btcd/btcec/btcec.go
Olaoluwa Osuntokun 87e8fe92c9
btcec: convert package into go module, alias to dcrec
In this commit, we turn the package into a new Go module (version 2),
and then port over the current set of types and functions to mainly
alias to the more optimized and maintained dcrec variant.

Taking a look at the benchmarks, most operations other than
normalization (which IIRC is a bit slower now due to constant time
fixes) enjoy some nice speeds up:
```
benchcmp is deprecated in favor of benchstat: https://pkg.go.dev/golang.org/x/perf/cmd/benchstat
benchmark                            old ns/op     new ns/op     delta
BenchmarkAddJacobian-8               464           328           -29.20%
BenchmarkAddJacobianNotZOne-8        1138          372           -67.27%
BenchmarkScalarBaseMult-8            47336         31531         -33.39%
BenchmarkScalarBaseMultLarge-8       42465         32057         -24.51%
BenchmarkScalarMult-8                123355        117579        -4.68%
BenchmarkNAF-8                       582           168           -71.12%
BenchmarkSigVerify-8                 175414        120794        -31.14%
BenchmarkFieldNormalize-8            23.8          24.4          +2.39%
BenchmarkParseCompressedPubKey-8     24282         10907         -55.08%
```
2022-01-26 16:10:14 -08:00

42 lines
1.4 KiB
Go

// Copyright 2010 The Go Authors. All rights reserved.
// Copyright 2011 ThePiachu. All rights reserved.
// Copyright 2013-2014 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package btcec
// References:
// [SECG]: Recommended Elliptic Curve Domain Parameters
// http://www.secg.org/sec2-v2.pdf
//
// [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone)
// This package operates, internally, on Jacobian coordinates. For a given
// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1)
// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole
// calculation can be performed within the transform (as in ScalarMult and
// ScalarBaseMult). But even for Add and Double, it's faster to apply and
// reverse the transform than to operate in affine coordinates.
import (
secp "github.com/decred/dcrd/dcrec/secp256k1/v4"
)
// KoblitzCurve provides an implementation for secp256k1 that fits the ECC
// Curve interface from crypto/elliptic.
type KoblitzCurve = secp.KoblitzCurve
// S256 returns a Curve which implements secp256k1.
func S256() *KoblitzCurve {
return secp.S256()
}
// CurveParams contains the parameters for the secp256k1 curve.
type CurveParams = secp.CurveParams
// Params returns the secp256k1 curve parameters for convenience.
func Params() *CurveParams {
return secp.Params()
}