btcd/database/internal/treap/treapiter.go
Dave Collins b580cdb7d3 database: Replace with new version.
This commit removes the old database package, moves the new package into
its place, and updates all imports accordingly.
2016-04-12 14:55:15 -05:00

355 lines
11 KiB
Go

// Copyright (c) 2015-2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package treap
import "bytes"
// Iterator represents an iterator for forwards and backwards iteration over
// the contents of a treap (mutable or immutable).
type Iterator struct {
t *Mutable // Mutable treap iterator is associated with or nil
root *treapNode // Root node of treap iterator is associated with
node *treapNode // The node the iterator is positioned at
parents parentStack // The stack of parents needed to iterate
isNew bool // Whether the iterator has been positioned
seekKey []byte // Used to handle dynamic updates for mutable treap
startKey []byte // Used to limit the iterator to a range
limitKey []byte // Used to limit the iterator to a range
}
// limitIterator clears the current iterator node if it is outside of the range
// specified when the iterator was created. It returns whether the iterator is
// valid.
func (iter *Iterator) limitIterator() bool {
if iter.node == nil {
return false
}
node := iter.node
if iter.startKey != nil && bytes.Compare(node.key, iter.startKey) < 0 {
iter.node = nil
return false
}
if iter.limitKey != nil && bytes.Compare(node.key, iter.limitKey) >= 0 {
iter.node = nil
return false
}
return true
}
// seek moves the iterator based on the provided key and flags.
//
// When the exact match flag is set, the iterator will either be moved to first
// key in the treap that exactly matches the provided key, or the one
// before/after it depending on the greater flag.
//
// When the exact match flag is NOT set, the iterator will be moved to the first
// key in the treap before/after the provided key depending on the greater flag.
//
// In all cases, the limits specified when the iterator was created are
// respected.
func (iter *Iterator) seek(key []byte, exactMatch bool, greater bool) bool {
iter.node = nil
iter.parents = parentStack{}
var selectedNodeDepth int
for node := iter.root; node != nil; {
iter.parents.Push(node)
// Traverse left or right depending on the result of the
// comparison. Also, set the iterator to the node depending on
// the flags so the iterator is positioned properly when an
// exact match isn't found.
compareResult := bytes.Compare(key, node.key)
if compareResult < 0 {
if greater {
iter.node = node
selectedNodeDepth = iter.parents.Len() - 1
}
node = node.left
continue
}
if compareResult > 0 {
if !greater {
iter.node = node
selectedNodeDepth = iter.parents.Len() - 1
}
node = node.right
continue
}
// The key is an exact match. Set the iterator and return now
// when the exact match flag is set.
if exactMatch {
iter.node = node
iter.parents.Pop()
return iter.limitIterator()
}
// The key is an exact match, but the exact match is not set, so
// choose which direction to go based on whether the larger or
// smaller key was requested.
if greater {
node = node.right
} else {
node = node.left
}
}
// There was either no exact match or there was an exact match but the
// exact match flag was not set. In any case, the parent stack might
// need to be adjusted to only include the parents up to the selected
// node. Also, ensure the selected node's key does not exceed the
// allowed range of the iterator.
for i := iter.parents.Len(); i > selectedNodeDepth; i-- {
iter.parents.Pop()
}
return iter.limitIterator()
}
// First moves the iterator to the first key/value pair. When there is only a
// single key/value pair both First and Last will point to the same pair.
// Returns false if there are no key/value pairs.
func (iter *Iterator) First() bool {
// Seek the start key if the iterator was created with one. This will
// result in either an exact match, the first greater key, or an
// exhausted iterator if no such key exists.
iter.isNew = false
if iter.startKey != nil {
return iter.seek(iter.startKey, true, true)
}
// The smallest key is in the left-most node.
iter.parents = parentStack{}
for node := iter.root; node != nil; node = node.left {
if node.left == nil {
iter.node = node
return true
}
iter.parents.Push(node)
}
return false
}
// Last moves the iterator to the last key/value pair. When there is only a
// single key/value pair both First and Last will point to the same pair.
// Returns false if there are no key/value pairs.
func (iter *Iterator) Last() bool {
// Seek the limit key if the iterator was created with one. This will
// result in the first key smaller than the limit key, or an exhausted
// iterator if no such key exists.
iter.isNew = false
if iter.limitKey != nil {
return iter.seek(iter.limitKey, false, false)
}
// The highest key is in the right-most node.
iter.parents = parentStack{}
for node := iter.root; node != nil; node = node.right {
if node.right == nil {
iter.node = node
return true
}
iter.parents.Push(node)
}
return false
}
// Next moves the iterator to the next key/value pair and returns false when the
// iterator is exhausted. When invoked on a newly created iterator it will
// position the iterator at the first item.
func (iter *Iterator) Next() bool {
if iter.isNew {
return iter.First()
}
if iter.node == nil {
return false
}
// Reseek the previous key without allowing for an exact match if a
// force seek was requested. This results in the key greater than the
// previous one or an exhausted iterator if there is no such key.
if seekKey := iter.seekKey; seekKey != nil {
iter.seekKey = nil
return iter.seek(seekKey, false, true)
}
// When there is no right node walk the parents until the parent's right
// node is not equal to the previous child. This will be the next node.
if iter.node.right == nil {
parent := iter.parents.Pop()
for parent != nil && parent.right == iter.node {
iter.node = parent
parent = iter.parents.Pop()
}
iter.node = parent
return iter.limitIterator()
}
// There is a right node, so the next node is the left-most node down
// the right sub-tree.
iter.parents.Push(iter.node)
iter.node = iter.node.right
for node := iter.node.left; node != nil; node = node.left {
iter.parents.Push(iter.node)
iter.node = node
}
return iter.limitIterator()
}
// Prev moves the iterator to the previous key/value pair and returns false when
// the iterator is exhausted. When invoked on a newly created iterator it will
// position the iterator at the last item.
func (iter *Iterator) Prev() bool {
if iter.isNew {
return iter.Last()
}
if iter.node == nil {
return false
}
// Reseek the previous key without allowing for an exact match if a
// force seek was requested. This results in the key smaller than the
// previous one or an exhausted iterator if there is no such key.
if seekKey := iter.seekKey; seekKey != nil {
iter.seekKey = nil
return iter.seek(seekKey, false, false)
}
// When there is no left node walk the parents until the parent's left
// node is not equal to the previous child. This will be the previous
// node.
for iter.node.left == nil {
parent := iter.parents.Pop()
for parent != nil && parent.left == iter.node {
iter.node = parent
parent = iter.parents.Pop()
}
iter.node = parent
return iter.limitIterator()
}
// There is a left node, so the previous node is the right-most node
// down the left sub-tree.
iter.parents.Push(iter.node)
iter.node = iter.node.left
for node := iter.node.right; node != nil; node = node.right {
iter.parents.Push(iter.node)
iter.node = node
}
return iter.limitIterator()
}
// Seek moves the iterator to the first key/value pair with a key that is
// greater than or equal to the given key and returns true if successful.
func (iter *Iterator) Seek(key []byte) bool {
iter.isNew = false
return iter.seek(key, true, true)
}
// Key returns the key of the current key/value pair or nil when the iterator
// is exhausted. The caller should not modify the contents of the returned
// slice.
func (iter *Iterator) Key() []byte {
if iter.node == nil {
return nil
}
return iter.node.key
}
// Value returns the value of the current key/value pair or nil when the
// iterator is exhausted. The caller should not modify the contents of the
// returned slice.
func (iter *Iterator) Value() []byte {
if iter.node == nil {
return nil
}
return iter.node.value
}
// Valid indicates whether the iterator is positioned at a valid key/value pair.
// It will be considered invalid when the iterator is newly created or exhausted.
func (iter *Iterator) Valid() bool {
return iter.node != nil
}
// ForceReseek notifies the iterator that the underlying mutable treap has been
// updated, so the next call to Prev or Next needs to reseek in order to allow
// the iterator to continue working properly.
//
// NOTE: Calling this function when the iterator is associated with an immutable
// treap has no effect as you would expect.
func (iter *Iterator) ForceReseek() {
// Nothing to do when the iterator is associated with an immutable
// treap.
if iter.t == nil {
return
}
// Update the iterator root to the mutable treap root in case it
// changed.
iter.root = iter.t.root
// Set the seek key to the current node. This will force the Next/Prev
// functions to reseek, and thus properly reconstruct the iterator, on
// their next call.
if iter.node == nil {
iter.seekKey = nil
return
}
iter.seekKey = iter.node.key
}
// Iterator returns a new iterator for the mutable treap. The newly returned
// iterator is not pointing to a valid item until a call to one of the methods
// to position it is made.
//
// The start key and limit key parameters cause the iterator to be limited to
// a range of keys. The start key is inclusive and the limit key is exclusive.
// Either or both can be nil if the functionality is not desired.
//
// WARNING: The ForceSeek method must be called on the returned iterator if
// the treap is mutated. Failure to do so will cause the iterator to return
// unexpected keys and/or values.
//
// For example:
// iter := t.Iterator(nil, nil)
// for iter.Next() {
// if someCondition {
// t.Delete(iter.Key())
// iter.ForceReseek()
// }
// }
func (t *Mutable) Iterator(startKey, limitKey []byte) *Iterator {
iter := &Iterator{
t: t,
root: t.root,
isNew: true,
startKey: startKey,
limitKey: limitKey,
}
return iter
}
// Iterator returns a new iterator for the immutable treap. The newly returned
// iterator is not pointing to a valid item until a call to one of the methods
// to position it is made.
//
// The start key and limit key parameters cause the iterator to be limited to
// a range of keys. The start key is inclusive and the limit key is exclusive.
// Either or both can be nil if the functionality is not desired.
func (t *Immutable) Iterator(startKey, limitKey []byte) *Iterator {
iter := &Iterator{
root: t.root,
isNew: true,
startKey: startKey,
limitKey: limitKey,
}
return iter
}