btcd/txscript/taproot.go
Olaoluwa Osuntokun fc47c31b45
txscript: modify TweakTaprootPrivKey to operate on private key copy
In this commit, we fix an inadvertent mutation bug that would at times
cause the private key passed into the tweak function to actually be
*modified* in place.

We fix this by accepting the value instead of a pointer. The actual
private key struct itself contains no pointer fields, so this is
effectively a deep copy via dereference.

We also add a new unit test that fails w/o this change, to show that the
private key was indeed being modified.
2022-10-27 16:19:56 -07:00

776 lines
27 KiB
Go

// Copyright (c) 2013-2022 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package txscript
import (
"bytes"
"fmt"
"github.com/btcsuite/btcd/btcec/v2"
"github.com/btcsuite/btcd/btcec/v2/schnorr"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/wire"
secp "github.com/decred/dcrd/dcrec/secp256k1/v4"
)
// TapscriptLeafVersion represents the various possible versions of a tapscript
// leaf version. Leaf versions are used to define, or introduce new script
// semantics, under the base taproot execution model.
//
// TODO(roasbeef): add validation here as well re proper prefix, etc?
type TapscriptLeafVersion uint8
const (
// BaseLeafVersion is the base tapscript leaf version. The semantics of
// this version are defined in BIP 342.
BaseLeafVersion TapscriptLeafVersion = 0xc0
)
const (
// ControlBlockBaseSize is the base size of a control block. This
// includes the initial byte for the leaf version, and then serialized
// schnorr public key.
ControlBlockBaseSize = 33
// ControlBlockNodeSize is the size of a given merkle branch hash in
// the control block.
ControlBlockNodeSize = 32
// ControlBlockMaxNodeCount is the max number of nodes that can be
// included in a control block. This value represents a merkle tree of
// depth 2^128.
ControlBlockMaxNodeCount = 128
// ControlBlockMaxSize is the max possible size of a control block.
// This simulates revealing a leaf from the largest possible tapscript
// tree.
ControlBlockMaxSize = ControlBlockBaseSize + (ControlBlockNodeSize *
ControlBlockMaxNodeCount)
)
// VerifyTaprootKeySpend attempts to verify a top-level taproot key spend,
// returning a non-nil error if the passed signature is invalid. If a sigCache
// is passed in, then the sig cache will be consulted to skip full verification
// of a signature that has already been seen. Witness program here should be
// the 32-byte x-only schnorr output public key.
//
// NOTE: The TxSigHashes MUST be passed in and fully populated.
func VerifyTaprootKeySpend(witnessProgram []byte, rawSig []byte, tx *wire.MsgTx,
inputIndex int, prevOuts PrevOutputFetcher, hashCache *TxSigHashes,
sigCache *SigCache) error {
// First, we'll need to extract the public key from the witness
// program.
rawKey := witnessProgram
// Extract the annex if it exists, so we can compute the proper proper
// sighash below.
var annex []byte
witness := tx.TxIn[inputIndex].Witness
if isAnnexedWitness(witness) {
annex, _ = extractAnnex(witness)
}
// Now that we have the public key, we can create a new top-level
// keyspend verifier that'll handle all the sighash and schnorr
// specifics for us.
keySpendVerifier, err := newTaprootSigVerifier(
rawKey, rawSig, tx, inputIndex, prevOuts, sigCache,
hashCache, annex,
)
if err != nil {
return err
}
valid := keySpendVerifier.Verify()
if valid {
return nil
}
return scriptError(ErrTaprootSigInvalid, "")
}
// ControlBlock houses the structured witness input for a taproot spend. This
// includes the internal taproot key, the leaf version, and finally a nearly
// complete merkle inclusion proof for the main taproot commitment.
//
// TODO(roasbeef): method to serialize control block that commits to even
// y-bit, which pops up everywhere even tho 32 byte keys
type ControlBlock struct {
// InternalKey is the internal public key in the taproot commitment.
InternalKey *btcec.PublicKey
// OutputKeyYIsOdd denotes if the y coordinate of the output key (the
// key placed in the actual taproot output is odd.
OutputKeyYIsOdd bool
// LeafVersion is the specified leaf version of the tapscript leaf that
// the InclusionProof below is based off of.
LeafVersion TapscriptLeafVersion
// InclusionProof is a series of merkle branches that when hashed
// pairwise, starting with the revealed script, will yield the taproot
// commitment root.
InclusionProof []byte
}
// ToBytes returns the control block in a format suitable for using as part of
// a witness spending a tapscript output.
func (c *ControlBlock) ToBytes() ([]byte, error) {
var b bytes.Buffer
// The first byte of the control block is the leaf version byte XOR'd with
// the parity of the y coordinate of the public key.
yParity := byte(0)
if c.OutputKeyYIsOdd {
yParity = 1
}
// The first byte is a combination of the leaf version, using the lowest
// bit to encode the single bit that denotes if the yo coordinate if odd or
// even.
leafVersionAndParity := byte(c.LeafVersion) | yParity
if err := b.WriteByte(leafVersionAndParity); err != nil {
return nil, err
}
// Next, we encode the raw 32 byte schnorr public key
if _, err := b.Write(schnorr.SerializePubKey(c.InternalKey)); err != nil {
return nil, err
}
// Finally, we'll write out the inclusion proof as is, without any length
// prefix.
if _, err := b.Write(c.InclusionProof); err != nil {
return nil, err
}
return b.Bytes(), nil
}
// RootHash calculates the root hash of a tapscript given the revealed script.
func (c *ControlBlock) RootHash(revealedScript []byte) []byte {
// We'll start by creating a new tapleaf from the revealed script,
// this'll serve as the initial hash we'll use to incrementally
// reconstruct the merkle root using the control block elements.
merkleAccumulator := NewTapLeaf(c.LeafVersion, revealedScript).TapHash()
// Now that we have our initial hash, we'll parse the control block one
// node at a time to build up our merkle accumulator into the taproot
// commitment.
//
// The control block is a series of nodes that serve as an inclusion
// proof as we can start hashing with our leaf, with each internal
// branch, until we reach the root.
numNodes := len(c.InclusionProof) / ControlBlockNodeSize
for nodeOffset := 0; nodeOffset < numNodes; nodeOffset++ {
// Extract the new node using our index to serve as a 32-byte
// offset.
leafOffset := 32 * nodeOffset
nextNode := c.InclusionProof[leafOffset : leafOffset+32]
merkleAccumulator = tapBranchHash(merkleAccumulator[:], nextNode)
}
return merkleAccumulator[:]
}
// ParseControlBlock attempts to parse the raw bytes of a control block. An
// error is returned if the control block isn't well formed, or can't be
// parsed.
func ParseControlBlock(ctrlBlock []byte) (*ControlBlock, error) {
// The control block minimally must contain 33 bytes (for the leaf
// version and internal key) along with at least a single value
// comprising the merkle proof. If not, then it's invalid.
switch {
// The control block must minimally have 33 bytes for the internal
// public key and script leaf version.
case len(ctrlBlock) < ControlBlockBaseSize:
str := fmt.Sprintf("min size is %v bytes, control block "+
"is %v bytes", ControlBlockBaseSize, len(ctrlBlock))
return nil, scriptError(ErrControlBlockTooSmall, str)
// The control block can't be larger than a proof for the largest
// possible tapscript merkle tree with 2^128 leaves.
case len(ctrlBlock) > ControlBlockMaxSize:
str := fmt.Sprintf("max size is %v, control block is %v bytes",
ControlBlockMaxSize, len(ctrlBlock))
return nil, scriptError(ErrControlBlockTooLarge, str)
// Ignoring the fixed sized portion, we expect the total number of
// remaining bytes to be a multiple of the node size, which is 32
// bytes.
case (len(ctrlBlock)-ControlBlockBaseSize)%ControlBlockNodeSize != 0:
str := fmt.Sprintf("control block proof is not a multiple "+
"of 32: %v", len(ctrlBlock)-ControlBlockBaseSize)
return nil, scriptError(ErrControlBlockInvalidLength, str)
}
// With the basic sanity checking complete, we can now parse the
// control block.
leafVersion := TapscriptLeafVersion(ctrlBlock[0] & TaprootLeafMask)
// Extract the parity of the y coordinate of the internal key.
var yIsOdd bool
if ctrlBlock[0]&0x01 == 0x01 {
yIsOdd = true
}
// Next, we'll parse the public key, which is the 32 bytes following
// the leaf version.
rawKey := ctrlBlock[1:33]
pubKey, err := schnorr.ParsePubKey(rawKey)
if err != nil {
return nil, err
}
// The rest of the bytes are the control block itself, which encodes a
// merkle proof of inclusion.
proofBytes := ctrlBlock[33:]
return &ControlBlock{
InternalKey: pubKey,
OutputKeyYIsOdd: yIsOdd,
LeafVersion: leafVersion,
InclusionProof: proofBytes,
}, nil
}
// ComputeTaprootOutputKey calculates a top-level taproot output key given an
// internal key, and tapscript merkle root. The final key is derived as:
// taprootKey = internalKey + (h_tapTweak(internalKey || merkleRoot)*G).
func ComputeTaprootOutputKey(pubKey *btcec.PublicKey,
scriptRoot []byte) *btcec.PublicKey {
// This routine only operates on x-only public keys where the public
// key always has an even y coordinate, so we'll re-parse it as such.
internalKey, _ := schnorr.ParsePubKey(schnorr.SerializePubKey(pubKey))
// First, we'll compute the tap tweak hash that commits to the internal
// key and the merkle script root.
tapTweakHash := chainhash.TaggedHash(
chainhash.TagTapTweak, schnorr.SerializePubKey(internalKey),
scriptRoot,
)
// With the tap tweek computed, we'll need to convert the merkle root
// into something in the domain we can manipulate: a scalar value mod
// N.
var tweakScalar btcec.ModNScalar
tweakScalar.SetBytes((*[32]byte)(tapTweakHash))
// Next, we'll need to convert the internal key to jacobian coordinates
// as the routines we need only operate on this type.
var internalPoint btcec.JacobianPoint
internalKey.AsJacobian(&internalPoint)
// With our intermediate data obtained, we'll now compute:
//
// taprootKey = internalPoint + (tapTweak*G).
var tPoint, taprootKey btcec.JacobianPoint
btcec.ScalarBaseMultNonConst(&tweakScalar, &tPoint)
btcec.AddNonConst(&internalPoint, &tPoint, &taprootKey)
// Finally, we'll convert the key back to affine coordinates so we can
// return the format of public key we usually use.
taprootKey.ToAffine()
return btcec.NewPublicKey(&taprootKey.X, &taprootKey.Y)
}
// ComputeTaprootKeyNoScript calculates the top-level taproot output key given
// an internal key, and a desire that the only way an output can be spent is
// with the keyspend path. This is useful for normal wallet operations that
// don't need any other additional spending conditions.
func ComputeTaprootKeyNoScript(internalKey *btcec.PublicKey) *btcec.PublicKey {
// We'll compute a custom tap tweak hash that just commits to the key,
// rather than an actual root hash.
fakeScriptroot := []byte{}
return ComputeTaprootOutputKey(internalKey, fakeScriptroot)
}
// TweakTaprootPrivKey applies the same operation as ComputeTaprootOutputKey,
// but on the private key instead. The final key is derived as: privKey +
// h_tapTweak(internalKey || merkleRoot) % N, where N is the order of the
// secp256k1 curve, and merkleRoot is the root hash of the tapscript tree.
func TweakTaprootPrivKey(privKey btcec.PrivateKey,
scriptRoot []byte) *btcec.PrivateKey {
// If the corresponding public key has an odd y coordinate, then we'll
// negate the private key as specified in BIP 341.
privKeyScalar := privKey.Key
pubKeyBytes := privKey.PubKey().SerializeCompressed()
if pubKeyBytes[0] == secp.PubKeyFormatCompressedOdd {
privKeyScalar.Negate()
}
// Next, we'll compute the tap tweak hash that commits to the internal
// key and the merkle script root. We'll snip off the extra parity byte
// from the compressed serialization and use that directly.
schnorrKeyBytes := pubKeyBytes[1:]
tapTweakHash := chainhash.TaggedHash(
chainhash.TagTapTweak, schnorrKeyBytes, scriptRoot,
)
// Map the private key to a ModNScalar which is needed to perform
// operation mod the curve order.
var tweakScalar btcec.ModNScalar
tweakScalar.SetBytes((*[32]byte)(tapTweakHash))
// Now that we have the private key in its may negated form, we'll add
// the script root as a tweak. As we're using a ModNScalar all
// operations are already normalized mod the curve order.
privTweak := privKeyScalar.Add(&tweakScalar)
return btcec.PrivKeyFromScalar(privTweak)
}
// VerifyTaprootLeafCommitment attempts to verify a taproot commitment of the
// revealed script within the taprootWitnessProgram (a schnorr public key)
// given the required information included in the control block. An error is
// returned if the reconstructed taproot commitment (a function of the merkle
// root and the internal key) doesn't match the passed witness program.
func VerifyTaprootLeafCommitment(controlBlock *ControlBlock,
taprootWitnessProgram []byte, revealedScript []byte) error {
// First, we'll calculate the root hash from the given proof and
// revealed script.
rootHash := controlBlock.RootHash(revealedScript)
// Next, we'll construct the final commitment (creating the external or
// taproot output key) as a function of this commitment and the
// included internal key: taprootKey = internalKey + (tPoint*G).
taprootKey := ComputeTaprootOutputKey(
controlBlock.InternalKey, rootHash,
)
// If we convert the taproot key to a witness program (we just need to
// serialize the public key), then it should exactly match the witness
// program passed in.
expectedWitnessProgram := schnorr.SerializePubKey(taprootKey)
if !bytes.Equal(expectedWitnessProgram, taprootWitnessProgram) {
return scriptError(ErrTaprootMerkleProofInvalid, "")
}
// Finally, we'll verify that the parity of the y coordinate of the
// public key we've derived matches the control block.
derivedYIsOdd := (taprootKey.SerializeCompressed()[0] ==
secp.PubKeyFormatCompressedOdd)
if controlBlock.OutputKeyYIsOdd != derivedYIsOdd {
str := fmt.Sprintf("control block y is odd: %v, derived "+
"parity is odd: %v", controlBlock.OutputKeyYIsOdd,
derivedYIsOdd)
return scriptError(ErrTaprootOutputKeyParityMismatch, str)
}
// Otherwise, if we reach here, the commitment opening is valid and
// execution can continue.
return nil
}
// TapNode represents an abstract node in a tapscript merkle tree. A node is
// either a branch or a leaf.
type TapNode interface {
// TapHash returns the hash of the node. This will either be a tagged
// hash derived from a branch, or a leaf.
TapHash() chainhash.Hash
// Left returns the left node. If this is a leaf node, this may be nil.
Left() TapNode
// Right returns the right node. If this is a leaf node, this may be
// nil.
Right() TapNode
}
// TapLeaf represents a leaf in a tapscript tree. A leaf has two components:
// the leaf version, and the script associated with that leaf version.
type TapLeaf struct {
// LeafVersion is the leaf version of this leaf.
LeafVersion TapscriptLeafVersion
// Script is the script to be validated based on the specified leaf
// version.
Script []byte
}
// Left rights the left node for this leaf. As this is a leaf the left node is
// nil.
func (t TapLeaf) Left() TapNode {
return nil
}
// Right rights the right node for this leaf. As this is a leaf the right node
// is nil.
func (t TapLeaf) Right() TapNode {
return nil
}
// NewBaseTapLeaf returns a new TapLeaf for the specified script, using the
// current base leaf version (BIP 342).
func NewBaseTapLeaf(script []byte) TapLeaf {
return TapLeaf{
Script: script,
LeafVersion: BaseLeafVersion,
}
}
// NewTapLeaf returns a new TapLeaf with the given leaf version and script to
// be committed to.
func NewTapLeaf(leafVersion TapscriptLeafVersion, script []byte) TapLeaf {
return TapLeaf{
LeafVersion: leafVersion,
Script: script,
}
}
// TapHash returns the hash digest of the target taproot script leaf. The
// digest is computed as: h_tapleaf(leafVersion || compactSizeof(script) ||
// script).
func (t TapLeaf) TapHash() chainhash.Hash {
// TODO(roasbeef): cache these and the branch due to the recursive
// call, so memoize
// The leaf encoding is: leafVersion || compactSizeof(script) ||
// script, where compactSizeof returns the compact size needed to
// encode the value.
var leafEncoding bytes.Buffer
_ = leafEncoding.WriteByte(byte(t.LeafVersion))
_ = wire.WriteVarBytes(&leafEncoding, 0, t.Script)
return *chainhash.TaggedHash(chainhash.TagTapLeaf, leafEncoding.Bytes())
}
// TapBranch represents an internal branch in the tapscript tree. The left or
// right nodes may either be another branch, leaves, or a combination of both.
type TapBranch struct {
// leftNode is the left node, this cannot be nil.
leftNode TapNode
// rightNode is the right node, this cannot be nil.
rightNode TapNode
}
// NewTapBranch creates a new internal branch from a left and right node.
func NewTapBranch(l, r TapNode) TapBranch {
return TapBranch{
leftNode: l,
rightNode: r,
}
}
// Left is the left node of the branch, this might be a leaf or another
// branch.
func (t TapBranch) Left() TapNode {
return t.leftNode
}
// Right is the right node of a branch, this might be a leaf or another branch.
func (t TapBranch) Right() TapNode {
return t.rightNode
}
// TapHash returns the hash digest of the taproot internal branch given a left
// and right node. The final hash digest is: h_tapbranch(leftNode ||
// rightNode), where leftNode is the lexicographically smaller of the two nodes.
func (t TapBranch) TapHash() chainhash.Hash {
leftHash := t.leftNode.TapHash()
rightHash := t.rightNode.TapHash()
return tapBranchHash(leftHash[:], rightHash[:])
}
// tapBranchHash takes the raw tap hashes of the right and left nodes and
// hashes them into a branch. See The TapBranch method for the specifics.
func tapBranchHash(l, r []byte) chainhash.Hash {
if bytes.Compare(l[:], r[:]) > 0 {
l, r = r, l
}
return *chainhash.TaggedHash(
chainhash.TagTapBranch, l[:], r[:],
)
}
// TapscriptProof is a proof of inclusion that a given leaf (a script and leaf
// version) is included within a top-level taproot output commitment.
type TapscriptProof struct {
// TapLeaf is the leaf that we want to prove inclusion for.
TapLeaf
// RootNode is the root of the tapscript tree, this will be used to
// compute what the final output key looks like.
RootNode TapNode
// InclusionProof is the tail end of the control block that contains
// the series of hashes (the sibling hashes up the tree), that when
// hashed together allow us to re-derive the top level taproot output.
InclusionProof []byte
}
// ToControlBlock maps the tapscript proof into a fully valid control block
// that can be used as a witness item for a tapscript spend.
func (t *TapscriptProof) ToControlBlock(internalKey *btcec.PublicKey) ControlBlock {
// Compute the total level output commitment based on the populated
// root node.
rootHash := t.RootNode.TapHash()
taprootKey := ComputeTaprootOutputKey(
internalKey, rootHash[:],
)
// With the commitment computed we can obtain the bit that denotes if
// the resulting key has an odd y coordinate or not.
var outputKeyYIsOdd bool
if taprootKey.SerializeCompressed()[0] ==
secp.PubKeyFormatCompressedOdd {
outputKeyYIsOdd = true
}
return ControlBlock{
InternalKey: internalKey,
OutputKeyYIsOdd: outputKeyYIsOdd,
LeafVersion: t.TapLeaf.LeafVersion,
InclusionProof: t.InclusionProof,
}
}
// IndexedTapScriptTree reprints a fully contracted tapscript tree. The
// RootNode can be used to traverse down the full tree. In addition, complete
// inclusion proofs for each leaf are included as well, with an index into the
// slice of proof based on the tap leaf hash of a given leaf.
type IndexedTapScriptTree struct {
// RootNode is the root of the tapscript tree. RootNode.TapHash() can
// be used to extract the hash needed to derive the taptweak committed
// to in the taproot output.
RootNode TapNode
// LeafMerkleProofs is a slice that houses the series of merkle
// inclusion proofs for each leaf based on the input order of the
// leaves.
LeafMerkleProofs []TapscriptProof
// LeafProofIndex maps the TapHash() of a given leaf node to the index
// within the LeafMerkleProofs array above. This can be used to
// retrieve the inclusion proof for a given script when constructing
// the witness stack and control block for spending a tapscript path.
LeafProofIndex map[chainhash.Hash]int
}
// NewIndexedTapScriptTree creates a new empty tapscript tree that has enough
// space to hold information for the specified amount of leaves.
func NewIndexedTapScriptTree(numLeaves int) *IndexedTapScriptTree {
return &IndexedTapScriptTree{
LeafMerkleProofs: make([]TapscriptProof, numLeaves),
LeafProofIndex: make(map[chainhash.Hash]int, numLeaves),
}
}
// hashTapNodes takes a left and right now, and returns the left and right tap
// hashes, along with the new combined node. If both nodes are nil, nil
// pointers are returned. If the right now is nil, then the left node is passed
// in, which effectively will "lift" the node up in the tree as long as it
// doesn't have any siblings.
func hashTapNodes(left, right TapNode) (*chainhash.Hash, *chainhash.Hash, TapNode) {
switch {
// If there's no left child, then this is a "nil" portion of the array
// tree, so well thread thru nil.
case left == nil:
return nil, nil, nil
// If there's no right child, then this is a single node that'll be
// passed all the way up the tree as it has no children.
case right == nil:
return nil, nil, left
}
// The result of hashing two nodes will always be a branch, so we start
// with that.
leftHash := left.TapHash()
rightHash := right.TapHash()
return &leftHash, &rightHash, NewTapBranch(left, right)
}
// leafDescendants is a recursive algorithm that returns all the leaf nodes
// that are a decedents of this tree. This is used to collect the series of
// nodes we need to extend the inclusion proof of each time we go up in the
// tree.
func leafDescendants(node TapNode) []TapNode {
// A leaf node has no decedents, so we just return it directly.
if node.Left() == nil && node.Right() == nil {
return []TapNode{node}
}
// Otherwise, get the descendants of the left and right sub-trees to
// return.
leftLeaves := leafDescendants(node.Left())
rightLeaves := leafDescendants(node.Right())
return append(leftLeaves, rightLeaves...)
}
// AssembleTaprootScriptTree constructs a new fully indexed tapscript tree
// given a series of leaf nodes. A combination of a recursive data structure,
// and an array-based representation are used to both generate the tree and
// also accumulate all the necessary inclusion proofs in the same path. See the
// comment of blockchain.BuildMerkleTreeStore for further details.
func AssembleTaprootScriptTree(leaves ...TapLeaf) *IndexedTapScriptTree {
// If there's only a single leaf, then that becomes our root.
if len(leaves) == 1 {
// A lone leaf has no additional inclusion proof, as a verifier
// will just hash the leaf as the sole branch.
leaf := leaves[0]
return &IndexedTapScriptTree{
RootNode: leaf,
LeafProofIndex: map[chainhash.Hash]int{
leaf.TapHash(): 0,
},
LeafMerkleProofs: []TapscriptProof{
{
TapLeaf: leaf,
RootNode: leaf,
InclusionProof: nil,
},
},
}
}
// We'll start out by populating the leaf index which maps a leave's
// taphash to its index within the tree.
scriptTree := NewIndexedTapScriptTree(len(leaves))
for i, leaf := range leaves {
leafHash := leaf.TapHash()
scriptTree.LeafProofIndex[leafHash] = i
}
var branches []TapBranch
for i := 0; i < len(leaves); i += 2 {
// If there's only a single leaf left, then we'll merge this
// with the last branch we have.
if i == len(leaves)-1 {
branchToMerge := branches[len(branches)-1]
leaf := leaves[i]
newBranch := NewTapBranch(branchToMerge, leaf)
branches[len(branches)-1] = newBranch
// The leaf includes the existing branch within its
// inclusion proof.
branchHash := branchToMerge.TapHash()
scriptTree.LeafMerkleProofs[i].TapLeaf = leaf
scriptTree.LeafMerkleProofs[i].InclusionProof = append(
scriptTree.LeafMerkleProofs[i].InclusionProof,
branchHash[:]...,
)
// We'll also add this right hash to the inclusion of
// the left and right nodes of the branch.
lastLeafHash := leaf.TapHash()
leftLeafHash := branchToMerge.Left().TapHash()
leftLeafIndex := scriptTree.LeafProofIndex[leftLeafHash]
scriptTree.LeafMerkleProofs[leftLeafIndex].InclusionProof = append(
scriptTree.LeafMerkleProofs[leftLeafIndex].InclusionProof,
lastLeafHash[:]...,
)
rightLeafHash := branchToMerge.Right().TapHash()
rightLeafIndex := scriptTree.LeafProofIndex[rightLeafHash]
scriptTree.LeafMerkleProofs[rightLeafIndex].InclusionProof = append(
scriptTree.LeafMerkleProofs[rightLeafIndex].InclusionProof,
lastLeafHash[:]...,
)
continue
}
// While we still have leaves left, we'll combine two of them
// into a new branch node.
left, right := leaves[i], leaves[i+1]
nextBranch := NewTapBranch(left, right)
branches = append(branches, nextBranch)
// The left node will use the right node as part of its
// inclusion proof, and vice versa.
leftHash := left.TapHash()
rightHash := right.TapHash()
scriptTree.LeafMerkleProofs[i].TapLeaf = left
scriptTree.LeafMerkleProofs[i].InclusionProof = append(
scriptTree.LeafMerkleProofs[i].InclusionProof,
rightHash[:]...,
)
scriptTree.LeafMerkleProofs[i+1].TapLeaf = right
scriptTree.LeafMerkleProofs[i+1].InclusionProof = append(
scriptTree.LeafMerkleProofs[i+1].InclusionProof,
leftHash[:]...,
)
}
// In this second phase, we'll merge all the leaf branches we have one
// by one until we have our final root.
var rootNode TapNode
for len(branches) != 0 {
// When we only have a single branch left, then that becomes
// our root.
if len(branches) == 1 {
rootNode = branches[0]
break
}
left, right := branches[0], branches[1]
newBranch := NewTapBranch(left, right)
branches = branches[2:]
branches = append(branches, newBranch)
// Accumulate the sibling hash of this new branch for all the
// leaves that are its children.
leftLeafDescendants := leafDescendants(left)
rightLeafDescendants := leafDescendants(right)
leftHash, rightHash := left.TapHash(), right.TapHash()
// For each left hash that's a leaf descendants, well add the
// right sibling as that sibling is needed to construct the new
// internal branch we just created. We also do the same for the
// siblings of the right node.
for _, leftLeaf := range leftLeafDescendants {
leafHash := leftLeaf.TapHash()
leafIndex := scriptTree.LeafProofIndex[leafHash]
scriptTree.LeafMerkleProofs[leafIndex].InclusionProof = append(
scriptTree.LeafMerkleProofs[leafIndex].InclusionProof,
rightHash[:]...,
)
}
for _, rightLeaf := range rightLeafDescendants {
leafHash := rightLeaf.TapHash()
leafIndex := scriptTree.LeafProofIndex[leafHash]
scriptTree.LeafMerkleProofs[leafIndex].InclusionProof = append(
scriptTree.LeafMerkleProofs[leafIndex].InclusionProof,
leftHash[:]...,
)
}
}
// Populate the top level root node pointer, as well as the pointer in
// each proof.
scriptTree.RootNode = rootNode
for i := range scriptTree.LeafMerkleProofs {
scriptTree.LeafMerkleProofs[i].RootNode = rootNode
}
return scriptTree
}