btcd/integration/bip0009_test.go
Olaoluwa Osuntokun b1893ed228 chaincfg+integration: add BIP0009 deployment parameters for segwit
This commit adds set of BIP0009 (Version Bits) deployment parameters
for all networks detailing the activation parameters for the segwit
soft-fork.

Additionally, the BIP0009 integration test has been updated to test for
the proper transitioning of version bits state for the segwit soft
fork. Finally, the `getblockchaininfo` test has also been updated to
properly display the state of segwit.
2017-08-13 23:17:40 -05:00

404 lines
15 KiB
Go

// Copyright (c) 2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
// This file is ignored during the regular tests due to the following build tag.
// +build rpctest
package integration
import (
"fmt"
"runtime"
"testing"
"time"
"github.com/btcsuite/btcd/blockchain"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/integration/rpctest"
)
const (
// vbLegacyBlockVersion is the highest legacy block version before the
// version bits scheme became active.
vbLegacyBlockVersion = 4
// vbTopBits defines the bits to set in the version to signal that the
// version bits scheme is being used.
vbTopBits = 0x20000000
)
// assertVersionBit gets the passed block hash from the given test harness and
// ensures its version either has the provided bit set or unset per the set
// flag.
func assertVersionBit(r *rpctest.Harness, t *testing.T, hash *chainhash.Hash, bit uint8, set bool) {
block, err := r.Node.GetBlock(hash)
if err != nil {
t.Fatalf("failed to retrieve block %v: %v", hash, err)
}
switch {
case set && block.Header.Version&(1<<bit) == 0:
_, _, line, _ := runtime.Caller(1)
t.Fatalf("assertion failed at line %d: block %s, version 0x%x "+
"does not have bit %d set", line, hash,
block.Header.Version, bit)
case !set && block.Header.Version&(1<<bit) != 0:
_, _, line, _ := runtime.Caller(1)
t.Fatalf("assertion failed at line %d: block %s, version 0x%x "+
"has bit %d set", line, hash, block.Header.Version, bit)
}
}
// assertChainHeight retrieves the current chain height from the given test
// harness and ensures it matches the provided expected height.
func assertChainHeight(r *rpctest.Harness, t *testing.T, expectedHeight uint32) {
height, err := r.Node.GetBlockCount()
if err != nil {
t.Fatalf("failed to retrieve block height: %v", err)
}
if uint32(height) != expectedHeight {
_, _, line, _ := runtime.Caller(1)
t.Fatalf("assertion failed at line %d: block height of %d "+
"is not the expected %d", line, height, expectedHeight)
}
}
// thresholdStateToStatus converts the passed threshold state to the equivalent
// status string returned in the getblockchaininfo RPC.
func thresholdStateToStatus(state blockchain.ThresholdState) (string, error) {
switch state {
case blockchain.ThresholdDefined:
return "defined", nil
case blockchain.ThresholdStarted:
return "started", nil
case blockchain.ThresholdLockedIn:
return "lockedin", nil
case blockchain.ThresholdActive:
return "active", nil
case blockchain.ThresholdFailed:
return "failed", nil
}
return "", fmt.Errorf("unrecognized threshold state: %v", state)
}
// assertSoftForkStatus retrieves the current blockchain info from the given
// test harness and ensures the provided soft fork key is both available and its
// status is the equivalent of the passed state.
func assertSoftForkStatus(r *rpctest.Harness, t *testing.T, forkKey string, state blockchain.ThresholdState) {
// Convert the expected threshold state into the equivalent
// getblockchaininfo RPC status string.
status, err := thresholdStateToStatus(state)
if err != nil {
_, _, line, _ := runtime.Caller(1)
t.Fatalf("assertion failed at line %d: unable to convert "+
"threshold state %v to string", line, state)
}
info, err := r.Node.GetBlockChainInfo()
if err != nil {
t.Fatalf("failed to retrieve chain info: %v", err)
}
// Ensure the key is available.
desc, ok := info.Bip9SoftForks[forkKey]
if !ok {
_, _, line, _ := runtime.Caller(1)
t.Fatalf("assertion failed at line %d: softfork status for %q "+
"is not in getblockchaininfo results", line, forkKey)
}
// Ensure the status it the expected value.
if desc.Status != status {
_, _, line, _ := runtime.Caller(1)
t.Fatalf("assertion failed at line %d: softfork status for %q "+
"is %v instead of expected %v", line, forkKey,
desc.Status, status)
}
}
// testBIP0009 ensures the BIP0009 soft fork mechanism follows the state
// transition rules set forth by the BIP for the provided soft fork key. It
// uses the regression test network to signal support and advance through the
// various threshold states including failure to achieve locked in status.
//
// See TestBIP0009 for an overview of what is tested.
//
// NOTE: This only differs from the exported version in that it accepts the
// specific soft fork deployment to test.
func testBIP0009(t *testing.T, forkKey string, deploymentID uint32) {
// Initialize the primary mining node with only the genesis block.
r, err := rpctest.New(&chaincfg.RegressionNetParams, nil, nil)
if err != nil {
t.Fatalf("unable to create primary harness: %v", err)
}
if err := r.SetUp(false, 0); err != nil {
t.Fatalf("unable to setup test chain: %v", err)
}
defer r.TearDown()
// *** ThresholdDefined ***
//
// Assert the chain height is the expected value and the soft fork
// status starts out as defined.
assertChainHeight(r, t, 0)
assertSoftForkStatus(r, t, forkKey, blockchain.ThresholdDefined)
// *** ThresholdDefined part 2 - 1 block prior to ThresholdStarted ***
//
// Generate enough blocks to reach the height just before the first
// state transition without signalling support since the state should
// move to started once the start time has been reached regardless of
// support signalling.
//
// NOTE: This is two blocks before the confirmation window because the
// getblockchaininfo RPC reports the status for the block AFTER the
// current one. All of the heights below are thus offset by one to
// compensate.
//
// Assert the chain height is the expected value and soft fork status is
// still defined and did NOT move to started.
confirmationWindow := r.ActiveNet.MinerConfirmationWindow
for i := uint32(0); i < confirmationWindow-2; i++ {
_, err := r.GenerateAndSubmitBlock(nil, vbLegacyBlockVersion,
time.Time{})
if err != nil {
t.Fatalf("failed to generated block %d: %v", i, err)
}
}
assertChainHeight(r, t, confirmationWindow-2)
assertSoftForkStatus(r, t, forkKey, blockchain.ThresholdDefined)
// *** ThresholdStarted ***
//
// Generate another block to reach the next window.
//
// Assert the chain height is the expected value and the soft fork
// status is started.
_, err = r.GenerateAndSubmitBlock(nil, vbLegacyBlockVersion, time.Time{})
if err != nil {
t.Fatalf("failed to generated block: %v", err)
}
assertChainHeight(r, t, confirmationWindow-1)
assertSoftForkStatus(r, t, forkKey, blockchain.ThresholdStarted)
// *** ThresholdStarted part 2 - Fail to achieve ThresholdLockedIn ***
//
// Generate enough blocks to reach the next window in such a way that
// the number blocks with the version bit set to signal support is 1
// less than required to achieve locked in status.
//
// Assert the chain height is the expected value and the soft fork
// status is still started and did NOT move to locked in.
if deploymentID > uint32(len(r.ActiveNet.Deployments)) {
t.Fatalf("deployment ID %d does not exist", deploymentID)
}
deployment := &r.ActiveNet.Deployments[deploymentID]
activationThreshold := r.ActiveNet.RuleChangeActivationThreshold
signalForkVersion := int32(1<<deployment.BitNumber) | vbTopBits
for i := uint32(0); i < activationThreshold-1; i++ {
_, err := r.GenerateAndSubmitBlock(nil, signalForkVersion,
time.Time{})
if err != nil {
t.Fatalf("failed to generated block %d: %v", i, err)
}
}
for i := uint32(0); i < confirmationWindow-(activationThreshold-1); i++ {
_, err := r.GenerateAndSubmitBlock(nil, vbLegacyBlockVersion,
time.Time{})
if err != nil {
t.Fatalf("failed to generated block %d: %v", i, err)
}
}
assertChainHeight(r, t, (confirmationWindow*2)-1)
assertSoftForkStatus(r, t, forkKey, blockchain.ThresholdStarted)
// *** ThresholdLockedIn ***
//
// Generate enough blocks to reach the next window in such a way that
// the number blocks with the version bit set to signal support is
// exactly the number required to achieve locked in status.
//
// Assert the chain height is the expected value and the soft fork
// status moved to locked in.
for i := uint32(0); i < activationThreshold; i++ {
_, err := r.GenerateAndSubmitBlock(nil, signalForkVersion,
time.Time{})
if err != nil {
t.Fatalf("failed to generated block %d: %v", i, err)
}
}
for i := uint32(0); i < confirmationWindow-activationThreshold; i++ {
_, err := r.GenerateAndSubmitBlock(nil, vbLegacyBlockVersion,
time.Time{})
if err != nil {
t.Fatalf("failed to generated block %d: %v", i, err)
}
}
assertChainHeight(r, t, (confirmationWindow*3)-1)
assertSoftForkStatus(r, t, forkKey, blockchain.ThresholdLockedIn)
// *** ThresholdLockedIn part 2 -- 1 block prior to ThresholdActive ***
//
// Generate enough blocks to reach the height just before the next
// window without continuing to signal support since it is already
// locked in.
//
// Assert the chain height is the expected value and the soft fork
// status is still locked in and did NOT move to active.
for i := uint32(0); i < confirmationWindow-1; i++ {
_, err := r.GenerateAndSubmitBlock(nil, vbLegacyBlockVersion,
time.Time{})
if err != nil {
t.Fatalf("failed to generated block %d: %v", i, err)
}
}
assertChainHeight(r, t, (confirmationWindow*4)-2)
assertSoftForkStatus(r, t, forkKey, blockchain.ThresholdLockedIn)
// *** ThresholdActive ***
//
// Generate another block to reach the next window without continuing to
// signal support since it is already locked in.
//
// Assert the chain height is the expected value and the soft fork
// status moved to active.
_, err = r.GenerateAndSubmitBlock(nil, vbLegacyBlockVersion, time.Time{})
if err != nil {
t.Fatalf("failed to generated block: %v", err)
}
assertChainHeight(r, t, (confirmationWindow*4)-1)
assertSoftForkStatus(r, t, forkKey, blockchain.ThresholdActive)
}
// TestBIP0009 ensures the BIP0009 soft fork mechanism follows the state
// transition rules set forth by the BIP for all soft forks. It uses the
// regression test network to signal support and advance through the various
// threshold states including failure to achieve locked in status.
//
// Overview:
// - Assert the chain height is 0 and the state is ThresholdDefined
// - Generate 1 fewer blocks than needed to reach the first state transition
// - Assert chain height is expected and state is still ThresholdDefined
// - Generate 1 more block to reach the first state transition
// - Assert chain height is expected and state moved to ThresholdStarted
// - Generate enough blocks to reach the next state transition window, but only
// signal support in 1 fewer than the required number to achieve
// ThresholdLockedIn
// - Assert chain height is expected and state is still ThresholdStarted
// - Generate enough blocks to reach the next state transition window with only
// the exact number of blocks required to achieve locked in status signalling
// support.
// - Assert chain height is expected and state moved to ThresholdLockedIn
// - Generate 1 fewer blocks than needed to reach the next state transition
// - Assert chain height is expected and state is still ThresholdLockedIn
// - Generate 1 more block to reach the next state transition
// - Assert chain height is expected and state moved to ThresholdActive
func TestBIP0009(t *testing.T) {
t.Parallel()
testBIP0009(t, "dummy", chaincfg.DeploymentTestDummy)
testBIP0009(t, "segwit", chaincfg.DeploymentSegwit)
}
// TestBIP0009Mining ensures blocks built via btcd's CPU miner follow the rules
// set forth by BIP0009 by using the test dummy deployment.
//
// Overview:
// - Generate block 1
// - Assert bit is NOT set (ThresholdDefined)
// - Generate enough blocks to reach first state transition
// - Assert bit is NOT set for block prior to state transition
// - Assert bit is set for block at state transition (ThresholdStarted)
// - Generate enough blocks to reach second state transition
// - Assert bit is set for block at state transition (ThresholdLockedIn)
// - Generate enough blocks to reach third state transition
// - Assert bit is set for block prior to state transition (ThresholdLockedIn)
// - Assert bit is NOT set for block at state transition (ThresholdActive)
func TestBIP0009Mining(t *testing.T) {
t.Parallel()
// Initialize the primary mining node with only the genesis block.
r, err := rpctest.New(&chaincfg.SimNetParams, nil, nil)
if err != nil {
t.Fatalf("unable to create primary harness: %v", err)
}
if err := r.SetUp(true, 0); err != nil {
t.Fatalf("unable to setup test chain: %v", err)
}
defer r.TearDown()
// Assert the chain only consists of the gensis block.
assertChainHeight(r, t, 0)
// *** ThresholdDefined ***
//
// Generate a block that extends the genesis block. It should not have
// the test dummy bit set in the version since the first window is
// in the defined threshold state.
deployment := &r.ActiveNet.Deployments[chaincfg.DeploymentTestDummy]
testDummyBitNum := deployment.BitNumber
hashes, err := r.Node.Generate(1)
if err != nil {
t.Fatalf("unable to generate blocks: %v", err)
}
assertChainHeight(r, t, 1)
assertVersionBit(r, t, hashes[0], testDummyBitNum, false)
// *** ThresholdStarted ***
//
// Generate enough blocks to reach the first state transition.
//
// The second to last generated block should not have the test bit set
// in the version.
//
// The last generated block should now have the test bit set in the
// version since the btcd mining code will have recognized the test
// dummy deployment as started.
confirmationWindow := r.ActiveNet.MinerConfirmationWindow
numNeeded := confirmationWindow - 1
hashes, err = r.Node.Generate(numNeeded)
if err != nil {
t.Fatalf("failed to generated %d blocks: %v", numNeeded, err)
}
assertChainHeight(r, t, confirmationWindow)
assertVersionBit(r, t, hashes[len(hashes)-2], testDummyBitNum, false)
assertVersionBit(r, t, hashes[len(hashes)-1], testDummyBitNum, true)
// *** ThresholdLockedIn ***
//
// Generate enough blocks to reach the next state transition.
//
// The last generated block should still have the test bit set in the
// version since the btcd mining code will have recognized the test
// dummy deployment as locked in.
hashes, err = r.Node.Generate(confirmationWindow)
if err != nil {
t.Fatalf("failed to generated %d blocks: %v", confirmationWindow,
err)
}
assertChainHeight(r, t, confirmationWindow*2)
assertVersionBit(r, t, hashes[len(hashes)-1], testDummyBitNum, true)
// *** ThresholdActivated ***
//
// Generate enough blocks to reach the next state transition.
//
// The second to last generated block should still have the test bit set
// in the version since it is still locked in.
//
// The last generated block should NOT have the test bit set in the
// version since the btcd mining code will have recognized the test
// dummy deployment as activated and thus there is no longer any need
// to set the bit.
hashes, err = r.Node.Generate(confirmationWindow)
if err != nil {
t.Fatalf("failed to generated %d blocks: %v", confirmationWindow,
err)
}
assertChainHeight(r, t, confirmationWindow*3)
assertVersionBit(r, t, hashes[len(hashes)-2], testDummyBitNum, true)
assertVersionBit(r, t, hashes[len(hashes)-1], testDummyBitNum, false)
}