mirror of
https://github.com/btcsuite/btcd.git
synced 2024-11-19 18:00:11 +01:00
6fc4199ee4
In this commit, we add a new function `RawTxInTapscriptSignature` that will be used to generate signatures in the _tapscript_ context. Note that this differs from top-level taproot as a distinct sighash is used, and we _always_ accept a root hash to perform the proper tweak.
583 lines
19 KiB
Go
583 lines
19 KiB
Go
// Copyright (c) 2013-2015 The btcsuite developers
|
|
// Use of this source code is governed by an ISC
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package txscript
|
|
|
|
import (
|
|
"errors"
|
|
|
|
"github.com/btcsuite/btcd/btcec/v2"
|
|
"github.com/btcsuite/btcd/btcec/v2/schnorr"
|
|
"github.com/btcsuite/btcd/btcutil"
|
|
|
|
"github.com/btcsuite/btcd/btcec/v2/ecdsa"
|
|
"github.com/btcsuite/btcd/chaincfg"
|
|
"github.com/btcsuite/btcd/wire"
|
|
)
|
|
|
|
// RawTxInWitnessSignature returns the serialized ECDA signature for the input
|
|
// idx of the given transaction, with the hashType appended to it. This
|
|
// function is identical to RawTxInSignature, however the signature generated
|
|
// signs a new sighash digest defined in BIP0143.
|
|
func RawTxInWitnessSignature(tx *wire.MsgTx, sigHashes *TxSigHashes, idx int,
|
|
amt int64, subScript []byte, hashType SigHashType,
|
|
key *btcec.PrivateKey) ([]byte, error) {
|
|
|
|
hash, err := calcWitnessSignatureHashRaw(subScript, sigHashes, hashType, tx,
|
|
idx, amt)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
signature := ecdsa.Sign(key, hash)
|
|
|
|
return append(signature.Serialize(), byte(hashType)), nil
|
|
}
|
|
|
|
// WitnessSignature creates an input witness stack for tx to spend BTC sent
|
|
// from a previous output to the owner of privKey using the p2wkh script
|
|
// template. The passed transaction must contain all the inputs and outputs as
|
|
// dictated by the passed hashType. The signature generated observes the new
|
|
// transaction digest algorithm defined within BIP0143.
|
|
func WitnessSignature(tx *wire.MsgTx, sigHashes *TxSigHashes, idx int, amt int64,
|
|
subscript []byte, hashType SigHashType, privKey *btcec.PrivateKey,
|
|
compress bool) (wire.TxWitness, error) {
|
|
|
|
sig, err := RawTxInWitnessSignature(tx, sigHashes, idx, amt, subscript,
|
|
hashType, privKey)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
pk := privKey.PubKey()
|
|
var pkData []byte
|
|
if compress {
|
|
pkData = pk.SerializeCompressed()
|
|
} else {
|
|
pkData = pk.SerializeUncompressed()
|
|
}
|
|
|
|
// A witness script is actually a stack, so we return an array of byte
|
|
// slices here, rather than a single byte slice.
|
|
return wire.TxWitness{sig, pkData}, nil
|
|
}
|
|
|
|
// RawTxInTaprootSignature returns a valid schnorr signature required to
|
|
// perform a taproot key-spend of the specified input. If SigHashDefault was
|
|
// specified, then the returned signature is 64-byte in length, as it omits the
|
|
// additional byte to denote the sighash type.
|
|
func RawTxInTaprootSignature(tx *wire.MsgTx, sigHashes *TxSigHashes, idx int,
|
|
amt int64, pkScript []byte, tapScriptRootHash []byte, hashType SigHashType,
|
|
key *btcec.PrivateKey) ([]byte, error) {
|
|
|
|
// First, we'll start by compute the top-level taproot sighash.
|
|
sigHash, err := calcTaprootSignatureHashRaw(
|
|
sigHashes, hashType, tx, idx,
|
|
NewCannedPrevOutputFetcher(pkScript, amt),
|
|
)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Before we sign the sighash, we'll need to apply the taptweak to the
|
|
// private key based on the tapScriptRootHash.
|
|
privKeyTweak := TweakTaprootPrivKey(key, tapScriptRootHash)
|
|
|
|
// With the sighash constructed, we can sign it with the specified
|
|
// private key.
|
|
signature, err := schnorr.Sign(privKeyTweak, sigHash)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
sig := signature.Serialize()
|
|
|
|
// If this is sighash default, then we can just return the signature
|
|
// directly.
|
|
if hashType&SigHashDefault == SigHashDefault {
|
|
return sig, nil
|
|
}
|
|
|
|
// Otherwise, append the sighash type to the final sig.
|
|
return append(sig, byte(hashType)), nil
|
|
}
|
|
|
|
// TaprootWitnessSignature returns a valid witness stack that can be used to
|
|
// spend the key-spend path of a taproot input as specified in BIP 342 and BIP
|
|
// 86. This method assumes that the public key included in pkScript was
|
|
// generated using ComputeTaprootKeyNoScript that commits to a fake root
|
|
// tapscript hash. If not, then RawTxInTaprootSignature should be used with the
|
|
// actual committed contents.
|
|
//
|
|
// TODO(roasbeef): add support for annex even tho it's non-standard?
|
|
func TaprootWitnessSignature(tx *wire.MsgTx, sigHashes *TxSigHashes, idx int,
|
|
amt int64, pkScript []byte, hashType SigHashType,
|
|
key *btcec.PrivateKey) (wire.TxWitness, error) {
|
|
|
|
// As we're assuming this was a BIP 86 key, we use an empty root hash
|
|
// which means output key commits to just the public key.
|
|
fakeTapscriptRootHash := []byte{}
|
|
|
|
sig, err := RawTxInTaprootSignature(
|
|
tx, sigHashes, idx, amt, pkScript, fakeTapscriptRootHash,
|
|
hashType, key,
|
|
)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// The witness script to spend a taproot input using the key-spend path
|
|
// is just the signature itself, given the public key is
|
|
// embedded in the previous output script.
|
|
return wire.TxWitness{sig}, nil
|
|
}
|
|
|
|
// RawTxInTapscriptSignature computes a raw schnorr signature for a signature
|
|
// generated from a tapscript leaf. This differs from the
|
|
// RawTxInTaprootSignature which is used to generate signatures for top-level
|
|
// taproot key spends.
|
|
//
|
|
// TODO(roasbeef): actually add code-sep to interface? not really used
|
|
// anywhere....
|
|
func RawTxInTapscriptSignature(tx *wire.MsgTx, sigHashes *TxSigHashes, idx int,
|
|
amt int64, pkScript []byte, tapLeaf TapLeaf, hashType SigHashType,
|
|
privKey *btcec.PrivateKey) ([]byte, error) {
|
|
|
|
// First, we'll start by compute the top-level taproot sighash.
|
|
tapLeafHash := tapLeaf.TapHash()
|
|
sigHash, err := calcTaprootSignatureHashRaw(
|
|
sigHashes, hashType, tx, idx,
|
|
NewCannedPrevOutputFetcher(pkScript, amt),
|
|
WithBaseTapscriptVersion(blankCodeSepValue, tapLeafHash[:]),
|
|
)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// With the sighash constructed, we can sign it with the specified
|
|
// private key.
|
|
signature, err := schnorr.Sign(privKey, sigHash)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Finally, append the sighash type to the final sig if it's not the
|
|
// default sighash value (in which case appending it is disallowed).
|
|
if hashType != SigHashDefault {
|
|
return append(signature.Serialize(), byte(hashType)), nil
|
|
}
|
|
|
|
// The default sighash case where we'll return _just_ the signature.
|
|
return signature.Serialize(), nil
|
|
}
|
|
|
|
// RawTxInSignature returns the serialized ECDSA signature for the input idx of
|
|
// the given transaction, with hashType appended to it.
|
|
func RawTxInSignature(tx *wire.MsgTx, idx int, subScript []byte,
|
|
hashType SigHashType, key *btcec.PrivateKey) ([]byte, error) {
|
|
|
|
hash, err := CalcSignatureHash(subScript, hashType, tx, idx)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
signature := ecdsa.Sign(key, hash)
|
|
|
|
return append(signature.Serialize(), byte(hashType)), nil
|
|
}
|
|
|
|
// SignatureScript creates an input signature script for tx to spend BTC sent
|
|
// from a previous output to the owner of privKey. tx must include all
|
|
// transaction inputs and outputs, however txin scripts are allowed to be filled
|
|
// or empty. The returned script is calculated to be used as the idx'th txin
|
|
// sigscript for tx. subscript is the PkScript of the previous output being used
|
|
// as the idx'th input. privKey is serialized in either a compressed or
|
|
// uncompressed format based on compress. This format must match the same format
|
|
// used to generate the payment address, or the script validation will fail.
|
|
func SignatureScript(tx *wire.MsgTx, idx int, subscript []byte, hashType SigHashType, privKey *btcec.PrivateKey, compress bool) ([]byte, error) {
|
|
sig, err := RawTxInSignature(tx, idx, subscript, hashType, privKey)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
pk := privKey.PubKey()
|
|
var pkData []byte
|
|
if compress {
|
|
pkData = pk.SerializeCompressed()
|
|
} else {
|
|
pkData = pk.SerializeUncompressed()
|
|
}
|
|
|
|
return NewScriptBuilder().AddData(sig).AddData(pkData).Script()
|
|
}
|
|
|
|
func p2pkSignatureScript(tx *wire.MsgTx, idx int, subScript []byte, hashType SigHashType, privKey *btcec.PrivateKey) ([]byte, error) {
|
|
sig, err := RawTxInSignature(tx, idx, subScript, hashType, privKey)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return NewScriptBuilder().AddData(sig).Script()
|
|
}
|
|
|
|
// signMultiSig signs as many of the outputs in the provided multisig script as
|
|
// possible. It returns the generated script and a boolean if the script fulfils
|
|
// the contract (i.e. nrequired signatures are provided). Since it is arguably
|
|
// legal to not be able to sign any of the outputs, no error is returned.
|
|
func signMultiSig(tx *wire.MsgTx, idx int, subScript []byte, hashType SigHashType,
|
|
addresses []btcutil.Address, nRequired int, kdb KeyDB) ([]byte, bool) {
|
|
// We start with a single OP_FALSE to work around the (now standard)
|
|
// but in the reference implementation that causes a spurious pop at
|
|
// the end of OP_CHECKMULTISIG.
|
|
builder := NewScriptBuilder().AddOp(OP_FALSE)
|
|
signed := 0
|
|
for _, addr := range addresses {
|
|
key, _, err := kdb.GetKey(addr)
|
|
if err != nil {
|
|
continue
|
|
}
|
|
sig, err := RawTxInSignature(tx, idx, subScript, hashType, key)
|
|
if err != nil {
|
|
continue
|
|
}
|
|
|
|
builder.AddData(sig)
|
|
signed++
|
|
if signed == nRequired {
|
|
break
|
|
}
|
|
|
|
}
|
|
|
|
script, _ := builder.Script()
|
|
return script, signed == nRequired
|
|
}
|
|
|
|
func sign(chainParams *chaincfg.Params, tx *wire.MsgTx, idx int,
|
|
subScript []byte, hashType SigHashType, kdb KeyDB, sdb ScriptDB) ([]byte,
|
|
ScriptClass, []btcutil.Address, int, error) {
|
|
|
|
class, addresses, nrequired, err := ExtractPkScriptAddrs(subScript,
|
|
chainParams)
|
|
if err != nil {
|
|
return nil, NonStandardTy, nil, 0, err
|
|
}
|
|
|
|
switch class {
|
|
case PubKeyTy:
|
|
// look up key for address
|
|
key, _, err := kdb.GetKey(addresses[0])
|
|
if err != nil {
|
|
return nil, class, nil, 0, err
|
|
}
|
|
|
|
script, err := p2pkSignatureScript(tx, idx, subScript, hashType,
|
|
key)
|
|
if err != nil {
|
|
return nil, class, nil, 0, err
|
|
}
|
|
|
|
return script, class, addresses, nrequired, nil
|
|
case PubKeyHashTy:
|
|
// look up key for address
|
|
key, compressed, err := kdb.GetKey(addresses[0])
|
|
if err != nil {
|
|
return nil, class, nil, 0, err
|
|
}
|
|
|
|
script, err := SignatureScript(tx, idx, subScript, hashType,
|
|
key, compressed)
|
|
if err != nil {
|
|
return nil, class, nil, 0, err
|
|
}
|
|
|
|
return script, class, addresses, nrequired, nil
|
|
case ScriptHashTy:
|
|
script, err := sdb.GetScript(addresses[0])
|
|
if err != nil {
|
|
return nil, class, nil, 0, err
|
|
}
|
|
|
|
return script, class, addresses, nrequired, nil
|
|
case MultiSigTy:
|
|
script, _ := signMultiSig(tx, idx, subScript, hashType,
|
|
addresses, nrequired, kdb)
|
|
return script, class, addresses, nrequired, nil
|
|
case NullDataTy:
|
|
return nil, class, nil, 0,
|
|
errors.New("can't sign NULLDATA transactions")
|
|
default:
|
|
return nil, class, nil, 0,
|
|
errors.New("can't sign unknown transactions")
|
|
}
|
|
}
|
|
|
|
// mergeMultiSig combines the two signature scripts sigScript and prevScript
|
|
// that both provide signatures for pkScript in output idx of tx. addresses
|
|
// and nRequired should be the results from extracting the addresses from
|
|
// pkScript. Since this function is internal only we assume that the arguments
|
|
// have come from other functions internally and thus are all consistent with
|
|
// each other, behaviour is undefined if this contract is broken.
|
|
//
|
|
// NOTE: This function is only valid for version 0 scripts. Since the function
|
|
// does not accept a script version, the results are undefined for other script
|
|
// versions.
|
|
func mergeMultiSig(tx *wire.MsgTx, idx int, addresses []btcutil.Address,
|
|
nRequired int, pkScript, sigScript, prevScript []byte) []byte {
|
|
|
|
// Nothing to merge if either the new or previous signature scripts are
|
|
// empty.
|
|
if len(sigScript) == 0 {
|
|
return prevScript
|
|
}
|
|
if len(prevScript) == 0 {
|
|
return sigScript
|
|
}
|
|
|
|
// Convenience function to avoid duplication.
|
|
var possibleSigs [][]byte
|
|
extractSigs := func(script []byte) error {
|
|
const scriptVersion = 0
|
|
tokenizer := MakeScriptTokenizer(scriptVersion, script)
|
|
for tokenizer.Next() {
|
|
if data := tokenizer.Data(); len(data) != 0 {
|
|
possibleSigs = append(possibleSigs, data)
|
|
}
|
|
}
|
|
return tokenizer.Err()
|
|
}
|
|
|
|
// Attempt to extract signatures from the two scripts. Return the other
|
|
// script that is intended to be merged in the case signature extraction
|
|
// fails for some reason.
|
|
if err := extractSigs(sigScript); err != nil {
|
|
return prevScript
|
|
}
|
|
if err := extractSigs(prevScript); err != nil {
|
|
return sigScript
|
|
}
|
|
|
|
// Now we need to match the signatures to pubkeys, the only real way to
|
|
// do that is to try to verify them all and match it to the pubkey
|
|
// that verifies it. we then can go through the addresses in order
|
|
// to build our script. Anything that doesn't parse or doesn't verify we
|
|
// throw away.
|
|
addrToSig := make(map[string][]byte)
|
|
sigLoop:
|
|
for _, sig := range possibleSigs {
|
|
|
|
// can't have a valid signature that doesn't at least have a
|
|
// hashtype, in practise it is even longer than this. but
|
|
// that'll be checked next.
|
|
if len(sig) < 1 {
|
|
continue
|
|
}
|
|
tSig := sig[:len(sig)-1]
|
|
hashType := SigHashType(sig[len(sig)-1])
|
|
|
|
pSig, err := ecdsa.ParseDERSignature(tSig)
|
|
if err != nil {
|
|
continue
|
|
}
|
|
|
|
// We have to do this each round since hash types may vary
|
|
// between signatures and so the hash will vary. We can,
|
|
// however, assume no sigs etc are in the script since that
|
|
// would make the transaction nonstandard and thus not
|
|
// MultiSigTy, so we just need to hash the full thing.
|
|
hash := calcSignatureHash(pkScript, hashType, tx, idx)
|
|
|
|
for _, addr := range addresses {
|
|
// All multisig addresses should be pubkey addresses
|
|
// it is an error to call this internal function with
|
|
// bad input.
|
|
pkaddr := addr.(*btcutil.AddressPubKey)
|
|
|
|
pubKey := pkaddr.PubKey()
|
|
|
|
// If it matches we put it in the map. We only
|
|
// can take one signature per public key so if we
|
|
// already have one, we can throw this away.
|
|
if pSig.Verify(hash, pubKey) {
|
|
aStr := addr.EncodeAddress()
|
|
if _, ok := addrToSig[aStr]; !ok {
|
|
addrToSig[aStr] = sig
|
|
}
|
|
continue sigLoop
|
|
}
|
|
}
|
|
}
|
|
|
|
// Extra opcode to handle the extra arg consumed (due to previous bugs
|
|
// in the reference implementation).
|
|
builder := NewScriptBuilder().AddOp(OP_FALSE)
|
|
doneSigs := 0
|
|
// This assumes that addresses are in the same order as in the script.
|
|
for _, addr := range addresses {
|
|
sig, ok := addrToSig[addr.EncodeAddress()]
|
|
if !ok {
|
|
continue
|
|
}
|
|
builder.AddData(sig)
|
|
doneSigs++
|
|
if doneSigs == nRequired {
|
|
break
|
|
}
|
|
}
|
|
|
|
// padding for missing ones.
|
|
for i := doneSigs; i < nRequired; i++ {
|
|
builder.AddOp(OP_0)
|
|
}
|
|
|
|
script, _ := builder.Script()
|
|
return script
|
|
}
|
|
|
|
// mergeScripts merges sigScript and prevScript assuming they are both
|
|
// partial solutions for pkScript spending output idx of tx. class, addresses
|
|
// and nrequired are the result of extracting the addresses from pkscript.
|
|
// The return value is the best effort merging of the two scripts. Calling this
|
|
// function with addresses, class and nrequired that do not match pkScript is
|
|
// an error and results in undefined behaviour.
|
|
//
|
|
// NOTE: This function is only valid for version 0 scripts. Since the function
|
|
// does not accept a script version, the results are undefined for other script
|
|
// versions.
|
|
func mergeScripts(chainParams *chaincfg.Params, tx *wire.MsgTx, idx int,
|
|
pkScript []byte, class ScriptClass, addresses []btcutil.Address,
|
|
nRequired int, sigScript, prevScript []byte) []byte {
|
|
|
|
// TODO(oga) the scripthash and multisig paths here are overly
|
|
// inefficient in that they will recompute already known data.
|
|
// some internal refactoring could probably make this avoid needless
|
|
// extra calculations.
|
|
const scriptVersion = 0
|
|
switch class {
|
|
case ScriptHashTy:
|
|
// Nothing to merge if either the new or previous signature
|
|
// scripts are empty or fail to parse.
|
|
if len(sigScript) == 0 ||
|
|
checkScriptParses(scriptVersion, sigScript) != nil {
|
|
|
|
return prevScript
|
|
}
|
|
if len(prevScript) == 0 ||
|
|
checkScriptParses(scriptVersion, prevScript) != nil {
|
|
|
|
return sigScript
|
|
}
|
|
|
|
// Remove the last push in the script and then recurse.
|
|
// this could be a lot less inefficient.
|
|
//
|
|
// Assume that final script is the correct one since it was just
|
|
// made and it is a pay-to-script-hash.
|
|
script := finalOpcodeData(scriptVersion, sigScript)
|
|
|
|
// We already know this information somewhere up the stack,
|
|
// therefore the error is ignored.
|
|
class, addresses, nrequired, _ :=
|
|
ExtractPkScriptAddrs(script, chainParams)
|
|
|
|
// Merge
|
|
mergedScript := mergeScripts(chainParams, tx, idx, script,
|
|
class, addresses, nrequired, sigScript, prevScript)
|
|
|
|
// Reappend the script and return the result.
|
|
builder := NewScriptBuilder()
|
|
builder.AddOps(mergedScript)
|
|
builder.AddData(script)
|
|
finalScript, _ := builder.Script()
|
|
return finalScript
|
|
|
|
case MultiSigTy:
|
|
return mergeMultiSig(tx, idx, addresses, nRequired, pkScript,
|
|
sigScript, prevScript)
|
|
|
|
// It doesn't actually make sense to merge anything other than multiig
|
|
// and scripthash (because it could contain multisig). Everything else
|
|
// has either zero signature, can't be spent, or has a single signature
|
|
// which is either present or not. The other two cases are handled
|
|
// above. In the conflict case here we just assume the longest is
|
|
// correct (this matches behaviour of the reference implementation).
|
|
default:
|
|
if len(sigScript) > len(prevScript) {
|
|
return sigScript
|
|
}
|
|
return prevScript
|
|
}
|
|
}
|
|
|
|
// KeyDB is an interface type provided to SignTxOutput, it encapsulates
|
|
// any user state required to get the private keys for an address.
|
|
type KeyDB interface {
|
|
GetKey(btcutil.Address) (*btcec.PrivateKey, bool, error)
|
|
}
|
|
|
|
// KeyClosure implements KeyDB with a closure.
|
|
type KeyClosure func(btcutil.Address) (*btcec.PrivateKey, bool, error)
|
|
|
|
// GetKey implements KeyDB by returning the result of calling the closure.
|
|
func (kc KeyClosure) GetKey(address btcutil.Address) (*btcec.PrivateKey, bool, error) {
|
|
return kc(address)
|
|
}
|
|
|
|
// ScriptDB is an interface type provided to SignTxOutput, it encapsulates any
|
|
// user state required to get the scripts for an pay-to-script-hash address.
|
|
type ScriptDB interface {
|
|
GetScript(btcutil.Address) ([]byte, error)
|
|
}
|
|
|
|
// ScriptClosure implements ScriptDB with a closure.
|
|
type ScriptClosure func(btcutil.Address) ([]byte, error)
|
|
|
|
// GetScript implements ScriptDB by returning the result of calling the closure.
|
|
func (sc ScriptClosure) GetScript(address btcutil.Address) ([]byte, error) {
|
|
return sc(address)
|
|
}
|
|
|
|
// SignTxOutput signs output idx of the given tx to resolve the script given in
|
|
// pkScript with a signature type of hashType. Any keys required will be
|
|
// looked up by calling getKey() with the string of the given address.
|
|
// Any pay-to-script-hash signatures will be similarly looked up by calling
|
|
// getScript. If previousScript is provided then the results in previousScript
|
|
// will be merged in a type-dependent manner with the newly generated.
|
|
// signature script.
|
|
//
|
|
// NOTE: This function is only valid for version 0 scripts. Since the function
|
|
// does not accept a script version, the results are undefined for other script
|
|
// versions.
|
|
func SignTxOutput(chainParams *chaincfg.Params, tx *wire.MsgTx, idx int,
|
|
pkScript []byte, hashType SigHashType, kdb KeyDB, sdb ScriptDB,
|
|
previousScript []byte) ([]byte, error) {
|
|
|
|
sigScript, class, addresses, nrequired, err := sign(chainParams, tx,
|
|
idx, pkScript, hashType, kdb, sdb)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
if class == ScriptHashTy {
|
|
// TODO keep the sub addressed and pass down to merge.
|
|
realSigScript, _, _, _, err := sign(chainParams, tx, idx,
|
|
sigScript, hashType, kdb, sdb)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
// Append the p2sh script as the last push in the script.
|
|
builder := NewScriptBuilder()
|
|
builder.AddOps(realSigScript)
|
|
builder.AddData(sigScript)
|
|
|
|
sigScript, _ = builder.Script()
|
|
// TODO keep a copy of the script for merging.
|
|
}
|
|
|
|
// Merge scripts. with any previous data, if any.
|
|
mergedScript := mergeScripts(chainParams, tx, idx, pkScript, class,
|
|
addresses, nrequired, sigScript, previousScript)
|
|
return mergedScript, nil
|
|
}
|