btcd/btcec/schnorr/musig2/musig2_test.go
Olaoluwa Osuntokun 9d0d52708a
btcec/schnorr/musig2: add explicit support for BIP 86 multi-signing
In this commit, we add a series of new functional optinos to make
signing for an aggregated key where the final taproot output key was
derived using BIP 86. This can be used in cases where no script path
shuold be allowed, and only an n-of-n multi-sig should be used.
2022-04-28 16:19:59 -07:00

480 lines
12 KiB
Go

// Copyright 2013-2022 The btcsuite developers
package musig2
import (
"bytes"
"crypto/sha256"
"encoding/hex"
"fmt"
"sync"
"testing"
"github.com/btcsuite/btcd/btcec/v2"
"github.com/btcsuite/btcd/btcec/v2/schnorr"
)
// TestMuSig2SgnTestVectors tests that this implementation of musig2 matches
// the secp256k1-zkp test vectors.
func TestMuSig2SignTestVectors(t *testing.T) {
t.Parallel()
}
var (
key1Bytes, _ = hex.DecodeString("F9308A019258C31049344F85F89D5229B53" +
"1C845836F99B08601F113BCE036F9")
key2Bytes, _ = hex.DecodeString("DFF1D77F2A671C5F36183726DB2341BE58F" +
"EAE1DA2DECED843240F7B502BA659")
key3Bytes, _ = hex.DecodeString("3590A94E768F8E1815C2F24B4D80A8E3149" +
"316C3518CE7B7AD338368D038CA66")
testKeys = [][]byte{key1Bytes, key2Bytes, key3Bytes}
keyCombo1, _ = hex.DecodeString("E5830140512195D74C8307E39637CBE5FB730EBEAB80EC514CF88A877CEEEE0B")
keyCombo2, _ = hex.DecodeString("D70CD69A2647F7390973DF48CBFA2CCC407B8B2D60B08C5F1641185C7998A290")
keyCombo3, _ = hex.DecodeString("81A8B093912C9E481408D09776CEFB48AEB8B65481B6BAAFB3C5810106717BEB")
keyCombo4, _ = hex.DecodeString("2EB18851887E7BDC5E830E89B19DDBC28078F1FA88AAD0AD01CA06FE4F80210B")
)
// TestMuSig2KeyAggTestVectors tests that this implementation of musig2 key
// aggregation lines up with the secp256k1-zkp test vectors.
func TestMuSig2KeyAggTestVectors(t *testing.T) {
t.Parallel()
testCases := []struct {
keyOrder []int
expectedKey []byte
}{
// Keys in backwards lexicographical order.
{
keyOrder: []int{0, 1, 2},
expectedKey: keyCombo1,
},
// Keys in sorted order.
{
keyOrder: []int{2, 1, 0},
expectedKey: keyCombo2,
},
// Only the first key.
{
keyOrder: []int{0, 0, 0},
expectedKey: keyCombo3,
},
// Duplicate the first key and second keys.
{
keyOrder: []int{0, 0, 1, 1},
expectedKey: keyCombo4,
},
}
for i, testCase := range testCases {
testName := fmt.Sprintf("%v", testCase.keyOrder)
t.Run(testName, func(t *testing.T) {
var keys []*btcec.PublicKey
for _, keyIndex := range testCase.keyOrder {
keyBytes := testKeys[keyIndex]
pub, err := schnorr.ParsePubKey(keyBytes)
if err != nil {
t.Fatalf("unable to parse pubkeys: %v", err)
}
keys = append(keys, pub)
}
uniqueKeyIndex := secondUniqueKeyIndex(keys, false)
combinedKey, _, _, _ := AggregateKeys(
keys, false, WithUniqueKeyIndex(uniqueKeyIndex),
)
combinedKeyBytes := schnorr.SerializePubKey(combinedKey.FinalKey)
if !bytes.Equal(combinedKeyBytes, testCase.expectedKey) {
t.Fatalf("case: #%v, invalid aggregation: "+
"expected %x, got %x", i, testCase.expectedKey,
combinedKeyBytes)
}
})
}
}
func mustParseHex(str string) []byte {
b, err := hex.DecodeString(str)
if err != nil {
panic(fmt.Errorf("unable to parse hex: %v", err))
}
return b
}
func parseKey(xHex string) *btcec.PublicKey {
xB, err := hex.DecodeString(xHex)
if err != nil {
panic(err)
}
var x, y btcec.FieldVal
x.SetByteSlice(xB)
if !btcec.DecompressY(&x, false, &y) {
panic("x not on curve")
}
y.Normalize()
return btcec.NewPublicKey(&x, &y)
}
var (
signSetPrivKey, _ = btcec.PrivKeyFromBytes(
mustParseHex("7FB9E0E687ADA1EEBF7ECFE2F21E73EBDB51A7D450948DFE8D76D7F2D1007671"),
)
signSetPubKey, _ = schnorr.ParsePubKey(schnorr.SerializePubKey(signSetPrivKey.PubKey()))
signTestMsg = mustParseHex("F95466D086770E689964664219266FE5ED215C92AE20BAB5C9D79ADDDDF3C0CF")
signSetKey2, _ = schnorr.ParsePubKey(
mustParseHex("F9308A019258C31049344F85F89D5229B531C845836F99B086" +
"01F113BCE036F9"),
)
signSetKey3, _ = schnorr.ParsePubKey(
mustParseHex("DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843" +
"240F7B502BA659"),
)
signSetKeys = []*btcec.PublicKey{signSetPubKey, signSetKey2, signSetKey3}
)
// TestMuSig2SigningTestVectors tests that the musig2 implementation produces
// the same set of signatures.
func TestMuSig2SigningTestVectors(t *testing.T) {
t.Parallel()
var aggregatedNonce [PubNonceSize]byte
copy(
aggregatedNonce[:],
mustParseHex("028465FCF0BBDBCF443AABCCE533D42B4B5A10966AC09A49655E8C42DAAB8FCD61"),
)
copy(
aggregatedNonce[33:],
mustParseHex("037496A3CC86926D452CAFCFD55D25972CA1675D549310DE296BFF42F72EEEA8C9"),
)
var secNonce [SecNonceSize]byte
copy(secNonce[:], mustParseHex("508B81A611F100A6B2B6B29656590898AF488BCF2E1F55CF22E5CFB84421FE61"))
copy(secNonce[32:], mustParseHex("FA27FD49B1D50085B481285E1CA205D55C82CC1B31FF5CD54A489829355901F7"))
testCases := []struct {
keyOrder []int
expectedPartialSig []byte
tweak *KeyTweakDesc
}{
{
keyOrder: []int{0, 1, 2},
expectedPartialSig: mustParseHex("68537CC5234E505BD14061F8DA9E90C220A181855FD8BDB7F127BB12403B4D3B"),
},
{
keyOrder: []int{1, 0, 2},
expectedPartialSig: mustParseHex("2DF67BFFF18E3DE797E13C6475C963048138DAEC5CB20A357CECA7C8424295EA"),
},
{
keyOrder: []int{1, 2, 0},
expectedPartialSig: mustParseHex("0D5B651E6DE34A29A12DE7A8B4183B4AE6A7F7FBE15CDCAFA4A3D1BCAABC7517"),
},
{
keyOrder: []int{1, 2, 0},
expectedPartialSig: mustParseHex("5e24c7496b565debc3b9639e6f1304a21597f9603d3ab05b4913641775e1375b"),
tweak: &KeyTweakDesc{
Tweak: [32]byte{
0xE8, 0xF7, 0x91, 0xFF, 0x92, 0x25, 0xA2, 0xAF,
0x01, 0x02, 0xAF, 0xFF, 0x4A, 0x9A, 0x72, 0x3D,
0x96, 0x12, 0xA6, 0x82, 0xA2, 0x5E, 0xBE, 0x79,
0x80, 0x2B, 0x26, 0x3C, 0xDF, 0xCD, 0x83, 0xBB,
},
IsXOnly: true,
},
},
{
keyOrder: []int{1, 2, 0},
expectedPartialSig: mustParseHex("78408ddcab4813d1394c97d493ef1084195c1d4b52e63ecd7bc5991644e44ddd"),
tweak: &KeyTweakDesc{
Tweak: [32]byte{
0xE8, 0xF7, 0x91, 0xFF, 0x92, 0x25, 0xA2, 0xAF,
0x01, 0x02, 0xAF, 0xFF, 0x4A, 0x9A, 0x72, 0x3D,
0x96, 0x12, 0xA6, 0x82, 0xA2, 0x5E, 0xBE, 0x79,
0x80, 0x2B, 0x26, 0x3C, 0xDF, 0xCD, 0x83, 0xBB,
},
IsXOnly: false,
},
},
}
var msg [32]byte
copy(msg[:], signTestMsg)
for _, testCase := range testCases {
testName := fmt.Sprintf("%v/tweak=%v", testCase.keyOrder, testCase.tweak != nil)
if testCase.tweak != nil {
testName += fmt.Sprintf("/x_only=%v", testCase.tweak.IsXOnly)
}
t.Run(testName, func(t *testing.T) {
keySet := make([]*btcec.PublicKey, 0, len(testCase.keyOrder))
for _, keyIndex := range testCase.keyOrder {
keySet = append(keySet, signSetKeys[keyIndex])
}
var opts []SignOption
if testCase.tweak != nil {
opts = append(
opts, WithTweaks(*testCase.tweak),
)
}
partialSig, err := Sign(
secNonce, signSetPrivKey, aggregatedNonce,
keySet, msg, opts...,
)
if err != nil {
t.Fatalf("unable to generate partial sig: %v", err)
}
var partialSigBytes [32]byte
partialSig.S.PutBytesUnchecked(partialSigBytes[:])
if !bytes.Equal(partialSigBytes[:], testCase.expectedPartialSig) {
t.Fatalf("sigs don't match: expected %x, got %x",
testCase.expectedPartialSig, partialSigBytes,
)
}
})
}
}
type signer struct {
privKey *btcec.PrivateKey
pubKey *btcec.PublicKey
nonces *Nonces
partialSig *PartialSignature
}
type signerSet []signer
func (s signerSet) keys() []*btcec.PublicKey {
keys := make([]*btcec.PublicKey, len(s))
for i := 0; i < len(s); i++ {
keys[i] = s[i].pubKey
}
return keys
}
func (s signerSet) partialSigs() []*PartialSignature {
sigs := make([]*PartialSignature, len(s))
for i := 0; i < len(s); i++ {
sigs[i] = s[i].partialSig
}
return sigs
}
func (s signerSet) pubNonces() [][PubNonceSize]byte {
nonces := make([][PubNonceSize]byte, len(s))
for i := 0; i < len(s); i++ {
nonces[i] = s[i].nonces.PubNonce
}
return nonces
}
func (s signerSet) combinedKey() *btcec.PublicKey {
uniqueKeyIndex := secondUniqueKeyIndex(s.keys(), false)
key, _, _, _ := AggregateKeys(
s.keys(), false, WithUniqueKeyIndex(uniqueKeyIndex),
)
return key.FinalKey
}
// testMultiPartySign executes a multi-party signing context w/ 100 signers.
func testMultiPartySign(t *testing.T, taprootTweak []byte,
tweaks ...KeyTweakDesc) {
const numSigners = 100
// First generate the set of signers along with their public keys.
signerKeys := make([]*btcec.PrivateKey, numSigners)
signSet := make([]*btcec.PublicKey, numSigners)
for i := 0; i < numSigners; i++ {
privKey, err := btcec.NewPrivateKey()
if err != nil {
t.Fatalf("unable to gen priv key: %v", err)
}
pubKey, err := schnorr.ParsePubKey(
schnorr.SerializePubKey(privKey.PubKey()),
)
if err != nil {
t.Fatalf("unable to gen key: %v", err)
}
signerKeys[i] = privKey
signSet[i] = pubKey
}
var combinedKey *btcec.PublicKey
var ctxOpts []ContextOption
switch {
case len(taprootTweak) == 0:
ctxOpts = append(ctxOpts, WithBip86TweakCtx())
case taprootTweak != nil:
ctxOpts = append(ctxOpts, WithTaprootTweakCtx(taprootTweak))
case len(tweaks) != 0:
ctxOpts = append(ctxOpts, WithTweakedContext(tweaks...))
}
// Now that we have all the signers, we'll make a new context, then
// generate a new session for each of them(which handles nonce
// generation).
signers := make([]*Session, numSigners)
for i, signerKey := range signerKeys {
signCtx, err := NewContext(
signerKey, signSet, false, ctxOpts...,
)
if err != nil {
t.Fatalf("unable to generate context: %v", err)
}
if combinedKey == nil {
combinedKey = signCtx.CombinedKey()
}
session, err := signCtx.NewSession()
if err != nil {
t.Fatalf("unable to generate new session: %v", err)
}
signers[i] = session
}
// Next, in the pre-signing phase, we'll send all the nonces to each
// signer.
var wg sync.WaitGroup
for i, signCtx := range signers {
signCtx := signCtx
wg.Add(1)
go func(idx int, signer *Session) {
defer wg.Done()
for j, otherCtx := range signers {
if idx == j {
continue
}
nonce := otherCtx.PublicNonce()
haveAll, err := signer.RegisterPubNonce(nonce)
if err != nil {
t.Fatalf("unable to add public nonce")
}
if j == len(signers)-1 && !haveAll {
t.Fatalf("all public nonces should have been detected")
}
}
}(i, signCtx)
}
wg.Wait()
msg := sha256.Sum256([]byte("let's get taprooty"))
// In the final step, we'll use the first signer as our combiner, and
// generate a signature for each signer, and then accumulate that with
// the combiner.
combiner := signers[0]
for i := range signers {
signer := signers[i]
partialSig, err := signer.Sign(msg)
if err != nil {
t.Fatalf("unable to generate partial sig: %v", err)
}
// We don't need to combine the signature for the very first
// signer, as it already has that partial signature.
if i != 0 {
haveAll, err := combiner.CombineSig(partialSig)
if err != nil {
t.Fatalf("unable to combine sigs: %v", err)
}
if i == len(signers)-1 && !haveAll {
t.Fatalf("final sig wasn't reconstructed")
}
}
}
// Finally we'll combined all the nonces, and ensure that it validates
// as a single schnorr signature.
finalSig := combiner.FinalSig()
if !finalSig.Verify(msg[:], combinedKey) {
t.Fatalf("final sig is invalid!")
}
// Verify that if we try to sign again with any of the existing
// signers, then we'll get an error as the nonces have already been
// used.
for _, signer := range signers {
_, err := signer.Sign(msg)
if err != ErrSigningContextReuse {
t.Fatalf("expected to get signing context reuse")
}
}
}
// TestMuSigMultiParty tests that for a given set of 100 signers, we're able to
// properly generate valid sub signatures, which ultimately can be combined
// into a single valid signature.
func TestMuSigMultiParty(t *testing.T) {
t.Parallel()
testTweak := [32]byte{
0xE8, 0xF7, 0x91, 0xFF, 0x92, 0x25, 0xA2, 0xAF,
0x01, 0x02, 0xAF, 0xFF, 0x4A, 0x9A, 0x72, 0x3D,
0x96, 0x12, 0xA6, 0x82, 0xA2, 0x5E, 0xBE, 0x79,
0x80, 0x2B, 0x26, 0x3C, 0xDF, 0xCD, 0x83, 0xBB,
}
t.Run("no_tweak", func(t *testing.T) {
t.Parallel()
testMultiPartySign(t, nil)
})
t.Run("tweaked", func(t *testing.T) {
t.Parallel()
testMultiPartySign(t, nil, KeyTweakDesc{
Tweak: testTweak,
})
})
t.Run("tweaked_x_only", func(t *testing.T) {
t.Parallel()
testMultiPartySign(t, nil, KeyTweakDesc{
Tweak: testTweak,
IsXOnly: true,
})
})
t.Run("taproot_tweaked_x_only", func(t *testing.T) {
t.Parallel()
testMultiPartySign(t, testTweak[:])
})
t.Run("taproot_bip_86", func(t *testing.T) {
t.Parallel()
testMultiPartySign(t, []byte{})
})
}