btcd/txscript/sigcache.go
2017-01-31 13:47:41 -05:00

100 lines
4.0 KiB
Go

// Copyright (c) 2015-2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package txscript
import (
"sync"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg/chainhash"
)
// sigCacheEntry represents an entry in the SigCache. Entries within the
// SigCache are keyed according to the sigHash of the signature. In the
// scenario of a cache-hit (according to the sigHash), an additional comparison
// of the signature, and public key will be executed in order to ensure a complete
// match. In the occasion that two sigHashes collide, the newer sigHash will
// simply overwrite the existing entry.
type sigCacheEntry struct {
sig *btcec.Signature
pubKey *btcec.PublicKey
}
// SigCache implements an ECDSA signature verification cache with a randomized
// entry eviction policy. Only valid signatures will be added to the cache. The
// benefits of SigCache are two fold. Firstly, usage of SigCache mitigates a DoS
// attack wherein an attack causes a victim's client to hang due to worst-case
// behavior triggered while processing attacker crafted invalid transactions. A
// detailed description of the mitigated DoS attack can be found here:
// https://bitslog.wordpress.com/2013/01/23/fixed-bitcoin-vulnerability-explanation-why-the-signature-cache-is-a-dos-protection/.
// Secondly, usage of the SigCache introduces a signature verification
// optimization which speeds up the validation of transactions within a block,
// if they've already been seen and verified within the mempool.
type SigCache struct {
sync.RWMutex
validSigs map[chainhash.Hash]sigCacheEntry
maxEntries uint
}
// NewSigCache creates and initializes a new instance of SigCache. Its sole
// parameter 'maxEntries' represents the maximum number of entries allowed to
// exist in the SigCache at any particular moment. Random entries are evicted
// to make room for new entries that would cause the number of entries in the
// cache to exceed the max.
func NewSigCache(maxEntries uint) *SigCache {
return &SigCache{
validSigs: make(map[chainhash.Hash]sigCacheEntry, maxEntries),
maxEntries: maxEntries,
}
}
// Exists returns true if an existing entry of 'sig' over 'sigHash' for public
// key 'pubKey' is found within the SigCache. Otherwise, false is returned.
//
// NOTE: This function is safe for concurrent access. Readers won't be blocked
// unless there exists a writer, adding an entry to the SigCache.
func (s *SigCache) Exists(sigHash chainhash.Hash, sig *btcec.Signature, pubKey *btcec.PublicKey) bool {
s.RLock()
entry, ok := s.validSigs[sigHash]
s.RUnlock()
return ok && entry.pubKey.IsEqual(pubKey) && entry.sig.IsEqual(sig)
}
// Add adds an entry for a signature over 'sigHash' under public key 'pubKey'
// to the signature cache. In the event that the SigCache is 'full', an
// existing entry is randomly chosen to be evicted in order to make space for
// the new entry.
//
// NOTE: This function is safe for concurrent access. Writers will block
// simultaneous readers until function execution has concluded.
func (s *SigCache) Add(sigHash chainhash.Hash, sig *btcec.Signature, pubKey *btcec.PublicKey) {
s.Lock()
defer s.Unlock()
if s.maxEntries <= 0 {
return
}
// If adding this new entry will put us over the max number of allowed
// entries, then evict an entry.
if uint(len(s.validSigs)+1) > s.maxEntries {
// Remove a random entry from the map. Relying on the random
// starting point of Go's map iteration. It's worth noting that
// the random iteration starting point is not 100% guaranteed
// by the spec, however most Go compilers support it.
// Ultimately, the iteration order isn't important here because
// in order to manipulate which items are evicted, an adversary
// would need to be able to execute preimage attacks on the
// hashing function in order to start eviction at a specific
// entry.
for sigEntry := range s.validSigs {
delete(s.validSigs, sigEntry)
break
}
}
s.validSigs[sigHash] = sigCacheEntry{sig, pubKey}
}