btcd/server.go
Dave Collins a4aa131dd5 mining: Refactor policy into its own struct.
This introduces the concept of a mining policy struct which is used to
control block template generation instead of directly accessing the
config struct.  This is a step toward decoupling the mining code from
the internals of btcd.  Ultimately the intent is to create a separate
mining package.
2015-11-23 22:02:14 -06:00

2374 lines
71 KiB
Go

// Copyright (c) 2013-2015 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package main
import (
"crypto/rand"
"encoding/binary"
"errors"
"fmt"
"math"
mrand "math/rand"
"net"
"runtime"
"strconv"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/btcsuite/btcd/addrmgr"
"github.com/btcsuite/btcd/blockchain"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/database"
"github.com/btcsuite/btcd/peer"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
"github.com/btcsuite/btcutil/bloom"
)
const (
// These constants are used by the DNS seed code to pick a random last
// seen time.
secondsIn3Days int32 = 24 * 60 * 60 * 3
secondsIn4Days int32 = 24 * 60 * 60 * 4
)
const (
// defaultServices describes the default services that are supported by
// the server.
defaultServices = wire.SFNodeNetwork | wire.SFNodeBloom
// defaultMaxOutbound is the default number of max outbound peers.
defaultMaxOutbound = 8
// connectionRetryInterval is the base amount of time to wait in between
// retries when connecting to persistent peers. It is adjusted by the
// number of retries such that there is a retry backoff.
connectionRetryInterval = time.Second * 10
// maxConnectionRetryInterval is the max amount of time retrying of a
// persistent peer is allowed to grow to. This is necessary since the
// retry logic uses a backoff mechanism which increases the interval
// base done the number of retries that have been done.
maxConnectionRetryInterval = time.Minute * 5
)
var (
// userAgentName is the user agent name and is used to help identify
// ourselves to other bitcoin peers.
userAgentName = "btcd"
// userAgentVersion is the user agent version and is used to help
// identify ourselves to other bitcoin peers.
userAgentVersion = fmt.Sprintf("%d.%d.%d", appMajor, appMinor, appPatch)
)
// broadcastMsg provides the ability to house a bitcoin message to be broadcast
// to all connected peers except specified excluded peers.
type broadcastMsg struct {
message wire.Message
excludePeers []*serverPeer
}
// broadcastInventoryAdd is a type used to declare that the InvVect it contains
// needs to be added to the rebroadcast map
type broadcastInventoryAdd relayMsg
// broadcastInventoryDel is a type used to declare that the InvVect it contains
// needs to be removed from the rebroadcast map
type broadcastInventoryDel *wire.InvVect
// relayMsg packages an inventory vector along with the newly discovered
// inventory so the relay has access to that information.
type relayMsg struct {
invVect *wire.InvVect
data interface{}
}
// updatePeerHeightsMsg is a message sent from the blockmanager to the server
// after a new block has been accepted. The purpose of the message is to update
// the heights of peers that were known to announce the block before we
// connected it to the main chain or recognized it as an orphan. With these
// updates, peer heights will be kept up to date, allowing for fresh data when
// selecting sync peer candidacy.
type updatePeerHeightsMsg struct {
newSha *wire.ShaHash
newHeight int32
originPeer *serverPeer
}
// peerState maintains state of inbound, persistent, outbound peers as well
// as banned peers and outbound groups.
type peerState struct {
pendingPeers map[string]*serverPeer
peers map[int32]*serverPeer
outboundPeers map[int32]*serverPeer
persistentPeers map[int32]*serverPeer
banned map[string]time.Time
outboundGroups map[string]int
maxOutboundPeers int
}
// Count returns the count of all known peers.
func (ps *peerState) Count() int {
return len(ps.peers) + len(ps.outboundPeers) + len(ps.persistentPeers)
}
// OutboundCount returns the count of known outbound peers.
func (ps *peerState) OutboundCount() int {
return len(ps.outboundPeers) + len(ps.persistentPeers)
}
// NeedMoreOutbound returns true if more outbound peers are required.
func (ps *peerState) NeedMoreOutbound() bool {
return ps.OutboundCount() < ps.maxOutboundPeers &&
ps.Count() < cfg.MaxPeers
}
// NeedMoreTries returns true if more outbound peer attempts can be tried.
func (ps *peerState) NeedMoreTries() bool {
return len(ps.pendingPeers) < 2*(ps.maxOutboundPeers-ps.OutboundCount())
}
// forAllOutboundPeers is a helper function that runs closure on all outbound
// peers known to peerState.
func (ps *peerState) forAllOutboundPeers(closure func(sp *serverPeer)) {
for _, e := range ps.outboundPeers {
closure(e)
}
for _, e := range ps.persistentPeers {
closure(e)
}
}
// forPendingPeers is a helper function that runs closure on all pending peers
// known to peerState.
func (ps *peerState) forPendingPeers(closure func(sp *serverPeer)) {
for _, e := range ps.pendingPeers {
closure(e)
}
}
// forAllPeers is a helper function that runs closure on all peers known to
// peerState.
func (ps *peerState) forAllPeers(closure func(sp *serverPeer)) {
for _, e := range ps.peers {
closure(e)
}
ps.forAllOutboundPeers(closure)
}
// server provides a bitcoin server for handling communications to and from
// bitcoin peers.
type server struct {
listeners []net.Listener
chainParams *chaincfg.Params
started int32 // atomic
shutdown int32 // atomic
shutdownSched int32 // atomic
bytesMutex sync.Mutex // For the following two fields.
bytesReceived uint64 // Total bytes received from all peers since start.
bytesSent uint64 // Total bytes sent by all peers since start.
addrManager *addrmgr.AddrManager
sigCache *txscript.SigCache
rpcServer *rpcServer
blockManager *blockManager
addrIndexer *addrIndexer
txMemPool *txMemPool
cpuMiner *CPUMiner
modifyRebroadcastInv chan interface{}
pendingPeers chan *serverPeer
newPeers chan *serverPeer
donePeers chan *serverPeer
banPeers chan *serverPeer
retryPeers chan *serverPeer
wakeup chan struct{}
query chan interface{}
relayInv chan relayMsg
broadcast chan broadcastMsg
peerHeightsUpdate chan updatePeerHeightsMsg
wg sync.WaitGroup
quit chan struct{}
nat NAT
db database.Db
timeSource blockchain.MedianTimeSource
services wire.ServiceFlag
}
// serverPeer extends the peer to maintain state shared by the server and
// the blockmanager.
type serverPeer struct {
*peer.Peer
server *server
persistent bool
continueHash *wire.ShaHash
relayMtx sync.Mutex
disableRelayTx bool
requestQueue []*wire.InvVect
requestedTxns map[wire.ShaHash]struct{}
requestedBlocks map[wire.ShaHash]struct{}
filter *bloom.Filter
knownAddresses map[string]struct{}
quit chan struct{}
// The following chans are used to sync blockmanager and server.
txProcessed chan struct{}
blockProcessed chan struct{}
}
// newServerPeer returns a new serverPeer instance. The peer needs to be set by
// the caller.
func newServerPeer(s *server, isPersistent bool) *serverPeer {
return &serverPeer{
server: s,
persistent: isPersistent,
requestedTxns: make(map[wire.ShaHash]struct{}),
requestedBlocks: make(map[wire.ShaHash]struct{}),
filter: bloom.LoadFilter(nil),
knownAddresses: make(map[string]struct{}),
quit: make(chan struct{}),
txProcessed: make(chan struct{}, 1),
blockProcessed: make(chan struct{}, 1),
}
}
// addKnownAddresses adds the given addresses to the set of known addreses to
// the peer to prevent sending duplicate addresses.
func (sp *serverPeer) addKnownAddresses(addresses []*wire.NetAddress) {
for _, na := range addresses {
sp.knownAddresses[addrmgr.NetAddressKey(na)] = struct{}{}
}
}
// addressKnown true if the given address is already known to the peer.
func (sp *serverPeer) addressKnown(na *wire.NetAddress) bool {
_, exists := sp.knownAddresses[addrmgr.NetAddressKey(na)]
return exists
}
// setDisableRelayTx toggles relaying of transactions for the given peer.
// It is safe for concurrent access.
func (sp *serverPeer) setDisableRelayTx(disable bool) {
sp.relayMtx.Lock()
sp.disableRelayTx = disable
sp.relayMtx.Unlock()
}
// relayTxDisabled returns whether or not relaying of transactions for the given
// peer is disabled.
// It is safe for concurrent access.
func (sp *serverPeer) relayTxDisabled() bool {
sp.relayMtx.Lock()
defer sp.relayMtx.Unlock()
return sp.disableRelayTx
}
// pushAddrMsg sends an addr message to the connected peer using the provided
// addresses.
func (sp *serverPeer) pushAddrMsg(addresses []*wire.NetAddress) {
// Filter addresses already known to the peer.
addrs := make([]*wire.NetAddress, 0, len(addresses))
for _, addr := range addresses {
if !sp.addressKnown(addr) {
addrs = append(addrs, addr)
}
}
known, err := sp.PushAddrMsg(addrs)
if err != nil {
peerLog.Errorf("Can't push address message to %s: %v", sp.Peer, err)
sp.Disconnect()
return
}
sp.addKnownAddresses(known)
}
// OnVersion is invoked when a peer receives a version bitcoin message
// and is used to negotiate the protocol version details as well as kick start
// the communications.
func (sp *serverPeer) OnVersion(p *peer.Peer, msg *wire.MsgVersion) {
// Add the remote peer time as a sample for creating an offset against
// the local clock to keep the network time in sync.
sp.server.timeSource.AddTimeSample(p.Addr(), msg.Timestamp)
// Signal the block manager this peer is a new sync candidate.
sp.server.blockManager.NewPeer(sp)
// Choose whether or not to relay transactions before a filter command
// is received.
sp.setDisableRelayTx(msg.DisableRelayTx)
// Update the address manager and request known addresses from the
// remote peer for outbound connections. This is skipped when running
// on the simulation test network since it is only intended to connect
// to specified peers and actively avoids advertising and connecting to
// discovered peers.
if !cfg.SimNet {
addrManager := sp.server.addrManager
// Outbound connections.
if !p.Inbound() {
// TODO(davec): Only do this if not doing the initial block
// download and the local address is routable.
if !cfg.DisableListen /* && isCurrent? */ {
// Get address that best matches.
lna := addrManager.GetBestLocalAddress(p.NA())
if addrmgr.IsRoutable(lna) {
// Filter addresses the peer already knows about.
addresses := []*wire.NetAddress{lna}
sp.pushAddrMsg(addresses)
}
}
// Request known addresses if the server address manager needs
// more and the peer has a protocol version new enough to
// include a timestamp with addresses.
hasTimestamp := p.ProtocolVersion() >=
wire.NetAddressTimeVersion
if addrManager.NeedMoreAddresses() && hasTimestamp {
p.QueueMessage(wire.NewMsgGetAddr(), nil)
}
// Mark the address as a known good address.
addrManager.Good(p.NA())
} else {
// A peer might not be advertising the same address that it
// actually connected from. One example of why this can happen
// is with NAT. Only add the address to the address manager if
// the addresses agree.
if addrmgr.NetAddressKey(&msg.AddrMe) == addrmgr.NetAddressKey(p.NA()) {
addrManager.AddAddress(p.NA(), p.NA())
addrManager.Good(p.NA())
}
}
}
// Add valid peer to the server.
sp.server.AddPeer(sp)
}
// OnMemPool is invoked when a peer receives a mempool bitcoin message.
// It creates and sends an inventory message with the contents of the memory
// pool up to the maximum inventory allowed per message. When the peer has a
// bloom filter loaded, the contents are filtered accordingly.
func (sp *serverPeer) OnMemPool(p *peer.Peer, msg *wire.MsgMemPool) {
// Generate inventory message with the available transactions in the
// transaction memory pool. Limit it to the max allowed inventory
// per message. The the NewMsgInvSizeHint function automatically limits
// the passed hint to the maximum allowed, so it's safe to pass it
// without double checking it here.
txMemPool := sp.server.txMemPool
txDescs := txMemPool.TxDescs()
invMsg := wire.NewMsgInvSizeHint(uint(len(txDescs)))
for i, txDesc := range txDescs {
// Another thread might have removed the transaction from the
// pool since the initial query.
hash := txDesc.Tx.Sha()
if !txMemPool.IsTransactionInPool(hash) {
continue
}
// Either add all transactions when there is no bloom filter,
// or only the transactions that match the filter when there is
// one.
if !sp.filter.IsLoaded() || sp.filter.MatchTxAndUpdate(txDesc.Tx) {
iv := wire.NewInvVect(wire.InvTypeTx, hash)
invMsg.AddInvVect(iv)
if i+1 >= wire.MaxInvPerMsg {
break
}
}
}
// Send the inventory message if there is anything to send.
if len(invMsg.InvList) > 0 {
p.QueueMessage(invMsg, nil)
}
}
// OnTx is invoked when a peer receives a tx bitcoin message. It blocks
// until the bitcoin transaction has been fully processed. Unlock the block
// handler this does not serialize all transactions through a single thread
// transactions don't rely on the previous one in a linear fashion like blocks.
func (sp *serverPeer) OnTx(p *peer.Peer, msg *wire.MsgTx) {
// Add the transaction to the known inventory for the peer.
// Convert the raw MsgTx to a btcutil.Tx which provides some convenience
// methods and things such as hash caching.
tx := btcutil.NewTx(msg)
iv := wire.NewInvVect(wire.InvTypeTx, tx.Sha())
p.AddKnownInventory(iv)
// Queue the transaction up to be handled by the block manager and
// intentionally block further receives until the transaction is fully
// processed and known good or bad. This helps prevent a malicious peer
// from queueing up a bunch of bad transactions before disconnecting (or
// being disconnected) and wasting memory.
sp.server.blockManager.QueueTx(tx, sp)
<-sp.txProcessed
}
// OnBlock is invoked when a peer receives a block bitcoin message. It
// blocks until the bitcoin block has been fully processed.
func (sp *serverPeer) OnBlock(p *peer.Peer, msg *wire.MsgBlock, buf []byte) {
// Convert the raw MsgBlock to a btcutil.Block which provides some
// convenience methods and things such as hash caching.
block := btcutil.NewBlockFromBlockAndBytes(msg, buf)
// Add the block to the known inventory for the peer.
iv := wire.NewInvVect(wire.InvTypeBlock, block.Sha())
p.AddKnownInventory(iv)
// Queue the block up to be handled by the block
// manager and intentionally block further receives
// until the bitcoin block is fully processed and known
// good or bad. This helps prevent a malicious peer
// from queueing up a bunch of bad blocks before
// disconnecting (or being disconnected) and wasting
// memory. Additionally, this behavior is depended on
// by at least the block acceptance test tool as the
// reference implementation processes blocks in the same
// thread and therefore blocks further messages until
// the bitcoin block has been fully processed.
sp.server.blockManager.QueueBlock(block, sp)
<-sp.blockProcessed
}
// OnInv is invoked when a peer receives an inv bitcoin message and is
// used to examine the inventory being advertised by the remote peer and react
// accordingly. We pass the message down to blockmanager which will call
// QueueMessage with any appropriate responses.
func (sp *serverPeer) OnInv(p *peer.Peer, msg *wire.MsgInv) {
sp.server.blockManager.QueueInv(msg, sp)
}
// OnHeaders is invoked when a peer receives a headers bitcoin
// message. The message is passed down to the block manager.
func (sp *serverPeer) OnHeaders(p *peer.Peer, msg *wire.MsgHeaders) {
sp.server.blockManager.QueueHeaders(msg, sp)
}
// handleGetData is invoked when a peer receives a getdata bitcoin message and
// is used to deliver block and transaction information.
func (sp *serverPeer) OnGetData(p *peer.Peer, msg *wire.MsgGetData) {
numAdded := 0
notFound := wire.NewMsgNotFound()
// We wait on this wait channel periodically to prevent queueing
// far more data than we can send in a reasonable time, wasting memory.
// The waiting occurs after the database fetch for the next one to
// provide a little pipelining.
var waitChan chan struct{}
doneChan := make(chan struct{}, 1)
for i, iv := range msg.InvList {
var c chan struct{}
// If this will be the last message we send.
if i == len(msg.InvList)-1 && len(notFound.InvList) == 0 {
c = doneChan
} else if (i+1)%3 == 0 {
// Buffered so as to not make the send goroutine block.
c = make(chan struct{}, 1)
}
var err error
switch iv.Type {
case wire.InvTypeTx:
err = sp.server.pushTxMsg(sp, &iv.Hash, c, waitChan)
case wire.InvTypeBlock:
err = sp.server.pushBlockMsg(sp, &iv.Hash, c, waitChan)
case wire.InvTypeFilteredBlock:
err = sp.server.pushMerkleBlockMsg(sp, &iv.Hash, c, waitChan)
default:
peerLog.Warnf("Unknown type in inventory request %d",
iv.Type)
continue
}
if err != nil {
notFound.AddInvVect(iv)
// When there is a failure fetching the final entry
// and the done channel was sent in due to there
// being no outstanding not found inventory, consume
// it here because there is now not found inventory
// that will use the channel momentarily.
if i == len(msg.InvList)-1 && c != nil {
<-c
}
}
numAdded++
waitChan = c
}
if len(notFound.InvList) != 0 {
p.QueueMessage(notFound, doneChan)
}
// Wait for messages to be sent. We can send quite a lot of data at this
// point and this will keep the peer busy for a decent amount of time.
// We don't process anything else by them in this time so that we
// have an idea of when we should hear back from them - else the idle
// timeout could fire when we were only half done sending the blocks.
if numAdded > 0 {
<-doneChan
}
}
// OnGetBlocks is invoked when a peer receives a getblocks bitcoin
// message.
func (sp *serverPeer) OnGetBlocks(p *peer.Peer, msg *wire.MsgGetBlocks) {
db := sp.server.db
// Return all block hashes to the latest one (up to max per message) if
// no stop hash was specified.
// Attempt to find the ending index of the stop hash if specified.
endIdx := database.AllShas
if !msg.HashStop.IsEqual(&zeroHash) {
height, err := db.FetchBlockHeightBySha(&msg.HashStop)
if err == nil {
endIdx = height + 1
}
}
// Find the most recent known block based on the block locator.
// Use the block after the genesis block if no other blocks in the
// provided locator are known. This does mean the client will start
// over with the genesis block if unknown block locators are provided.
// This mirrors the behavior in the reference implementation.
startIdx := int32(1)
for _, hash := range msg.BlockLocatorHashes {
height, err := db.FetchBlockHeightBySha(hash)
if err == nil {
// Start with the next hash since we know this one.
startIdx = height + 1
break
}
}
// Don't attempt to fetch more than we can put into a single message.
autoContinue := false
if endIdx-startIdx > wire.MaxBlocksPerMsg {
endIdx = startIdx + wire.MaxBlocksPerMsg
autoContinue = true
}
// Generate inventory message.
//
// The FetchBlockBySha call is limited to a maximum number of hashes
// per invocation. Since the maximum number of inventory per message
// might be larger, call it multiple times with the appropriate indices
// as needed.
invMsg := wire.NewMsgInv()
for start := startIdx; start < endIdx; {
// Fetch the inventory from the block database.
hashList, err := db.FetchHeightRange(start, endIdx)
if err != nil {
peerLog.Warnf("Block lookup failed: %v", err)
return
}
// The database did not return any further hashes. Break out of
// the loop now.
if len(hashList) == 0 {
break
}
// Add block inventory to the message.
for _, hash := range hashList {
hashCopy := hash
iv := wire.NewInvVect(wire.InvTypeBlock, &hashCopy)
invMsg.AddInvVect(iv)
}
start += int32(len(hashList))
}
// Send the inventory message if there is anything to send.
if len(invMsg.InvList) > 0 {
invListLen := len(invMsg.InvList)
if autoContinue && invListLen == wire.MaxBlocksPerMsg {
// Intentionally use a copy of the final hash so there
// is not a reference into the inventory slice which
// would prevent the entire slice from being eligible
// for GC as soon as it's sent.
continueHash := invMsg.InvList[invListLen-1].Hash
sp.continueHash = &continueHash
}
p.QueueMessage(invMsg, nil)
}
}
// OnGetHeaders is invoked when a peer receives a getheaders bitcoin
// message.
func (sp *serverPeer) OnGetHeaders(p *peer.Peer, msg *wire.MsgGetHeaders) {
// Ignore getheaders requests if not in sync.
if !sp.server.blockManager.IsCurrent() {
return
}
db := sp.server.db
// Attempt to look up the height of the provided stop hash.
endIdx := database.AllShas
height, err := db.FetchBlockHeightBySha(&msg.HashStop)
if err == nil {
endIdx = height + 1
}
// There are no block locators so a specific header is being requested
// as identified by the stop hash.
if len(msg.BlockLocatorHashes) == 0 {
// No blocks with the stop hash were found so there is nothing
// to do. Just return. This behavior mirrors the reference
// implementation.
if endIdx == database.AllShas {
return
}
// Fetch and send the requested block header.
header, err := db.FetchBlockHeaderBySha(&msg.HashStop)
if err != nil {
peerLog.Warnf("Lookup of known block hash failed: %v",
err)
return
}
headersMsg := wire.NewMsgHeaders()
headersMsg.AddBlockHeader(header)
p.QueueMessage(headersMsg, nil)
return
}
// Find the most recent known block based on the block locator.
// Use the block after the genesis block if no other blocks in the
// provided locator are known. This does mean the client will start
// over with the genesis block if unknown block locators are provided.
// This mirrors the behavior in the reference implementation.
startIdx := int32(1)
for _, hash := range msg.BlockLocatorHashes {
height, err := db.FetchBlockHeightBySha(hash)
if err == nil {
// Start with the next hash since we know this one.
startIdx = height + 1
break
}
}
// Don't attempt to fetch more than we can put into a single message.
if endIdx-startIdx > wire.MaxBlockHeadersPerMsg {
endIdx = startIdx + wire.MaxBlockHeadersPerMsg
}
// Generate headers message and send it.
//
// The FetchHeightRange call is limited to a maximum number of hashes
// per invocation. Since the maximum number of headers per message
// might be larger, call it multiple times with the appropriate indices
// as needed.
headersMsg := wire.NewMsgHeaders()
for start := startIdx; start < endIdx; {
// Fetch the inventory from the block database.
hashList, err := db.FetchHeightRange(start, endIdx)
if err != nil {
peerLog.Warnf("Header lookup failed: %v", err)
return
}
// The database did not return any further hashes. Break out of
// the loop now.
if len(hashList) == 0 {
break
}
// Add headers to the message.
for _, hash := range hashList {
header, err := db.FetchBlockHeaderBySha(&hash)
if err != nil {
peerLog.Warnf("Lookup of known block hash "+
"failed: %v", err)
continue
}
headersMsg.AddBlockHeader(header)
}
// Start at the next block header after the latest one on the
// next loop iteration.
start += int32(len(hashList))
}
p.QueueMessage(headersMsg, nil)
}
// OnFilterAdd is invoked when a peer receives a filteradd bitcoin
// message and is used by remote peers to add data to an already loaded bloom
// filter. The peer will be disconnected if a filter is not loaded when this
// message is received.
func (sp *serverPeer) OnFilterAdd(p *peer.Peer, msg *wire.MsgFilterAdd) {
if sp.filter.IsLoaded() {
peerLog.Debugf("%s sent a filteradd request with no filter "+
"loaded -- disconnecting", p)
p.Disconnect()
return
}
sp.filter.Add(msg.Data)
}
// OnFilterClear is invoked when a peer receives a filterclear bitcoin
// message and is used by remote peers to clear an already loaded bloom filter.
// The peer will be disconnected if a filter is not loaded when this message is
// received.
func (sp *serverPeer) OnFilterClear(p *peer.Peer, msg *wire.MsgFilterClear) {
if !sp.filter.IsLoaded() {
peerLog.Debugf("%s sent a filterclear request with no "+
"filter loaded -- disconnecting", p)
p.Disconnect()
return
}
sp.filter.Unload()
}
// OnFilterLoad is invoked when a peer receives a filterload bitcoin
// message and it used to load a bloom filter that should be used for
// delivering merkle blocks and associated transactions that match the filter.
func (sp *serverPeer) OnFilterLoad(p *peer.Peer, msg *wire.MsgFilterLoad) {
sp.setDisableRelayTx(false)
sp.filter.Reload(msg)
}
// OnGetAddr is invoked when a peer receives a getaddr bitcoin message
// and is used to provide the peer with known addresses from the address
// manager.
func (sp *serverPeer) OnGetAddr(p *peer.Peer, msg *wire.MsgGetAddr) {
// Don't return any addresses when running on the simulation test
// network. This helps prevent the network from becoming another
// public test network since it will not be able to learn about other
// peers that have not specifically been provided.
if cfg.SimNet {
return
}
// Do not accept getaddr requests from outbound peers. This reduces
// fingerprinting attacks.
if !p.Inbound() {
return
}
// Get the current known addresses from the address manager.
addrCache := sp.server.addrManager.AddressCache()
// Push the addresses.
sp.pushAddrMsg(addrCache)
}
// OnAddr is invoked when a peer receives an addr bitcoin message and is
// used to notify the server about advertised addresses.
func (sp *serverPeer) OnAddr(p *peer.Peer, msg *wire.MsgAddr) {
// Ignore addresses when running on the simulation test network. This
// helps prevent the network from becoming another public test network
// since it will not be able to learn about other peers that have not
// specifically been provided.
if cfg.SimNet {
return
}
// Ignore old style addresses which don't include a timestamp.
if p.ProtocolVersion() < wire.NetAddressTimeVersion {
return
}
// A message that has no addresses is invalid.
if len(msg.AddrList) == 0 {
peerLog.Errorf("Command [%s] from %s does not contain any addresses",
msg.Command(), p)
p.Disconnect()
return
}
for _, na := range msg.AddrList {
// Don't add more address if we're disconnecting.
if !p.Connected() {
return
}
// Set the timestamp to 5 days ago if it's more than 24 hours
// in the future so this address is one of the first to be
// removed when space is needed.
now := time.Now()
if na.Timestamp.After(now.Add(time.Minute * 10)) {
na.Timestamp = now.Add(-1 * time.Hour * 24 * 5)
}
// Add address to known addresses for this peer.
sp.addKnownAddresses([]*wire.NetAddress{na})
}
// Add addresses to server address manager. The address manager handles
// the details of things such as preventing duplicate addresses, max
// addresses, and last seen updates.
// XXX bitcoind gives a 2 hour time penalty here, do we want to do the
// same?
sp.server.addrManager.AddAddresses(msg.AddrList, p.NA())
}
// OnRead is invoked when a peer receives a message and it is used to update
// the bytes received by the server.
func (sp *serverPeer) OnRead(p *peer.Peer, bytesRead int, msg wire.Message, err error) {
sp.server.AddBytesReceived(uint64(bytesRead))
}
// OnWrite is invoked when a peer sends a message and it is used to update
// the bytes sent by the server.
func (sp *serverPeer) OnWrite(p *peer.Peer, bytesWritten int, msg wire.Message, err error) {
sp.server.AddBytesSent(uint64(bytesWritten))
}
// randomUint16Number returns a random uint16 in a specified input range. Note
// that the range is in zeroth ordering; if you pass it 1800, you will get
// values from 0 to 1800.
func randomUint16Number(max uint16) uint16 {
// In order to avoid modulo bias and ensure every possible outcome in
// [0, max) has equal probability, the random number must be sampled
// from a random source that has a range limited to a multiple of the
// modulus.
var randomNumber uint16
var limitRange = (math.MaxUint16 / max) * max
for {
binary.Read(rand.Reader, binary.LittleEndian, &randomNumber)
if randomNumber < limitRange {
return (randomNumber % max)
}
}
}
// AddRebroadcastInventory adds 'iv' to the list of inventories to be
// rebroadcasted at random intervals until they show up in a block.
func (s *server) AddRebroadcastInventory(iv *wire.InvVect, data interface{}) {
// Ignore if shutting down.
if atomic.LoadInt32(&s.shutdown) != 0 {
return
}
s.modifyRebroadcastInv <- broadcastInventoryAdd{invVect: iv, data: data}
}
// RemoveRebroadcastInventory removes 'iv' from the list of items to be
// rebroadcasted if present.
func (s *server) RemoveRebroadcastInventory(iv *wire.InvVect) {
// Ignore if shutting down.
if atomic.LoadInt32(&s.shutdown) != 0 {
return
}
s.modifyRebroadcastInv <- broadcastInventoryDel(iv)
}
// pushTxMsg sends a tx message for the provided transaction hash to the
// connected peer. An error is returned if the transaction hash is not known.
func (s *server) pushTxMsg(sp *serverPeer, sha *wire.ShaHash, doneChan, waitChan chan struct{}) error {
// Attempt to fetch the requested transaction from the pool. A
// call could be made to check for existence first, but simply trying
// to fetch a missing transaction results in the same behavior.
tx, err := s.txMemPool.FetchTransaction(sha)
if err != nil {
peerLog.Tracef("Unable to fetch tx %v from transaction "+
"pool: %v", sha, err)
if doneChan != nil {
doneChan <- struct{}{}
}
return err
}
// Once we have fetched data wait for any previous operation to finish.
if waitChan != nil {
<-waitChan
}
sp.QueueMessage(tx.MsgTx(), doneChan)
return nil
}
// pushBlockMsg sends a block message for the provided block hash to the
// connected peer. An error is returned if the block hash is not known.
func (s *server) pushBlockMsg(sp *serverPeer, sha *wire.ShaHash, doneChan, waitChan chan struct{}) error {
blk, err := s.db.FetchBlockBySha(sha)
if err != nil {
peerLog.Tracef("Unable to fetch requested block sha %v: %v",
sha, err)
if doneChan != nil {
doneChan <- struct{}{}
}
return err
}
// Once we have fetched data wait for any previous operation to finish.
if waitChan != nil {
<-waitChan
}
// We only send the channel for this message if we aren't sending
// an inv straight after.
var dc chan struct{}
continueHash := sp.continueHash
sendInv := continueHash != nil && continueHash.IsEqual(sha)
if !sendInv {
dc = doneChan
}
sp.QueueMessage(blk.MsgBlock(), dc)
// When the peer requests the final block that was advertised in
// response to a getblocks message which requested more blocks than
// would fit into a single message, send it a new inventory message
// to trigger it to issue another getblocks message for the next
// batch of inventory.
if sendInv {
hash, _, err := s.db.NewestSha()
if err == nil {
invMsg := wire.NewMsgInvSizeHint(1)
iv := wire.NewInvVect(wire.InvTypeBlock, hash)
invMsg.AddInvVect(iv)
sp.QueueMessage(invMsg, doneChan)
sp.continueHash = nil
} else if doneChan != nil {
doneChan <- struct{}{}
}
}
return nil
}
// pushMerkleBlockMsg sends a merkleblock message for the provided block hash to
// the connected peer. Since a merkle block requires the peer to have a filter
// loaded, this call will simply be ignored if there is no filter loaded. An
// error is returned if the block hash is not known.
func (s *server) pushMerkleBlockMsg(sp *serverPeer, sha *wire.ShaHash, doneChan, waitChan chan struct{}) error {
// Do not send a response if the peer doesn't have a filter loaded.
if !sp.filter.IsLoaded() {
if doneChan != nil {
doneChan <- struct{}{}
}
return nil
}
blk, err := s.db.FetchBlockBySha(sha)
if err != nil {
peerLog.Tracef("Unable to fetch requested block sha %v: %v",
sha, err)
if doneChan != nil {
doneChan <- struct{}{}
}
return err
}
// Generate a merkle block by filtering the requested block according
// to the filter for the peer.
merkle, matchedTxIndices := bloom.NewMerkleBlock(blk, sp.filter)
// Once we have fetched data wait for any previous operation to finish.
if waitChan != nil {
<-waitChan
}
// Send the merkleblock. Only send the done channel with this message
// if no transactions will be sent afterwards.
var dc chan struct{}
if len(matchedTxIndices) == 0 {
dc = doneChan
}
sp.QueueMessage(merkle, dc)
// Finally, send any matched transactions.
blkTransactions := blk.MsgBlock().Transactions
for i, txIndex := range matchedTxIndices {
// Only send the done channel on the final transaction.
var dc chan struct{}
if i == len(matchedTxIndices)-1 {
dc = doneChan
}
if txIndex < uint32(len(blkTransactions)) {
sp.QueueMessage(blkTransactions[txIndex], dc)
}
}
return nil
}
// handleUpdatePeerHeight updates the heights of all peers who were known to
// announce a block we recently accepted.
func (s *server) handleUpdatePeerHeights(state *peerState, umsg updatePeerHeightsMsg) {
state.forAllPeers(func(sp *serverPeer) {
// The origin peer should already have the updated height.
if sp == umsg.originPeer {
return
}
// This is a pointer to the underlying memory which doesn't
// change.
latestBlkSha := sp.LastAnnouncedBlock()
// Skip this peer if it hasn't recently announced any new blocks.
if latestBlkSha == nil {
return
}
// If the peer has recently announced a block, and this block
// matches our newly accepted block, then update their block
// height.
if *latestBlkSha == *umsg.newSha {
sp.UpdateLastBlockHeight(umsg.newHeight)
sp.UpdateLastAnnouncedBlock(nil)
}
})
}
// handleAddPeerMsg deals with adding new peers. It is invoked from the
// peerHandler goroutine.
func (s *server) handleAddPeerMsg(state *peerState, sp *serverPeer) bool {
if sp == nil {
return false
}
// Ignore new peers if we're shutting down.
if atomic.LoadInt32(&s.shutdown) != 0 {
srvrLog.Infof("New peer %s ignored - server is shutting "+
"down", sp)
sp.Shutdown()
return false
}
// Disconnect banned peers.
host, _, err := net.SplitHostPort(sp.Addr())
if err != nil {
srvrLog.Debugf("can't split hostport %v", err)
sp.Shutdown()
return false
}
if banEnd, ok := state.banned[host]; ok {
if time.Now().Before(banEnd) {
srvrLog.Debugf("Peer %s is banned for another %v - "+
"disconnecting", host, banEnd.Sub(time.Now()))
sp.Shutdown()
return false
}
srvrLog.Infof("Peer %s is no longer banned", host)
delete(state.banned, host)
}
// TODO: Check for max peers from a single IP.
// Limit max outbound peers.
if _, ok := state.pendingPeers[sp.Addr()]; ok {
if state.OutboundCount() >= state.maxOutboundPeers {
srvrLog.Infof("Max outbound peers reached [%d] - disconnecting "+
"peer %s", state.maxOutboundPeers, sp)
sp.Shutdown()
return false
}
}
// Limit max number of total peers.
if state.Count() >= cfg.MaxPeers {
srvrLog.Infof("Max peers reached [%d] - disconnecting "+
"peer %s", cfg.MaxPeers, sp)
sp.Shutdown()
// TODO(oga) how to handle permanent peers here?
// they should be rescheduled.
return false
}
// Add the new peer and start it.
srvrLog.Debugf("New peer %s", sp)
if sp.Inbound() {
state.peers[sp.ID()] = sp
} else {
state.outboundGroups[addrmgr.GroupKey(sp.NA())]++
if sp.persistent {
state.persistentPeers[sp.ID()] = sp
} else {
state.outboundPeers[sp.ID()] = sp
}
// Remove from pending peers.
delete(state.pendingPeers, sp.Addr())
}
return true
}
// handleDonePeerMsg deals with peers that have signalled they are done. It is
// invoked from the peerHandler goroutine.
func (s *server) handleDonePeerMsg(state *peerState, sp *serverPeer) {
if _, ok := state.pendingPeers[sp.Addr()]; ok {
delete(state.pendingPeers, sp.Addr())
srvrLog.Debugf("Removed pending peer %s", sp)
return
}
var list map[int32]*serverPeer
if sp.persistent {
list = state.persistentPeers
} else if sp.Inbound() {
list = state.peers
} else {
list = state.outboundPeers
}
if _, ok := list[sp.ID()]; ok {
// Issue an asynchronous reconnect if the peer was a
// persistent outbound connection.
if !sp.Inbound() && sp.persistent && atomic.LoadInt32(&s.shutdown) == 0 {
// Retry peer
sp = s.newOutboundPeer(sp.Addr(), sp.persistent)
if sp != nil {
go s.retryConn(sp, connectionRetryInterval/2)
}
list[sp.ID()] = sp
return
}
if !sp.Inbound() && sp.VersionKnown() {
state.outboundGroups[addrmgr.GroupKey(sp.NA())]--
}
delete(list, sp.ID())
srvrLog.Debugf("Removed peer %s", sp)
return
}
// Update the address' last seen time if the peer has acknowledged
// our version and has sent us its version as well.
if sp.VerAckReceived() && sp.VersionKnown() && sp.NA() != nil {
s.addrManager.Connected(sp.NA())
}
// If we get here it means that either we didn't know about the peer
// or we purposefully deleted it.
}
// handleBanPeerMsg deals with banning peers. It is invoked from the
// peerHandler goroutine.
func (s *server) handleBanPeerMsg(state *peerState, sp *serverPeer) {
host, _, err := net.SplitHostPort(sp.Addr())
if err != nil {
srvrLog.Debugf("can't split ban peer %s %v", sp.Addr(), err)
return
}
direction := directionString(sp.Inbound())
srvrLog.Infof("Banned peer %s (%s) for %v", host, direction,
cfg.BanDuration)
state.banned[host] = time.Now().Add(cfg.BanDuration)
}
// handleRelayInvMsg deals with relaying inventory to peers that are not already
// known to have it. It is invoked from the peerHandler goroutine.
func (s *server) handleRelayInvMsg(state *peerState, msg relayMsg) {
state.forAllPeers(func(sp *serverPeer) {
if !sp.Connected() {
return
}
if msg.invVect.Type == wire.InvTypeTx {
// Don't relay the transaction to the peer when it has
// transaction relaying disabled.
if sp.relayTxDisabled() {
return
}
// Don't relay the transaction if there is a bloom
// filter loaded and the transaction doesn't match it.
if sp.filter.IsLoaded() {
tx, ok := msg.data.(*btcutil.Tx)
if !ok {
peerLog.Warnf("Underlying data for tx" +
" inv relay is not a transaction")
return
}
if !sp.filter.MatchTxAndUpdate(tx) {
return
}
}
}
// Queue the inventory to be relayed with the next batch.
// It will be ignored if the peer is already known to
// have the inventory.
sp.QueueInventory(msg.invVect)
})
}
// handleBroadcastMsg deals with broadcasting messages to peers. It is invoked
// from the peerHandler goroutine.
func (s *server) handleBroadcastMsg(state *peerState, bmsg *broadcastMsg) {
state.forAllPeers(func(sp *serverPeer) {
excluded := false
for _, ep := range bmsg.excludePeers {
if sp == ep {
excluded = true
}
}
// Don't broadcast to still connecting outbound peers .
if !sp.Connected() {
excluded = true
}
if !excluded {
sp.QueueMessage(bmsg.message, nil)
}
})
}
type getConnCountMsg struct {
reply chan int32
}
type getPeersMsg struct {
reply chan []*serverPeer
}
type getAddedNodesMsg struct {
reply chan []*serverPeer
}
type disconnectNodeMsg struct {
cmp func(*serverPeer) bool
reply chan error
}
type connectNodeMsg struct {
addr string
permanent bool
reply chan error
}
type removeNodeMsg struct {
cmp func(*serverPeer) bool
reply chan error
}
// handleQuery is the central handler for all queries and commands from other
// goroutines related to peer state.
func (s *server) handleQuery(state *peerState, querymsg interface{}) {
switch msg := querymsg.(type) {
case getConnCountMsg:
nconnected := int32(0)
state.forAllPeers(func(sp *serverPeer) {
if sp.Connected() {
nconnected++
}
})
msg.reply <- nconnected
case getPeersMsg:
peers := make([]*serverPeer, 0, state.Count())
state.forAllPeers(func(sp *serverPeer) {
if !sp.Connected() {
return
}
peers = append(peers, sp)
})
msg.reply <- peers
case connectNodeMsg:
// XXX(oga) duplicate oneshots?
for _, peer := range state.persistentPeers {
if peer.Addr() == msg.addr {
if msg.permanent {
msg.reply <- errors.New("peer already connected")
} else {
msg.reply <- errors.New("peer exists as a permanent peer")
}
return
}
}
// TODO(oga) if too many, nuke a non-perm peer.
sp := s.newOutboundPeer(msg.addr, msg.permanent)
if sp != nil {
go s.peerConnHandler(sp)
msg.reply <- nil
} else {
msg.reply <- errors.New("failed to add peer")
}
case removeNodeMsg:
found := disconnectPeer(state.persistentPeers, msg.cmp, func(sp *serverPeer) {
// Keep group counts ok since we remove from
// the list now.
state.outboundGroups[addrmgr.GroupKey(sp.NA())]--
})
if found {
msg.reply <- nil
} else {
msg.reply <- errors.New("peer not found")
}
// Request a list of the persistent (added) peers.
case getAddedNodesMsg:
// Respond with a slice of the relavent peers.
peers := make([]*serverPeer, 0, len(state.persistentPeers))
for _, sp := range state.persistentPeers {
peers = append(peers, sp)
}
msg.reply <- peers
case disconnectNodeMsg:
// Check inbound peers. We pass a nil callback since we don't
// require any additional actions on disconnect for inbound peers.
found := disconnectPeer(state.peers, msg.cmp, nil)
if found {
msg.reply <- nil
return
}
// Check outbound peers.
found = disconnectPeer(state.outboundPeers, msg.cmp, func(sp *serverPeer) {
// Keep group counts ok since we remove from
// the list now.
state.outboundGroups[addrmgr.GroupKey(sp.NA())]--
})
if found {
// If there are multiple outbound connections to the same
// ip:port, continue disconnecting them all until no such
// peers are found.
for found {
found = disconnectPeer(state.outboundPeers, msg.cmp, func(sp *serverPeer) {
state.outboundGroups[addrmgr.GroupKey(sp.NA())]--
})
}
msg.reply <- nil
return
}
msg.reply <- errors.New("peer not found")
}
}
// disconnectPeer attempts to drop the connection of a tageted peer in the
// passed peer list. Targets are identified via usage of the passed
// `compareFunc`, which should return `true` if the passed peer is the target
// peer. This function returns true on success and false if the peer is unable
// to be located. If the peer is found, and the passed callback: `whenFound'
// isn't nil, we call it with the peer as the argument before it is removed
// from the peerList, and is disconnected from the server.
func disconnectPeer(peerList map[int32]*serverPeer, compareFunc func(*serverPeer) bool, whenFound func(*serverPeer)) bool {
for addr, peer := range peerList {
if compareFunc(peer) {
if whenFound != nil {
whenFound(peer)
}
// This is ok because we are not continuing
// to iterate so won't corrupt the loop.
delete(peerList, addr)
peer.Disconnect()
return true
}
}
return false
}
// newPeerConfig returns the configuration for the given serverPeer.
func newPeerConfig(sp *serverPeer) *peer.Config {
return &peer.Config{
Listeners: peer.MessageListeners{
OnVersion: sp.OnVersion,
OnMemPool: sp.OnMemPool,
OnTx: sp.OnTx,
OnBlock: sp.OnBlock,
OnInv: sp.OnInv,
OnHeaders: sp.OnHeaders,
OnGetData: sp.OnGetData,
OnGetBlocks: sp.OnGetBlocks,
OnGetHeaders: sp.OnGetHeaders,
OnFilterAdd: sp.OnFilterAdd,
OnFilterClear: sp.OnFilterClear,
OnFilterLoad: sp.OnFilterLoad,
OnGetAddr: sp.OnGetAddr,
OnAddr: sp.OnAddr,
OnRead: sp.OnRead,
OnWrite: sp.OnWrite,
// Note: The reference client currently bans peers that send alerts
// not signed with its key. We could verify against their key, but
// since the reference client is currently unwilling to support
// other implementions' alert messages, we will not relay theirs.
OnAlert: nil,
},
NewestBlock: sp.server.db.NewestSha,
BestLocalAddress: sp.server.addrManager.GetBestLocalAddress,
HostToNetAddress: sp.server.addrManager.HostToNetAddress,
Proxy: cfg.Proxy,
UserAgentName: userAgentName,
UserAgentVersion: userAgentVersion,
ChainParams: sp.server.chainParams,
Services: sp.server.services,
}
}
// listenHandler is the main listener which accepts incoming connections for the
// server. It must be run as a goroutine.
func (s *server) listenHandler(listener net.Listener) {
srvrLog.Infof("Server listening on %s", listener.Addr())
for atomic.LoadInt32(&s.shutdown) == 0 {
conn, err := listener.Accept()
if err != nil {
// Only log the error if we're not forcibly shutting down.
if atomic.LoadInt32(&s.shutdown) == 0 {
srvrLog.Errorf("can't accept connection: %v",
err)
}
continue
}
sp := newServerPeer(s, false)
sp.Peer = peer.NewInboundPeer(newPeerConfig(sp), conn)
sp.Start()
go s.peerDoneHandler(sp)
}
s.wg.Done()
srvrLog.Tracef("Listener handler done for %s", listener.Addr())
}
// seedFromDNS uses DNS seeding to populate the address manager with peers.
func (s *server) seedFromDNS() {
// Nothing to do if DNS seeding is disabled.
if cfg.DisableDNSSeed {
return
}
for _, seeder := range activeNetParams.DNSSeeds {
go func(seeder string) {
randSource := mrand.New(mrand.NewSource(time.Now().UnixNano()))
seedpeers, err := dnsDiscover(seeder)
if err != nil {
discLog.Infof("DNS discovery failed on seed %s: %v", seeder, err)
return
}
numPeers := len(seedpeers)
discLog.Infof("%d addresses found from DNS seed %s", numPeers, seeder)
if numPeers == 0 {
return
}
addresses := make([]*wire.NetAddress, len(seedpeers))
// if this errors then we have *real* problems
intPort, _ := strconv.Atoi(activeNetParams.DefaultPort)
for i, peer := range seedpeers {
addresses[i] = new(wire.NetAddress)
addresses[i].SetAddress(peer, uint16(intPort))
// bitcoind seeds with addresses from
// a time randomly selected between 3
// and 7 days ago.
addresses[i].Timestamp = time.Now().Add(-1 *
time.Second * time.Duration(secondsIn3Days+
randSource.Int31n(secondsIn4Days)))
}
// Bitcoind uses a lookup of the dns seeder here. This
// is rather strange since the values looked up by the
// DNS seed lookups will vary quite a lot.
// to replicate this behaviour we put all addresses as
// having come from the first one.
s.addrManager.AddAddresses(addresses, addresses[0])
}(seeder)
}
}
// newOutboundPeer initializes a new outbound peer and setups the message
// listeners.
func (s *server) newOutboundPeer(addr string, persistent bool) *serverPeer {
sp := newServerPeer(s, persistent)
p, err := peer.NewOutboundPeer(newPeerConfig(sp), addr)
if err != nil {
srvrLog.Errorf("Cannot create outbound peer: %v", err)
return nil
}
sp.Peer = p
go s.peerDoneHandler(sp)
return sp
}
// peerConnHandler handles peer connections. It must be run in a goroutine.
func (s *server) peerConnHandler(sp *serverPeer) {
err := s.establishConn(sp)
if err != nil {
srvrLog.Debugf("Failed to connect to %s: %v", sp.Addr(), err)
s.donePeers <- sp
}
}
// peerDoneHandler handles peer disconnects by notifiying the server that it's
// done.
func (s *server) peerDoneHandler(sp *serverPeer) {
sp.WaitForShutdown()
s.donePeers <- sp
// Only tell block manager we are gone if we ever told it we existed.
if sp.VersionKnown() {
s.blockManager.DonePeer(sp)
}
close(sp.quit)
}
// establishConn establishes a connection to the peer.
func (s *server) establishConn(sp *serverPeer) error {
srvrLog.Debugf("Attempting to connect to %s", sp.Addr())
conn, err := btcdDial("tcp", sp.Addr())
if err != nil {
return err
}
if err := sp.Connect(conn); err != nil {
return err
}
srvrLog.Debugf("Connected to %s", sp.Addr())
s.addrManager.Attempt(sp.NA())
return nil
}
// retryConn retries connection to the peer after the given duration.
func (s *server) retryConn(sp *serverPeer, retryDuration time.Duration) {
srvrLog.Debugf("Retrying connection to %s in %s", sp.Addr(), retryDuration)
select {
case <-time.After(retryDuration):
err := s.establishConn(sp)
if err != nil {
retryDuration += connectionRetryInterval / 2
if retryDuration > maxConnectionRetryInterval {
retryDuration = maxConnectionRetryInterval
}
go s.retryConn(sp, retryDuration)
return
}
case <-sp.quit:
case <-s.quit:
}
}
// peerHandler is used to handle peer operations such as adding and removing
// peers to and from the server, banning peers, and broadcasting messages to
// peers. It must be run in a goroutine.
func (s *server) peerHandler() {
// Start the address manager and block manager, both of which are needed
// by peers. This is done here since their lifecycle is closely tied
// to this handler and rather than adding more channels to sychronize
// things, it's easier and slightly faster to simply start and stop them
// in this handler.
s.addrManager.Start()
s.blockManager.Start()
srvrLog.Tracef("Starting peer handler")
state := &peerState{
pendingPeers: make(map[string]*serverPeer),
peers: make(map[int32]*serverPeer),
persistentPeers: make(map[int32]*serverPeer),
outboundPeers: make(map[int32]*serverPeer),
banned: make(map[string]time.Time),
maxOutboundPeers: defaultMaxOutbound,
outboundGroups: make(map[string]int),
}
if cfg.MaxPeers < state.maxOutboundPeers {
state.maxOutboundPeers = cfg.MaxPeers
}
// Add peers discovered through DNS to the address manager.
s.seedFromDNS()
// Start up persistent peers.
permanentPeers := cfg.ConnectPeers
if len(permanentPeers) == 0 {
permanentPeers = cfg.AddPeers
}
for _, addr := range permanentPeers {
sp := s.newOutboundPeer(addr, true)
if sp != nil {
go s.peerConnHandler(sp)
}
}
// if nothing else happens, wake us up soon.
time.AfterFunc(10*time.Second, func() { s.wakeup <- struct{}{} })
out:
for {
select {
// New peers connected to the server.
case p := <-s.newPeers:
s.handleAddPeerMsg(state, p)
// Disconnected peers.
case p := <-s.donePeers:
s.handleDonePeerMsg(state, p)
// Block accepted in mainchain or orphan, update peer height.
case umsg := <-s.peerHeightsUpdate:
s.handleUpdatePeerHeights(state, umsg)
// Peer to ban.
case p := <-s.banPeers:
s.handleBanPeerMsg(state, p)
// New inventory to potentially be relayed to other peers.
case invMsg := <-s.relayInv:
s.handleRelayInvMsg(state, invMsg)
// Message to broadcast to all connected peers except those
// which are excluded by the message.
case bmsg := <-s.broadcast:
s.handleBroadcastMsg(state, &bmsg)
// Used by timers below to wake us back up.
case <-s.wakeup:
// this page left intentionally blank
case qmsg := <-s.query:
s.handleQuery(state, qmsg)
// Shutdown the peer handler.
case <-s.quit:
// Shutdown peers.
state.forAllPeers(func(sp *serverPeer) {
sp.Shutdown()
})
break out
}
// Don't try to connect to more peers when running on the
// simulation test network. The simulation network is only
// intended to connect to specified peers and actively avoid
// advertising and connecting to discovered peers.
if cfg.SimNet {
continue
}
// Only try connect to more peers if we actually need more.
if !state.NeedMoreOutbound() || len(cfg.ConnectPeers) > 0 ||
atomic.LoadInt32(&s.shutdown) != 0 {
state.forPendingPeers(func(sp *serverPeer) {
sp.Shutdown()
})
continue
}
tries := 0
for state.NeedMoreOutbound() &&
state.NeedMoreTries() &&
atomic.LoadInt32(&s.shutdown) == 0 {
addr := s.addrManager.GetAddress("any")
if addr == nil {
break
}
key := addrmgr.GroupKey(addr.NetAddress())
// Address will not be invalid, local or unroutable
// because addrmanager rejects those on addition.
// Just check that we don't already have an address
// in the same group so that we are not connecting
// to the same network segment at the expense of
// others.
if state.outboundGroups[key] != 0 {
break
}
// Check that we don't have a pending connection to this addr.
addrStr := addrmgr.NetAddressKey(addr.NetAddress())
if _, ok := state.pendingPeers[addrStr]; ok {
continue
}
tries++
// After 100 bad tries exit the loop and we'll try again
// later.
if tries > 100 {
break
}
// XXX if we have limited that address skip
// only allow recent nodes (10mins) after we failed 30
// times
if tries < 30 && time.Now().Sub(addr.LastAttempt()) < 10*time.Minute {
continue
}
// allow nondefault ports after 50 failed tries.
if fmt.Sprintf("%d", addr.NetAddress().Port) !=
activeNetParams.DefaultPort && tries < 50 {
continue
}
tries = 0
sp := s.newOutboundPeer(addrStr, false)
if sp != nil {
go s.peerConnHandler(sp)
state.pendingPeers[sp.Addr()] = sp
}
}
// We need more peers, wake up in ten seconds and try again.
if state.NeedMoreOutbound() {
time.AfterFunc(10*time.Second, func() {
s.wakeup <- struct{}{}
})
}
}
if cfg.AddrIndex {
s.addrIndexer.Stop()
}
s.blockManager.Stop()
s.addrManager.Stop()
s.wg.Done()
srvrLog.Tracef("Peer handler done")
}
// AddPeer adds a new peer that has already been connected to the server.
func (s *server) AddPeer(sp *serverPeer) {
s.newPeers <- sp
}
// BanPeer bans a peer that has already been connected to the server by ip.
func (s *server) BanPeer(sp *serverPeer) {
s.banPeers <- sp
}
// RelayInventory relays the passed inventory to all connected peers that are
// not already known to have it.
func (s *server) RelayInventory(invVect *wire.InvVect, data interface{}) {
s.relayInv <- relayMsg{invVect: invVect, data: data}
}
// BroadcastMessage sends msg to all peers currently connected to the server
// except those in the passed peers to exclude.
func (s *server) BroadcastMessage(msg wire.Message, exclPeers ...*serverPeer) {
// XXX: Need to determine if this is an alert that has already been
// broadcast and refrain from broadcasting again.
bmsg := broadcastMsg{message: msg, excludePeers: exclPeers}
s.broadcast <- bmsg
}
// ConnectedCount returns the number of currently connected peers.
func (s *server) ConnectedCount() int32 {
replyChan := make(chan int32)
s.query <- getConnCountMsg{reply: replyChan}
return <-replyChan
}
// AddedNodeInfo returns an array of btcjson.GetAddedNodeInfoResult structures
// describing the persistent (added) nodes.
func (s *server) AddedNodeInfo() []*serverPeer {
replyChan := make(chan []*serverPeer)
s.query <- getAddedNodesMsg{reply: replyChan}
return <-replyChan
}
// Peers returns an array of all connected peers.
func (s *server) Peers() []*serverPeer {
replyChan := make(chan []*serverPeer)
s.query <- getPeersMsg{reply: replyChan}
return <-replyChan
}
// DisconnectNodeByAddr disconnects a peer by target address. Both outbound and
// inbound nodes will be searched for the target node. An error message will
// be returned if the peer was not found.
func (s *server) DisconnectNodeByAddr(addr string) error {
replyChan := make(chan error)
s.query <- disconnectNodeMsg{
cmp: func(sp *serverPeer) bool { return sp.Addr() == addr },
reply: replyChan,
}
return <-replyChan
}
// DisconnectNodeByID disconnects a peer by target node id. Both outbound and
// inbound nodes will be searched for the target node. An error message will be
// returned if the peer was not found.
func (s *server) DisconnectNodeByID(id int32) error {
replyChan := make(chan error)
s.query <- disconnectNodeMsg{
cmp: func(sp *serverPeer) bool { return sp.ID() == id },
reply: replyChan,
}
return <-replyChan
}
// RemoveNodeByAddr removes a peer from the list of persistent peers if
// present. An error will be returned if the peer was not found.
func (s *server) RemoveNodeByAddr(addr string) error {
replyChan := make(chan error)
s.query <- removeNodeMsg{
cmp: func(sp *serverPeer) bool { return sp.Addr() == addr },
reply: replyChan,
}
return <-replyChan
}
// RemoveNodeByID removes a peer by node ID from the list of persistent peers
// if present. An error will be returned if the peer was not found.
func (s *server) RemoveNodeByID(id int32) error {
replyChan := make(chan error)
s.query <- removeNodeMsg{
cmp: func(sp *serverPeer) bool { return sp.ID() == id },
reply: replyChan,
}
return <-replyChan
}
// ConnectNode adds `addr' as a new outbound peer. If permanent is true then the
// peer will be persistent and reconnect if the connection is lost.
// It is an error to call this with an already existing peer.
func (s *server) ConnectNode(addr string, permanent bool) error {
replyChan := make(chan error)
s.query <- connectNodeMsg{addr: addr, permanent: permanent, reply: replyChan}
return <-replyChan
}
// AddBytesSent adds the passed number of bytes to the total bytes sent counter
// for the server. It is safe for concurrent access.
func (s *server) AddBytesSent(bytesSent uint64) {
s.bytesMutex.Lock()
defer s.bytesMutex.Unlock()
s.bytesSent += bytesSent
}
// AddBytesReceived adds the passed number of bytes to the total bytes received
// counter for the server. It is safe for concurrent access.
func (s *server) AddBytesReceived(bytesReceived uint64) {
s.bytesMutex.Lock()
defer s.bytesMutex.Unlock()
s.bytesReceived += bytesReceived
}
// NetTotals returns the sum of all bytes received and sent across the network
// for all peers. It is safe for concurrent access.
func (s *server) NetTotals() (uint64, uint64) {
s.bytesMutex.Lock()
defer s.bytesMutex.Unlock()
return s.bytesReceived, s.bytesSent
}
// UpdatePeerHeights updates the heights of all peers who have have announced
// the latest connected main chain block, or a recognized orphan. These height
// updates allow us to dynamically refresh peer heights, ensuring sync peer
// selection has access to the latest block heights for each peer.
func (s *server) UpdatePeerHeights(latestBlkSha *wire.ShaHash, latestHeight int32, updateSource *serverPeer) {
s.peerHeightsUpdate <- updatePeerHeightsMsg{
newSha: latestBlkSha,
newHeight: latestHeight,
originPeer: updateSource,
}
}
// rebroadcastHandler keeps track of user submitted inventories that we have
// sent out but have not yet made it into a block. We periodically rebroadcast
// them in case our peers restarted or otherwise lost track of them.
func (s *server) rebroadcastHandler() {
// Wait 5 min before first tx rebroadcast.
timer := time.NewTimer(5 * time.Minute)
pendingInvs := make(map[wire.InvVect]interface{})
out:
for {
select {
case riv := <-s.modifyRebroadcastInv:
switch msg := riv.(type) {
// Incoming InvVects are added to our map of RPC txs.
case broadcastInventoryAdd:
pendingInvs[*msg.invVect] = msg.data
// When an InvVect has been added to a block, we can
// now remove it, if it was present.
case broadcastInventoryDel:
if _, ok := pendingInvs[*msg]; ok {
delete(pendingInvs, *msg)
}
}
case <-timer.C:
// Any inventory we have has not made it into a block
// yet. We periodically resubmit them until they have.
for iv, data := range pendingInvs {
ivCopy := iv
s.RelayInventory(&ivCopy, data)
}
// Process at a random time up to 30mins (in seconds)
// in the future.
timer.Reset(time.Second *
time.Duration(randomUint16Number(1800)))
case <-s.quit:
break out
}
}
timer.Stop()
// Drain channels before exiting so nothing is left waiting around
// to send.
cleanup:
for {
select {
case <-s.modifyRebroadcastInv:
default:
break cleanup
}
}
s.wg.Done()
}
// Start begins accepting connections from peers.
func (s *server) Start() {
// Already started?
if atomic.AddInt32(&s.started, 1) != 1 {
return
}
srvrLog.Trace("Starting server")
// Start all the listeners. There will not be any if listening is
// disabled.
for _, listener := range s.listeners {
s.wg.Add(1)
go s.listenHandler(listener)
}
// Start the peer handler which in turn starts the address and block
// managers.
s.wg.Add(1)
go s.peerHandler()
if s.nat != nil {
s.wg.Add(1)
go s.upnpUpdateThread()
}
if !cfg.DisableRPC {
s.wg.Add(1)
// Start the rebroadcastHandler, which ensures user tx received by
// the RPC server are rebroadcast until being included in a block.
go s.rebroadcastHandler()
s.rpcServer.Start()
}
// Start the CPU miner if generation is enabled.
if cfg.Generate {
s.cpuMiner.Start()
}
if cfg.AddrIndex {
s.addrIndexer.Start()
}
}
// Stop gracefully shuts down the server by stopping and disconnecting all
// peers and the main listener.
func (s *server) Stop() error {
// Make sure this only happens once.
if atomic.AddInt32(&s.shutdown, 1) != 1 {
srvrLog.Infof("Server is already in the process of shutting down")
return nil
}
srvrLog.Warnf("Server shutting down")
// Stop all the listeners. There will not be any listeners if
// listening is disabled.
for _, listener := range s.listeners {
err := listener.Close()
if err != nil {
return err
}
}
// Stop the CPU miner if needed
s.cpuMiner.Stop()
// Shutdown the RPC server if it's not disabled.
if !cfg.DisableRPC {
s.rpcServer.Stop()
}
// Signal the remaining goroutines to quit.
close(s.quit)
return nil
}
// WaitForShutdown blocks until the main listener and peer handlers are stopped.
func (s *server) WaitForShutdown() {
s.wg.Wait()
}
// ScheduleShutdown schedules a server shutdown after the specified duration.
// It also dynamically adjusts how often to warn the server is going down based
// on remaining duration.
func (s *server) ScheduleShutdown(duration time.Duration) {
// Don't schedule shutdown more than once.
if atomic.AddInt32(&s.shutdownSched, 1) != 1 {
return
}
srvrLog.Warnf("Server shutdown in %v", duration)
go func() {
remaining := duration
tickDuration := dynamicTickDuration(remaining)
done := time.After(remaining)
ticker := time.NewTicker(tickDuration)
out:
for {
select {
case <-done:
ticker.Stop()
s.Stop()
break out
case <-ticker.C:
remaining = remaining - tickDuration
if remaining < time.Second {
continue
}
// Change tick duration dynamically based on remaining time.
newDuration := dynamicTickDuration(remaining)
if tickDuration != newDuration {
tickDuration = newDuration
ticker.Stop()
ticker = time.NewTicker(tickDuration)
}
srvrLog.Warnf("Server shutdown in %v", remaining)
}
}
}()
}
// parseListeners splits the list of listen addresses passed in addrs into
// IPv4 and IPv6 slices and returns them. This allows easy creation of the
// listeners on the correct interface "tcp4" and "tcp6". It also properly
// detects addresses which apply to "all interfaces" and adds the address to
// both slices.
func parseListeners(addrs []string) ([]string, []string, bool, error) {
ipv4ListenAddrs := make([]string, 0, len(addrs)*2)
ipv6ListenAddrs := make([]string, 0, len(addrs)*2)
haveWildcard := false
for _, addr := range addrs {
host, _, err := net.SplitHostPort(addr)
if err != nil {
// Shouldn't happen due to already being normalized.
return nil, nil, false, err
}
// Empty host or host of * on plan9 is both IPv4 and IPv6.
if host == "" || (host == "*" && runtime.GOOS == "plan9") {
ipv4ListenAddrs = append(ipv4ListenAddrs, addr)
ipv6ListenAddrs = append(ipv6ListenAddrs, addr)
haveWildcard = true
continue
}
// Strip IPv6 zone id if present since net.ParseIP does not
// handle it.
zoneIndex := strings.LastIndex(host, "%")
if zoneIndex > 0 {
host = host[:zoneIndex]
}
// Parse the IP.
ip := net.ParseIP(host)
if ip == nil {
return nil, nil, false, fmt.Errorf("'%s' is not a "+
"valid IP address", host)
}
// To4 returns nil when the IP is not an IPv4 address, so use
// this determine the address type.
if ip.To4() == nil {
ipv6ListenAddrs = append(ipv6ListenAddrs, addr)
} else {
ipv4ListenAddrs = append(ipv4ListenAddrs, addr)
}
}
return ipv4ListenAddrs, ipv6ListenAddrs, haveWildcard, nil
}
func (s *server) upnpUpdateThread() {
// Go off immediately to prevent code duplication, thereafter we renew
// lease every 15 minutes.
timer := time.NewTimer(0 * time.Second)
lport, _ := strconv.ParseInt(activeNetParams.DefaultPort, 10, 16)
first := true
out:
for {
select {
case <-timer.C:
// TODO(oga) pick external port more cleverly
// TODO(oga) know which ports we are listening to on an external net.
// TODO(oga) if specific listen port doesn't work then ask for wildcard
// listen port?
// XXX this assumes timeout is in seconds.
listenPort, err := s.nat.AddPortMapping("tcp", int(lport), int(lport),
"btcd listen port", 20*60)
if err != nil {
srvrLog.Warnf("can't add UPnP port mapping: %v", err)
}
if first && err == nil {
// TODO(oga): look this up periodically to see if upnp domain changed
// and so did ip.
externalip, err := s.nat.GetExternalAddress()
if err != nil {
srvrLog.Warnf("UPnP can't get external address: %v", err)
continue out
}
na := wire.NewNetAddressIPPort(externalip, uint16(listenPort),
s.services)
err = s.addrManager.AddLocalAddress(na, addrmgr.UpnpPrio)
if err != nil {
// XXX DeletePortMapping?
}
srvrLog.Warnf("Successfully bound via UPnP to %s", addrmgr.NetAddressKey(na))
first = false
}
timer.Reset(time.Minute * 15)
case <-s.quit:
break out
}
}
timer.Stop()
if err := s.nat.DeletePortMapping("tcp", int(lport), int(lport)); err != nil {
srvrLog.Warnf("unable to remove UPnP port mapping: %v", err)
} else {
srvrLog.Debugf("succesfully disestablished UPnP port mapping")
}
s.wg.Done()
}
// newServer returns a new btcd server configured to listen on addr for the
// bitcoin network type specified by chainParams. Use start to begin accepting
// connections from peers.
func newServer(listenAddrs []string, db database.Db, chainParams *chaincfg.Params) (*server, error) {
services := defaultServices
if cfg.NoPeerBloomFilters {
services &^= wire.SFNodeBloom
}
amgr := addrmgr.New(cfg.DataDir, btcdLookup)
var listeners []net.Listener
var nat NAT
if !cfg.DisableListen {
ipv4Addrs, ipv6Addrs, wildcard, err :=
parseListeners(listenAddrs)
if err != nil {
return nil, err
}
listeners = make([]net.Listener, 0, len(ipv4Addrs)+len(ipv6Addrs))
discover := true
if len(cfg.ExternalIPs) != 0 {
discover = false
// if this fails we have real issues.
port, _ := strconv.ParseUint(
activeNetParams.DefaultPort, 10, 16)
for _, sip := range cfg.ExternalIPs {
eport := uint16(port)
host, portstr, err := net.SplitHostPort(sip)
if err != nil {
// no port, use default.
host = sip
} else {
port, err := strconv.ParseUint(
portstr, 10, 16)
if err != nil {
srvrLog.Warnf("Can not parse "+
"port from %s for "+
"externalip: %v", sip,
err)
continue
}
eport = uint16(port)
}
na, err := amgr.HostToNetAddress(host, eport,
services)
if err != nil {
srvrLog.Warnf("Not adding %s as "+
"externalip: %v", sip, err)
continue
}
err = amgr.AddLocalAddress(na, addrmgr.ManualPrio)
if err != nil {
amgrLog.Warnf("Skipping specified external IP: %v", err)
}
}
} else if discover && cfg.Upnp {
nat, err = Discover()
if err != nil {
srvrLog.Warnf("Can't discover upnp: %v", err)
}
// nil nat here is fine, just means no upnp on network.
}
// TODO(oga) nonstandard port...
if wildcard {
port, err :=
strconv.ParseUint(activeNetParams.DefaultPort,
10, 16)
if err != nil {
// I can't think of a cleaner way to do this...
goto nowc
}
addrs, err := net.InterfaceAddrs()
for _, a := range addrs {
ip, _, err := net.ParseCIDR(a.String())
if err != nil {
continue
}
na := wire.NewNetAddressIPPort(ip,
uint16(port), services)
if discover {
err = amgr.AddLocalAddress(na, addrmgr.InterfacePrio)
if err != nil {
amgrLog.Debugf("Skipping local address: %v", err)
}
}
}
}
nowc:
for _, addr := range ipv4Addrs {
listener, err := net.Listen("tcp4", addr)
if err != nil {
srvrLog.Warnf("Can't listen on %s: %v", addr,
err)
continue
}
listeners = append(listeners, listener)
if discover {
if na, err := amgr.DeserializeNetAddress(addr); err == nil {
err = amgr.AddLocalAddress(na, addrmgr.BoundPrio)
if err != nil {
amgrLog.Warnf("Skipping bound address: %v", err)
}
}
}
}
for _, addr := range ipv6Addrs {
listener, err := net.Listen("tcp6", addr)
if err != nil {
srvrLog.Warnf("Can't listen on %s: %v", addr,
err)
continue
}
listeners = append(listeners, listener)
if discover {
if na, err := amgr.DeserializeNetAddress(addr); err == nil {
err = amgr.AddLocalAddress(na, addrmgr.BoundPrio)
if err != nil {
amgrLog.Debugf("Skipping bound address: %v", err)
}
}
}
}
if len(listeners) == 0 {
return nil, errors.New("no valid listen address")
}
}
s := server{
listeners: listeners,
chainParams: chainParams,
addrManager: amgr,
newPeers: make(chan *serverPeer, cfg.MaxPeers),
donePeers: make(chan *serverPeer, cfg.MaxPeers),
banPeers: make(chan *serverPeer, cfg.MaxPeers),
retryPeers: make(chan *serverPeer, cfg.MaxPeers),
wakeup: make(chan struct{}),
query: make(chan interface{}),
relayInv: make(chan relayMsg, cfg.MaxPeers),
broadcast: make(chan broadcastMsg, cfg.MaxPeers),
quit: make(chan struct{}),
modifyRebroadcastInv: make(chan interface{}),
peerHeightsUpdate: make(chan updatePeerHeightsMsg),
nat: nat,
db: db,
timeSource: blockchain.NewMedianTime(),
services: services,
sigCache: txscript.NewSigCache(cfg.SigCacheMaxSize),
}
bm, err := newBlockManager(&s)
if err != nil {
return nil, err
}
s.blockManager = bm
s.txMemPool = newTxMemPool(&s)
// Create the mining policy based on the configuration options.
policy := miningPolicy{
BlockMinSize: cfg.BlockMinSize,
BlockMaxSize: cfg.BlockMaxSize,
BlockPrioritySize: cfg.BlockPrioritySize,
TxMinFreeFee: cfg.minRelayTxFee,
}
s.cpuMiner = newCPUMiner(&policy, &s)
if cfg.AddrIndex {
ai, err := newAddrIndexer(&s)
if err != nil {
return nil, err
}
s.addrIndexer = ai
}
if !cfg.DisableRPC {
s.rpcServer, err = newRPCServer(cfg.RPCListeners, &policy, &s)
if err != nil {
return nil, err
}
}
return &s, nil
}
// dynamicTickDuration is a convenience function used to dynamically choose a
// tick duration based on remaining time. It is primarily used during
// server shutdown to make shutdown warnings more frequent as the shutdown time
// approaches.
func dynamicTickDuration(remaining time.Duration) time.Duration {
switch {
case remaining <= time.Second*5:
return time.Second
case remaining <= time.Second*15:
return time.Second * 5
case remaining <= time.Minute:
return time.Second * 15
case remaining <= time.Minute*5:
return time.Minute
case remaining <= time.Minute*15:
return time.Minute * 5
case remaining <= time.Hour:
return time.Minute * 15
}
return time.Hour
}