHostPort on '%s': %v", addr, err)
|
|
return false
|
|
}
|
|
ip := net.ParseIP(host)
|
|
if ip == nil {
|
|
srvrLog.Warnf("Unable to parse IP '%s'", addr)
|
|
return false
|
|
}
|
|
|
|
for _, ipnet := range cfg.whitelists {
|
|
if ipnet.Contains(ip) {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// checkpointSorter implements sort.Interface to allow a slice of checkpoints to
|
|
// be sorted.
|
|
type checkpointSorter []chaincfg.Checkpoint
|
|
|
|
// Len returns the number of checkpoints in the slice. It is part of the
|
|
// sort.Interface implementation.
|
|
func (s checkpointSorter) Len() int {
|
|
return len(s)
|
|
}
|
|
|
|
// Swap swaps the checkpoints at the passed indices. It is part of the
|
|
// sort.Interface implementation.
|
|
func (s checkpointSorter) Swap(i, j int) {
|
|
s[i], s[j] = s[j], s[i]
|
|
}
|
|
|
|
// Less returns whether the checkpoint with index i should sort before the
|
|
// checkpoint with index j. It is part of the sort.Interface implementation.
|
|
func (s checkpointSorter) Less(i, j int) bool {
|
|
return s[i].Height < s[j].Height
|
|
}
|
|
|
|
// mergeCheckpoints returns two slices of checkpoints merged into one slice
|
|
// such that the checkpoints are sorted by height. In the case the additional
|
|
// checkpoints contain a checkpoint with the same height as a checkpoint in the
|
|
// default checkpoints, the additional checkpoint will take precedence and
|
|
// overwrite the default one.
|
|
func mergeCheckpoints(defaultCheckpoints, additional []chaincfg.Checkpoint) []chaincfg.Checkpoint {
|
|
// Create a map of the additional checkpoints to remove duplicates while
|
|
// leaving the most recently-specified checkpoint.
|
|
extra := make(map[int32]chaincfg.Checkpoint)
|
|
for _, checkpoint := range additional {
|
|
extra[checkpoint.Height] = checkpoint
|
|
}
|
|
|
|
// Add all default checkpoints that do not have an override in the
|
|
// additional checkpoints.
|
|
numDefault := len(defaultCheckpoints)
|
|
checkpoints := make([]chaincfg.Checkpoint, 0, numDefault+len(extra))
|
|
for _, checkpoint := range defaultCheckpoints {
|
|
if _, exists := extra[checkpoint.Height]; !exists {
|
|
checkpoints = append(checkpoints, checkpoint)
|
|
}
|
|
}
|
|
|
|
// Append the additional checkpoints and return the sorted results.
|
|
for _, checkpoint := range extra {
|
|
checkpoints = append(checkpoints, checkpoint)
|
|
}
|
|
sort.Sort(checkpointSorter(checkpoints))
|
|
return checkpoints
|
|
}
|
|
|
|
// HasUndesiredUserAgent determines whether the server should continue to pursue
|
|
// a connection with this peer based on its advertised user agent. It performs
|
|
// the following steps:
|
|
// 1) Reject the peer if it contains a blacklisted agent.
|
|
// 2) If no whitelist is provided, accept all user agents.
|
|
// 3) Accept the peer if it contains a whitelisted agent.
|
|
// 4) Reject all other peers.
|
|
func (sp *serverPeer) HasUndesiredUserAgent(blacklistedAgents,
|
|
whitelistedAgents []string) bool {
|
|
|
|
agent := sp.UserAgent()
|
|
|
|
// First, if peer's user agent contains any blacklisted substring, we
|
|
// will ignore the connection request.
|
|
for _, blacklistedAgent := range blacklistedAgents {
|
|
if strings.Contains(agent, blacklistedAgent) {
|
|
srvrLog.Debugf("Ignoring peer %s, user agent "+
|
|
"contains blacklisted user agent: %s", sp,
|
|
agent)
|
|
return true
|
|
}
|
|
}
|
|
|
|
// If no whitelist is provided, we will accept all user agents.
|
|
if len(whitelistedAgents) == 0 {
|
|
return false
|
|
}
|
|
|
|
// Peer's user agent passed blacklist. Now check to see if it contains
|
|
// one of our whitelisted user agents, if so accept.
|
|
for _, whitelistedAgent := range whitelistedAgents {
|
|
if strings.Contains(agent, whitelistedAgent) {
|
|
return false
|
|
}
|
|
}
|
|
|
|
// Otherwise, the peer's user agent was not included in our whitelist.
|
|
// Ignore just in case it could stall the initial block download.
|
|
srvrLog.Debugf("Ignoring peer %s, user agent: %s not found in "+
|
|
"whitelist", sp, agent)
|
|
|
|
return true
|
|
}
|