btcd/wire/msgblock.go
2023-12-15 16:38:02 -08:00

319 lines
11 KiB
Go

// Copyright (c) 2013-2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package wire
import (
"bytes"
"fmt"
"io"
"github.com/btcsuite/btcd/chaincfg/chainhash"
)
// defaultTransactionAlloc is the default size used for the backing array
// for transactions. The transaction array will dynamically grow as needed, but
// this figure is intended to provide enough space for the number of
// transactions in the vast majority of blocks without needing to grow the
// backing array multiple times.
const defaultTransactionAlloc = 2048
// MaxBlocksPerMsg is the maximum number of blocks allowed per message.
const MaxBlocksPerMsg = 500
// MaxBlockPayload is the maximum bytes a block message can be in bytes.
// After Segregated Witness, the max block payload has been raised to 4MB.
const MaxBlockPayload = 4000000
// maxTxPerBlock is the maximum number of transactions that could
// possibly fit into a block.
const maxTxPerBlock = (MaxBlockPayload / minTxPayload) + 1
// TxLoc holds locator data for the offset and length of where a transaction is
// located within a MsgBlock data buffer.
type TxLoc struct {
TxStart int
TxLen int
}
// MsgBlock implements the Message interface and represents a bitcoin
// block message. It is used to deliver block and transaction information in
// response to a getdata message (MsgGetData) for a given block hash.
type MsgBlock struct {
Header BlockHeader
Transactions []*MsgTx
}
// AddTransaction adds a transaction to the message.
func (msg *MsgBlock) AddTransaction(tx *MsgTx) error {
msg.Transactions = append(msg.Transactions, tx)
return nil
}
// ClearTransactions removes all transactions from the message.
func (msg *MsgBlock) ClearTransactions() {
msg.Transactions = make([]*MsgTx, 0, defaultTransactionAlloc)
}
// BtcDecode decodes r using the bitcoin protocol encoding into the receiver.
// This is part of the Message interface implementation.
// See Deserialize for decoding blocks stored to disk, such as in a database, as
// opposed to decoding blocks from the wire.
func (msg *MsgBlock) BtcDecode(r io.Reader, pver uint32, enc MessageEncoding) error {
buf := binarySerializer.Borrow()
err := readBlockHeaderBuf(r, pver, &msg.Header, buf)
if err != nil {
binarySerializer.Return(buf)
return err
}
txCount, err := ReadVarIntBuf(r, pver, buf)
if err != nil {
binarySerializer.Return(buf)
return err
}
// Prevent more transactions than could possibly fit into a block.
// It would be possible to cause memory exhaustion and panics without
// a sane upper bound on this count.
if txCount > maxTxPerBlock {
binarySerializer.Return(buf)
str := fmt.Sprintf("too many transactions to fit into a block "+
"[count %d, max %d]", txCount, maxTxPerBlock)
return messageError("MsgBlock.BtcDecode", str)
}
scriptBuf := scriptPool.Borrow()
msg.Transactions = make([]*MsgTx, 0, txCount)
for i := uint64(0); i < txCount; i++ {
tx := MsgTx{}
err := tx.btcDecode(r, pver, enc, buf, scriptBuf[:])
if err != nil {
scriptPool.Return(scriptBuf)
binarySerializer.Return(buf)
return err
}
msg.Transactions = append(msg.Transactions, &tx)
}
scriptPool.Return(scriptBuf)
binarySerializer.Return(buf)
return nil
}
// Deserialize decodes a block from r into the receiver using a format that is
// suitable for long-term storage such as a database while respecting the
// Version field in the block. This function differs from BtcDecode in that
// BtcDecode decodes from the bitcoin wire protocol as it was sent across the
// network. The wire encoding can technically differ depending on the protocol
// version and doesn't even really need to match the format of a stored block at
// all. As of the time this comment was written, the encoded block is the same
// in both instances, but there is a distinct difference and separating the two
// allows the API to be flexible enough to deal with changes.
func (msg *MsgBlock) Deserialize(r io.Reader) error {
// At the current time, there is no difference between the wire encoding
// at protocol version 0 and the stable long-term storage format. As
// a result, make use of BtcDecode.
//
// Passing an encoding type of WitnessEncoding to BtcEncode for the
// MessageEncoding parameter indicates that the transactions within the
// block are expected to be serialized according to the new
// serialization structure defined in BIP0141.
return msg.BtcDecode(r, 0, WitnessEncoding)
}
// DeserializeNoWitness decodes a block from r into the receiver similar to
// Deserialize, however DeserializeWitness strips all (if any) witness data
// from the transactions within the block before encoding them.
func (msg *MsgBlock) DeserializeNoWitness(r io.Reader) error {
return msg.BtcDecode(r, 0, BaseEncoding)
}
// DeserializeTxLoc decodes r in the same manner Deserialize does, but it takes
// a byte buffer instead of a generic reader and returns a slice containing the
// start and length of each transaction within the raw data that is being
// deserialized.
func (msg *MsgBlock) DeserializeTxLoc(r *bytes.Buffer) ([]TxLoc, error) {
fullLen := r.Len()
buf := binarySerializer.Borrow()
// At the current time, there is no difference between the wire encoding
// at protocol version 0 and the stable long-term storage format. As
// a result, make use of existing wire protocol functions.
err := readBlockHeaderBuf(r, 0, &msg.Header, buf)
if err != nil {
binarySerializer.Return(buf)
return nil, err
}
txCount, err := ReadVarIntBuf(r, 0, buf)
if err != nil {
binarySerializer.Return(buf)
return nil, err
}
// Prevent more transactions than could possibly fit into a block.
// It would be possible to cause memory exhaustion and panics without
// a sane upper bound on this count.
if txCount > maxTxPerBlock {
binarySerializer.Return(buf)
str := fmt.Sprintf("too many transactions to fit into a block "+
"[count %d, max %d]", txCount, maxTxPerBlock)
return nil, messageError("MsgBlock.DeserializeTxLoc", str)
}
scriptBuf := scriptPool.Borrow()
// Deserialize each transaction while keeping track of its location
// within the byte stream.
msg.Transactions = make([]*MsgTx, 0, txCount)
txLocs := make([]TxLoc, txCount)
for i := uint64(0); i < txCount; i++ {
txLocs[i].TxStart = fullLen - r.Len()
tx := MsgTx{}
err := tx.btcDecode(r, 0, WitnessEncoding, buf, scriptBuf[:])
if err != nil {
scriptPool.Return(scriptBuf)
binarySerializer.Return(buf)
return nil, err
}
msg.Transactions = append(msg.Transactions, &tx)
txLocs[i].TxLen = (fullLen - r.Len()) - txLocs[i].TxStart
}
scriptPool.Return(scriptBuf)
binarySerializer.Return(buf)
return txLocs, nil
}
// BtcEncode encodes the receiver to w using the bitcoin protocol encoding.
// This is part of the Message interface implementation.
// See Serialize for encoding blocks to be stored to disk, such as in a
// database, as opposed to encoding blocks for the wire.
func (msg *MsgBlock) BtcEncode(w io.Writer, pver uint32, enc MessageEncoding) error {
buf := binarySerializer.Borrow()
err := writeBlockHeaderBuf(w, pver, &msg.Header, buf)
if err != nil {
binarySerializer.Return(buf)
return err
}
err = WriteVarIntBuf(w, pver, uint64(len(msg.Transactions)), buf)
if err != nil {
binarySerializer.Return(buf)
return err
}
for _, tx := range msg.Transactions {
err = tx.btcEncode(w, pver, enc, buf)
if err != nil {
binarySerializer.Return(buf)
return err
}
}
binarySerializer.Return(buf)
return nil
}
// Serialize encodes the block to w using a format that suitable for long-term
// storage such as a database while respecting the Version field in the block.
// This function differs from BtcEncode in that BtcEncode encodes the block to
// the bitcoin wire protocol in order to be sent across the network. The wire
// encoding can technically differ depending on the protocol version and doesn't
// even really need to match the format of a stored block at all. As of the
// time this comment was written, the encoded block is the same in both
// instances, but there is a distinct difference and separating the two allows
// the API to be flexible enough to deal with changes.
func (msg *MsgBlock) Serialize(w io.Writer) error {
// At the current time, there is no difference between the wire encoding
// at protocol version 0 and the stable long-term storage format. As
// a result, make use of BtcEncode.
//
// Passing WitnessEncoding as the encoding type here indicates that
// each of the transactions should be serialized using the witness
// serialization structure defined in BIP0141.
return msg.BtcEncode(w, 0, WitnessEncoding)
}
// SerializeNoWitness encodes a block to w using an identical format to
// Serialize, with all (if any) witness data stripped from all transactions.
// This method is provided in additon to the regular Serialize, in order to
// allow one to selectively encode transaction witness data to non-upgraded
// peers which are unaware of the new encoding.
func (msg *MsgBlock) SerializeNoWitness(w io.Writer) error {
return msg.BtcEncode(w, 0, BaseEncoding)
}
// SerializeSize returns the number of bytes it would take to serialize the
// block, factoring in any witness data within transaction.
func (msg *MsgBlock) SerializeSize() int {
// Block header bytes + Serialized varint size for the number of
// transactions.
n := blockHeaderLen + VarIntSerializeSize(uint64(len(msg.Transactions)))
for _, tx := range msg.Transactions {
n += tx.SerializeSize()
}
return n
}
// SerializeSizeStripped returns the number of bytes it would take to serialize
// the block, excluding any witness data (if any).
func (msg *MsgBlock) SerializeSizeStripped() int {
// Block header bytes + Serialized varint size for the number of
// transactions.
n := blockHeaderLen + VarIntSerializeSize(uint64(len(msg.Transactions)))
for _, tx := range msg.Transactions {
n += tx.SerializeSizeStripped()
}
return n
}
// Command returns the protocol command string for the message. This is part
// of the Message interface implementation.
func (msg *MsgBlock) Command() string {
return CmdBlock
}
// MaxPayloadLength returns the maximum length the payload can be for the
// receiver. This is part of the Message interface implementation.
func (msg *MsgBlock) MaxPayloadLength(pver uint32) uint32 {
// Block header at 80 bytes + transaction count + max transactions
// which can vary up to the MaxBlockPayload (including the block header
// and transaction count).
return MaxBlockPayload
}
// BlockHash computes the block identifier hash for this block.
func (msg *MsgBlock) BlockHash() chainhash.Hash {
return msg.Header.BlockHash()
}
// TxHashes returns a slice of hashes of all of transactions in this block.
func (msg *MsgBlock) TxHashes() ([]chainhash.Hash, error) {
hashList := make([]chainhash.Hash, 0, len(msg.Transactions))
for _, tx := range msg.Transactions {
hashList = append(hashList, tx.TxHash())
}
return hashList, nil
}
// NewMsgBlock returns a new bitcoin block message that conforms to the
// Message interface. See MsgBlock for details.
func NewMsgBlock(blockHeader *BlockHeader) *MsgBlock {
return &MsgBlock{
Header: *blockHeader,
Transactions: make([]*MsgTx, 0, defaultTransactionAlloc),
}
}