mirror of
https://github.com/btcsuite/btcd.git
synced 2025-02-23 22:47:01 +01:00
The RFC used for deterministic nonce generation is rfc6979, not rfc6679. This commit fixes documentation in two places accordingly.
549 lines
16 KiB
Go
549 lines
16 KiB
Go
// Copyright (c) 2013-2022 The btcsuite developers
|
|
|
|
package schnorr
|
|
|
|
import (
|
|
"fmt"
|
|
|
|
"github.com/btcsuite/btcd/btcec/v2"
|
|
"github.com/btcsuite/btcd/chaincfg/chainhash"
|
|
secp "github.com/decred/dcrd/dcrec/secp256k1/v4"
|
|
ecdsa_schnorr "github.com/decred/dcrd/dcrec/secp256k1/v4/schnorr"
|
|
)
|
|
|
|
const (
|
|
// SignatureSize is the size of an encoded Schnorr signature.
|
|
SignatureSize = 64
|
|
|
|
// scalarSize is the size of an encoded big endian scalar.
|
|
scalarSize = 32
|
|
)
|
|
|
|
var (
|
|
// rfc6979ExtraDataV0 is the extra data to feed to RFC6979 when
|
|
// generating the deterministic nonce for the BIP-340 scheme. This
|
|
// ensures the same nonce is not generated for the same message and key
|
|
// as for other signing algorithms such as ECDSA.
|
|
//
|
|
// It is equal to SHA-256([]byte("BIP-340")).
|
|
rfc6979ExtraDataV0 = [32]uint8{
|
|
0xa3, 0xeb, 0x4c, 0x18, 0x2f, 0xae, 0x7e, 0xf4,
|
|
0xe8, 0x10, 0xc6, 0xee, 0x13, 0xb0, 0xe9, 0x26,
|
|
0x68, 0x6d, 0x71, 0xe8, 0x7f, 0x39, 0x4f, 0x79,
|
|
0x9c, 0x00, 0xa5, 0x21, 0x03, 0xcb, 0x4e, 0x17,
|
|
}
|
|
)
|
|
|
|
// Signature is a type representing a Schnorr signature.
|
|
type Signature struct {
|
|
r btcec.FieldVal
|
|
s btcec.ModNScalar
|
|
}
|
|
|
|
// NewSignature instantiates a new signature given some r and s values.
|
|
func NewSignature(r *btcec.FieldVal, s *btcec.ModNScalar) *Signature {
|
|
var sig Signature
|
|
sig.r.Set(r).Normalize()
|
|
sig.s.Set(s)
|
|
return &sig
|
|
}
|
|
|
|
// Serialize returns the Schnorr signature in the more strict format.
|
|
//
|
|
// The signatures are encoded as
|
|
//
|
|
// sig[0:32] x coordinate of the point R, encoded as a big-endian uint256
|
|
// sig[32:64] s, encoded also as big-endian uint256
|
|
func (sig Signature) Serialize() []byte {
|
|
// Total length of returned signature is the length of r and s.
|
|
var b [SignatureSize]byte
|
|
sig.r.PutBytesUnchecked(b[0:32])
|
|
sig.s.PutBytesUnchecked(b[32:64])
|
|
return b[:]
|
|
}
|
|
|
|
// ParseSignature parses a signature according to the BIP-340 specification and
|
|
// enforces the following additional restrictions specific to secp256k1:
|
|
//
|
|
// - The r component must be in the valid range for secp256k1 field elements
|
|
// - The s component must be in the valid range for secp256k1 scalars
|
|
func ParseSignature(sig []byte) (*Signature, error) {
|
|
// The signature must be the correct length.
|
|
sigLen := len(sig)
|
|
if sigLen < SignatureSize {
|
|
str := fmt.Sprintf("malformed signature: too short: %d < %d", sigLen,
|
|
SignatureSize)
|
|
return nil, signatureError(ecdsa_schnorr.ErrSigTooShort, str)
|
|
}
|
|
if sigLen > SignatureSize {
|
|
str := fmt.Sprintf("malformed signature: too long: %d > %d", sigLen,
|
|
SignatureSize)
|
|
return nil, signatureError(ecdsa_schnorr.ErrSigTooLong, str)
|
|
}
|
|
|
|
// The signature is validly encoded at this point, however, enforce
|
|
// additional restrictions to ensure r is in the range [0, p-1], and s is in
|
|
// the range [0, n-1] since valid Schnorr signatures are required to be in
|
|
// that range per spec.
|
|
var r btcec.FieldVal
|
|
if overflow := r.SetByteSlice(sig[0:32]); overflow {
|
|
str := "invalid signature: r >= field prime"
|
|
return nil, signatureError(ecdsa_schnorr.ErrSigRTooBig, str)
|
|
}
|
|
var s btcec.ModNScalar
|
|
if overflow := s.SetByteSlice(sig[32:64]); overflow {
|
|
str := "invalid signature: s >= group order"
|
|
return nil, signatureError(ecdsa_schnorr.ErrSigSTooBig, str)
|
|
}
|
|
|
|
// Return the signature.
|
|
return NewSignature(&r, &s), nil
|
|
}
|
|
|
|
// IsEqual compares this Signature instance to the one passed, returning true
|
|
// if both Signatures are equivalent. A signature is equivalent to another, if
|
|
// they both have the same scalar value for R and S.
|
|
func (sig Signature) IsEqual(otherSig *Signature) bool {
|
|
return sig.r.Equals(&otherSig.r) && sig.s.Equals(&otherSig.s)
|
|
}
|
|
|
|
// schnorrVerify attempt to verify the signature for the provided hash and
|
|
// secp256k1 public key and either returns nil if successful or a specific error
|
|
// indicating why it failed if not successful.
|
|
//
|
|
// This differs from the exported Verify method in that it returns a specific
|
|
// error to support better testing while the exported method simply returns a
|
|
// bool indicating success or failure.
|
|
func schnorrVerify(sig *Signature, hash []byte, pubKeyBytes []byte) error {
|
|
// The algorithm for producing a BIP-340 signature is described in
|
|
// README.md and is reproduced here for reference:
|
|
//
|
|
// 1. Fail if m is not 32 bytes
|
|
// 2. P = lift_x(int(pk)).
|
|
// 3. r = int(sig[0:32]); fail is r >= p.
|
|
// 4. s = int(sig[32:64]); fail if s >= n.
|
|
// 5. e = int(tagged_hash("BIP0340/challenge", bytes(r) || bytes(P) || M)) mod n.
|
|
// 6. R = s*G - e*P
|
|
// 7. Fail if is_infinite(R)
|
|
// 8. Fail if not hash_even_y(R)
|
|
// 9. Fail is x(R) != r.
|
|
// 10. Return success iff not failure occured before reachign this
|
|
// point.
|
|
|
|
// Step 1.
|
|
//
|
|
// Fail if m is not 32 bytes
|
|
if len(hash) != scalarSize {
|
|
str := fmt.Sprintf("wrong size for message (got %v, want %v)",
|
|
len(hash), scalarSize)
|
|
return signatureError(ecdsa_schnorr.ErrInvalidHashLen, str)
|
|
}
|
|
|
|
// Step 2.
|
|
//
|
|
// P = lift_x(int(pk))
|
|
//
|
|
// Fail if P is not a point on the curve
|
|
pubKey, err := ParsePubKey(pubKeyBytes)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
if !pubKey.IsOnCurve() {
|
|
str := "pubkey point is not on curve"
|
|
return signatureError(ecdsa_schnorr.ErrPubKeyNotOnCurve, str)
|
|
}
|
|
|
|
// Step 3.
|
|
//
|
|
// Fail if r >= p
|
|
//
|
|
// Note this is already handled by the fact r is a field element.
|
|
|
|
// Step 4.
|
|
//
|
|
// Fail if s >= n
|
|
//
|
|
// Note this is already handled by the fact s is a mod n scalar.
|
|
|
|
// Step 5.
|
|
//
|
|
// e = int(tagged_hash("BIP0340/challenge", bytes(r) || bytes(P) || M)) mod n.
|
|
var rBytes [32]byte
|
|
sig.r.PutBytesUnchecked(rBytes[:])
|
|
pBytes := SerializePubKey(pubKey)
|
|
|
|
commitment := chainhash.TaggedHash(
|
|
chainhash.TagBIP0340Challenge, rBytes[:], pBytes, hash,
|
|
)
|
|
|
|
var e btcec.ModNScalar
|
|
if overflow := e.SetBytes((*[32]byte)(commitment)); overflow != 0 {
|
|
str := "hash of (r || P || m) too big"
|
|
return signatureError(ecdsa_schnorr.ErrSchnorrHashValue, str)
|
|
}
|
|
|
|
// Negate e here so we can use AddNonConst below to subtract the s*G
|
|
// point from e*P.
|
|
e.Negate()
|
|
|
|
// Step 6.
|
|
//
|
|
// R = s*G - e*P
|
|
var P, R, sG, eP btcec.JacobianPoint
|
|
pubKey.AsJacobian(&P)
|
|
btcec.ScalarBaseMultNonConst(&sig.s, &sG)
|
|
btcec.ScalarMultNonConst(&e, &P, &eP)
|
|
btcec.AddNonConst(&sG, &eP, &R)
|
|
|
|
// Step 7.
|
|
//
|
|
// Fail if R is the point at infinity
|
|
if (R.X.IsZero() && R.Y.IsZero()) || R.Z.IsZero() {
|
|
str := "calculated R point is the point at infinity"
|
|
return signatureError(ecdsa_schnorr.ErrSigRNotOnCurve, str)
|
|
}
|
|
|
|
// Step 8.
|
|
//
|
|
// Fail if R.y is odd
|
|
//
|
|
// Note that R must be in affine coordinates for this check.
|
|
R.ToAffine()
|
|
if R.Y.IsOdd() {
|
|
str := "calculated R y-value is odd"
|
|
return signatureError(ecdsa_schnorr.ErrSigRYIsOdd, str)
|
|
}
|
|
|
|
// Step 9.
|
|
//
|
|
// Verified if R.x == r
|
|
//
|
|
// Note that R must be in affine coordinates for this check.
|
|
if !sig.r.Equals(&R.X) {
|
|
str := "calculated R point was not given R"
|
|
return signatureError(ecdsa_schnorr.ErrUnequalRValues, str)
|
|
}
|
|
|
|
// Step 10.
|
|
//
|
|
// Return success iff not failure occured before reachign this
|
|
return nil
|
|
}
|
|
|
|
// Verify returns whether or not the signature is valid for the provided hash
|
|
// and secp256k1 public key.
|
|
func (sig *Signature) Verify(hash []byte, pubKey *btcec.PublicKey) bool {
|
|
pubkeyBytes := SerializePubKey(pubKey)
|
|
return schnorrVerify(sig, hash, pubkeyBytes) == nil
|
|
}
|
|
|
|
// zeroArray zeroes the memory of a scalar array.
|
|
func zeroArray(a *[scalarSize]byte) {
|
|
for i := 0; i < scalarSize; i++ {
|
|
a[i] = 0x00
|
|
}
|
|
}
|
|
|
|
// schnorrSign generates an BIP-340 signature over the secp256k1 curve for the
|
|
// provided hash (which should be the result of hashing a larger message) using
|
|
// the given nonce and private key. The produced signature is deterministic
|
|
// (same message, nonce, and key yield the same signature) and canonical.
|
|
//
|
|
// WARNING: The hash MUST be 32 bytes and both the nonce and private keys must
|
|
// NOT be 0. Since this is an internal use function, these preconditions MUST
|
|
// be satisified by the caller.
|
|
func schnorrSign(privKey, nonce *btcec.ModNScalar, pubKey *btcec.PublicKey, hash []byte,
|
|
opts *signOptions) (*Signature, error) {
|
|
|
|
// The algorithm for producing a BIP-340 signature is described in
|
|
// README.md and is reproduced here for reference:
|
|
//
|
|
// G = curve generator
|
|
// n = curve order
|
|
// d = private key
|
|
// m = message
|
|
// a = input randmoness
|
|
// r, s = signature
|
|
//
|
|
// 1. d' = int(d)
|
|
// 2. Fail if m is not 32 bytes
|
|
// 3. Fail if d = 0 or d >= n
|
|
// 4. P = d'*G
|
|
// 5. Negate d if P.y is odd
|
|
// 6. t = bytes(d) xor tagged_hash("BIP0340/aux", t || bytes(P) || m)
|
|
// 7. rand = tagged_hash("BIP0340/nonce", a)
|
|
// 8. k' = int(rand) mod n
|
|
// 9. Fail if k' = 0
|
|
// 10. R = 'k*G
|
|
// 11. Negate k if R.y id odd
|
|
// 12. e = tagged_hash("BIP0340/challenge", bytes(R) || bytes(P) || m) mod n
|
|
// 13. sig = bytes(R) || bytes((k + e*d)) mod n
|
|
// 14. If Verify(bytes(P), m, sig) fails, abort.
|
|
// 15. return sig.
|
|
//
|
|
// Note that the set of functional options passed in may modify the
|
|
// above algorithm. Namely if CustomNonce is used, then steps 6-8 are
|
|
// replaced with a process that generates the nonce using rfc6979. If
|
|
// FastSign is passed, then we skip set 14.
|
|
|
|
// NOTE: Steps 1-9 are performed by the caller.
|
|
|
|
//
|
|
// Step 10.
|
|
//
|
|
// R = kG
|
|
var R btcec.JacobianPoint
|
|
k := *nonce
|
|
btcec.ScalarBaseMultNonConst(&k, &R)
|
|
|
|
// Step 11.
|
|
//
|
|
// Negate nonce k if R.y is odd (R.y is the y coordinate of the point R)
|
|
//
|
|
// Note that R must be in affine coordinates for this check.
|
|
R.ToAffine()
|
|
if R.Y.IsOdd() {
|
|
k.Negate()
|
|
}
|
|
|
|
// Step 12.
|
|
//
|
|
// e = tagged_hash("BIP0340/challenge", bytes(R) || bytes(P) || m) mod n
|
|
var rBytes [32]byte
|
|
r := &R.X
|
|
r.PutBytesUnchecked(rBytes[:])
|
|
pBytes := SerializePubKey(pubKey)
|
|
|
|
commitment := chainhash.TaggedHash(
|
|
chainhash.TagBIP0340Challenge, rBytes[:], pBytes, hash,
|
|
)
|
|
|
|
var e btcec.ModNScalar
|
|
if overflow := e.SetBytes((*[32]byte)(commitment)); overflow != 0 {
|
|
k.Zero()
|
|
str := "hash of (r || P || m) too big"
|
|
return nil, signatureError(ecdsa_schnorr.ErrSchnorrHashValue, str)
|
|
}
|
|
|
|
// Step 13.
|
|
//
|
|
// s = k + e*d mod n
|
|
s := new(btcec.ModNScalar).Mul2(&e, privKey).Add(&k)
|
|
k.Zero()
|
|
|
|
sig := NewSignature(r, s)
|
|
|
|
// Step 14.
|
|
//
|
|
// If Verify(bytes(P), m, sig) fails, abort.
|
|
if !opts.fastSign {
|
|
if err := schnorrVerify(sig, hash, pBytes); err != nil {
|
|
return nil, err
|
|
}
|
|
}
|
|
|
|
// Step 15.
|
|
//
|
|
// Return (r, s)
|
|
return sig, nil
|
|
}
|
|
|
|
// SignOption is a functional option arguemnt that allows callers to modify the
|
|
// way we generate BIP-340 schnorr signatues.
|
|
type SignOption func(*signOptions)
|
|
|
|
// signOptions houses the set of functional options that can be used to modify
|
|
// the method used to generate the BIP-340 signature.
|
|
type signOptions struct {
|
|
// fastSign determines if we'll skip the check at the end of the routine
|
|
// where we attempt to verify the produced signature.
|
|
fastSign bool
|
|
|
|
// authNonce allows the user to pass in their own nonce information, which
|
|
// is useful for schemes like mu-sig.
|
|
authNonce *[32]byte
|
|
}
|
|
|
|
// defaultSignOptions returns the default set of signing operations.
|
|
func defaultSignOptions() *signOptions {
|
|
return &signOptions{}
|
|
}
|
|
|
|
// FastSign forces signing to skip the extra verification step at the end.
|
|
// Peformance sensitive applications may opt to use this option to speed up the
|
|
// signing operation.
|
|
func FastSign() SignOption {
|
|
return func(o *signOptions) {
|
|
o.fastSign = true
|
|
}
|
|
}
|
|
|
|
// CustomNonce allows users to pass in a custom set of auxData that's used as
|
|
// input randomness to generate the nonce used during signing. Users may want
|
|
// to specify this custom value when using multi-signatures schemes such as
|
|
// Mu-Sig2. If this option isn't set, then rfc6979 will be used to generate the
|
|
// nonce material.
|
|
func CustomNonce(auxData [32]byte) SignOption {
|
|
return func(o *signOptions) {
|
|
o.authNonce = &auxData
|
|
}
|
|
}
|
|
|
|
// Sign generates an BIP-340 signature over the secp256k1 curve for the
|
|
// provided hash (which should be the result of hashing a larger message) using
|
|
// the given private key. The produced signature is deterministic (same
|
|
// message and same key yield the same signature) and canonical.
|
|
//
|
|
// Note that the current signing implementation has a few remaining variable
|
|
// time aspects which make use of the private key and the generated nonce,
|
|
// which can expose the signer to constant time attacks. As a result, this
|
|
// function should not be used in situations where there is the possibility of
|
|
// someone having EM field/cache/etc access.
|
|
func Sign(privKey *btcec.PrivateKey, hash []byte,
|
|
signOpts ...SignOption) (*Signature, error) {
|
|
|
|
// First, parse the set of optional signing options.
|
|
opts := defaultSignOptions()
|
|
for _, option := range signOpts {
|
|
option(opts)
|
|
}
|
|
|
|
// The algorithm for producing a BIP-340 signature is described in
|
|
// README.md and is reproduced here for reference:
|
|
//
|
|
// G = curve generator
|
|
// n = curve order
|
|
// d = private key
|
|
// m = message
|
|
// a = input randmoness
|
|
// r, s = signature
|
|
//
|
|
// 1. d' = int(d)
|
|
// 2. Fail if m is not 32 bytes
|
|
// 3. Fail if d = 0 or d >= n
|
|
// 4. P = d'*G
|
|
// 5. Negate d if P.y is odd
|
|
// 6. t = bytes(d) xor tagged_hash("BIP0340/aux", t || bytes(P) || m)
|
|
// 7. rand = tagged_hash("BIP0340/nonce", a)
|
|
// 8. k' = int(rand) mod n
|
|
// 9. Fail if k' = 0
|
|
// 10. R = 'k*G
|
|
// 11. Negate k if R.y id odd
|
|
// 12. e = tagged_hash("BIP0340/challenge", bytes(R) || bytes(P) || mod) mod n
|
|
// 13. sig = bytes(R) || bytes((k + e*d)) mod n
|
|
// 14. If Verify(bytes(P), m, sig) fails, abort.
|
|
// 15. return sig.
|
|
//
|
|
// Note that the set of functional options passed in may modify the
|
|
// above algorithm. Namely if CustomNonce is used, then steps 6-8 are
|
|
// replaced with a process that generates the nonce using rfc6979. If
|
|
// FastSign is passed, then we skip set 14.
|
|
|
|
// Step 1.
|
|
//
|
|
// d' = int(d)
|
|
var privKeyScalar btcec.ModNScalar
|
|
privKeyScalar.Set(&privKey.Key)
|
|
|
|
// Step 2.
|
|
//
|
|
// Fail if m is not 32 bytes
|
|
if len(hash) != scalarSize {
|
|
str := fmt.Sprintf("wrong size for message hash (got %v, want %v)",
|
|
len(hash), scalarSize)
|
|
return nil, signatureError(ecdsa_schnorr.ErrInvalidHashLen, str)
|
|
}
|
|
|
|
// Step 3.
|
|
//
|
|
// Fail if d = 0 or d >= n
|
|
if privKeyScalar.IsZero() {
|
|
str := "private key is zero"
|
|
return nil, signatureError(ecdsa_schnorr.ErrPrivateKeyIsZero, str)
|
|
}
|
|
|
|
// Step 4.
|
|
//
|
|
// P = 'd*G
|
|
pub := privKey.PubKey()
|
|
|
|
// Step 5.
|
|
//
|
|
// Negate d if P.y is odd.
|
|
pubKeyBytes := pub.SerializeCompressed()
|
|
if pubKeyBytes[0] == secp.PubKeyFormatCompressedOdd {
|
|
privKeyScalar.Negate()
|
|
}
|
|
|
|
// At this point, we check to see if a CustomNonce has been passed in,
|
|
// and if so, then we'll deviate from the main routine here by
|
|
// generating the nonce value as specifid by BIP-0340.
|
|
if opts.authNonce != nil {
|
|
// Step 6.
|
|
//
|
|
// t = bytes(d) xor tagged_hash("BIP0340/aux", a)
|
|
privBytes := privKeyScalar.Bytes()
|
|
t := chainhash.TaggedHash(
|
|
chainhash.TagBIP0340Aux, (*opts.authNonce)[:],
|
|
)
|
|
for i := 0; i < len(t); i++ {
|
|
t[i] ^= privBytes[i]
|
|
}
|
|
|
|
// Step 7.
|
|
//
|
|
// rand = tagged_hash("BIP0340/nonce", t || bytes(P) || m)
|
|
//
|
|
// We snip off the first byte of the serialized pubkey, as we
|
|
// only need the x coordinate and not the market byte.
|
|
rand := chainhash.TaggedHash(
|
|
chainhash.TagBIP0340Nonce, t[:], pubKeyBytes[1:], hash,
|
|
)
|
|
|
|
// Step 8.
|
|
//
|
|
// k'= int(rand) mod n
|
|
var kPrime btcec.ModNScalar
|
|
kPrime.SetBytes((*[32]byte)(rand))
|
|
|
|
// Step 9.
|
|
//
|
|
// Fail if k' = 0
|
|
if kPrime.IsZero() {
|
|
str := fmt.Sprintf("generated nonce is zero")
|
|
return nil, signatureError(ecdsa_schnorr.ErrSchnorrHashValue, str)
|
|
}
|
|
|
|
sig, err := schnorrSign(&privKeyScalar, &kPrime, pub, hash, opts)
|
|
kPrime.Zero()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return sig, nil
|
|
}
|
|
|
|
var privKeyBytes [scalarSize]byte
|
|
privKeyScalar.PutBytes(&privKeyBytes)
|
|
defer zeroArray(&privKeyBytes)
|
|
for iteration := uint32(0); ; iteration++ {
|
|
// Step 6-9.
|
|
//
|
|
// Use RFC6979 to generate a deterministic nonce k in [1, n-1]
|
|
// parameterized by the private key, message being signed, extra data
|
|
// that identifies the scheme, and an iteration count
|
|
k := btcec.NonceRFC6979(
|
|
privKeyBytes[:], hash, rfc6979ExtraDataV0[:], nil, iteration,
|
|
)
|
|
|
|
// Steps 10-15.
|
|
sig, err := schnorrSign(&privKeyScalar, k, pub, hash, opts)
|
|
k.Zero()
|
|
if err != nil {
|
|
// Try again with a new nonce.
|
|
continue
|
|
}
|
|
|
|
return sig, nil
|
|
}
|
|
}
|