mirror of
https://github.com/btcsuite/btcd.git
synced 2024-11-19 09:50:08 +01:00
1b85a60b6d
This commit adds the testvectors from
20f60b0f37
to the testcases
57 lines
1.7 KiB
Go
57 lines
1.7 KiB
Go
// Copyright 2010 The Go Authors. All rights reserved.
|
|
// Copyright 2011 ThePiachu. All rights reserved.
|
|
// Copyright 2013-2014 The btcsuite developers
|
|
// Use of this source code is governed by an ISC
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package btcec
|
|
|
|
// References:
|
|
// [SECG]: Recommended Elliptic Curve Domain Parameters
|
|
// http://www.secg.org/sec2-v2.pdf
|
|
//
|
|
// [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone)
|
|
|
|
// This package operates, internally, on Jacobian coordinates. For a given
|
|
// (x, y) position on the curve, the Jacobian coordinates are (x1, y1, z1)
|
|
// where x = x1/z1² and y = y1/z1³. The greatest speedups come when the whole
|
|
// calculation can be performed within the transform (as in ScalarMult and
|
|
// ScalarBaseMult). But even for Add and Double, it's faster to apply and
|
|
// reverse the transform than to operate in affine coordinates.
|
|
|
|
import (
|
|
secp "github.com/decred/dcrd/dcrec/secp256k1/v4"
|
|
)
|
|
|
|
// KoblitzCurve provides an implementation for secp256k1 that fits the ECC
|
|
// Curve interface from crypto/elliptic.
|
|
type KoblitzCurve = secp.KoblitzCurve
|
|
|
|
// S256 returns a Curve which implements secp256k1.
|
|
func S256() *KoblitzCurve {
|
|
return secp.S256()
|
|
}
|
|
|
|
// CurveParams contains the parameters for the secp256k1 curve.
|
|
type CurveParams = secp.CurveParams
|
|
|
|
// Params returns the secp256k1 curve parameters for convenience.
|
|
func Params() *CurveParams {
|
|
return secp.Params()
|
|
}
|
|
|
|
// Generator returns the public key at the Generator Point.
|
|
func Generator() *PublicKey {
|
|
var (
|
|
result JacobianPoint
|
|
k secp.ModNScalar
|
|
)
|
|
|
|
k.SetInt(1)
|
|
ScalarBaseMultNonConst(&k, &result)
|
|
|
|
result.ToAffine()
|
|
|
|
return NewPublicKey(&result.X, &result.Y)
|
|
}
|