btcd/btcec/ecdsa/bench_test.go
Olaoluwa Osuntokun eb61742c5d
btcec/v2: create new ecdsa package
In this commit, we create a new package to house the ECDSA-specific
logic in the new `btcec/v2` pacakge. Thsi c hange is meant to mirror the
structure of the `dcrec` package, as we'll soon slot in our own custom
BIP-340 implementation.
2022-01-31 14:25:39 -08:00

211 lines
6.9 KiB
Go

// Copyright 2013-2016 The btcsuite developers
// Copyright (c) 2015-2021 The Decred developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package ecdsa
import (
"encoding/hex"
"math/big"
"testing"
"github.com/btcsuite/btcd/btcec/v2"
"github.com/decred/dcrd/dcrec/secp256k1/v4"
)
// hexToBytes converts the passed hex string into bytes and will panic if there
// is an error. This is only provided for the hard-coded constants so errors in
// the source code can be detected. It will only (and must only) be called with
// hard-coded values.
func hexToBytes(s string) []byte {
b, err := hex.DecodeString(s)
if err != nil {
panic("invalid hex in source file: " + s)
}
return b
}
// hexToModNScalar converts the passed hex string into a ModNScalar and will
// panic if there is an error. This is only provided for the hard-coded
// constants so errors in the source code can be detected. It will only (and
// must only) be called with hard-coded values.
func hexToModNScalar(s string) *btcec.ModNScalar {
b, err := hex.DecodeString(s)
if err != nil {
panic("invalid hex in source file: " + s)
}
var scalar btcec.ModNScalar
if overflow := scalar.SetByteSlice(b); overflow {
panic("hex in source file overflows mod N scalar: " + s)
}
return &scalar
}
// hexToFieldVal converts the passed hex string into a FieldVal and will panic
// if there is an error. This is only provided for the hard-coded constants so
// errors in the source code can be detected. It will only (and must only) be
// called with hard-coded values.
func hexToFieldVal(s string) *btcec.FieldVal {
b, err := hex.DecodeString(s)
if err != nil {
panic("invalid hex in source file: " + s)
}
var f btcec.FieldVal
if overflow := f.SetByteSlice(b); overflow {
panic("hex in source file overflows mod P: " + s)
}
return &f
}
// fromHex converts the passed hex string into a big integer pointer and will
// panic is there is an error. This is only provided for the hard-coded
// constants so errors in the source code can bet detected. It will only (and
// must only) be called for initialization purposes.
func fromHex(s string) *big.Int {
if s == "" {
return big.NewInt(0)
}
r, ok := new(big.Int).SetString(s, 16)
if !ok {
panic("invalid hex in source file: " + s)
}
return r
}
// BenchmarkSigVerify benchmarks how long it takes the secp256k1 curve to
// verify signatures.
func BenchmarkSigVerify(b *testing.B) {
b.StopTimer()
// Randomly generated keypair.
// Private key: 9e0699c91ca1e3b7e3c9ba71eb71c89890872be97576010fe593fbf3fd57e66d
pubKey := btcec.NewPublicKey(
hexToFieldVal("d2e670a19c6d753d1a6d8b20bd045df8a08fb162cf508956c31268c6d81ffdab"),
hexToFieldVal("ab65528eefbb8057aa85d597258a3fbd481a24633bc9b47a9aa045c91371de52"),
)
// Double sha256 of []byte{0x01, 0x02, 0x03, 0x04}
msgHash := fromHex("8de472e2399610baaa7f84840547cd409434e31f5d3bd71e4d947f283874f9c0")
sig := NewSignature(
hexToModNScalar("fef45d2892953aa5bbcdb057b5e98b208f1617a7498af7eb765574e29b5d9c2c"),
hexToModNScalar("d47563f52aac6b04b55de236b7c515eb9311757db01e02cff079c3ca6efb063f"),
)
if !sig.Verify(msgHash.Bytes(), pubKey) {
b.Errorf("Signature failed to verify")
return
}
b.StartTimer()
for i := 0; i < b.N; i++ {
sig.Verify(msgHash.Bytes(), pubKey)
}
}
// BenchmarkSign benchmarks how long it takes to sign a message.
func BenchmarkSign(b *testing.B) {
// Randomly generated keypair.
d := hexToModNScalar("9e0699c91ca1e3b7e3c9ba71eb71c89890872be97576010fe593fbf3fd57e66d")
privKey := secp256k1.NewPrivateKey(d)
// blake256 of []byte{0x01, 0x02, 0x03, 0x04}.
msgHash := hexToBytes("c301ba9de5d6053caad9f5eb46523f007702add2c62fa39de03146a36b8026b7")
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
Sign(privKey, msgHash)
}
}
// BenchmarkSigSerialize benchmarks how long it takes to serialize a typical
// signature with the strict DER encoding.
func BenchmarkSigSerialize(b *testing.B) {
// Randomly generated keypair.
// Private key: 9e0699c91ca1e3b7e3c9ba71eb71c89890872be97576010fe593fbf3fd57e66d
// Signature for double sha256 of []byte{0x01, 0x02, 0x03, 0x04}.
sig := NewSignature(
hexToModNScalar("fef45d2892953aa5bbcdb057b5e98b208f1617a7498af7eb765574e29b5d9c2c"),
hexToModNScalar("d47563f52aac6b04b55de236b7c515eb9311757db01e02cff079c3ca6efb063f"),
)
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
sig.Serialize()
}
}
// BenchmarkNonceRFC6979 benchmarks how long it takes to generate a
// deterministic nonce according to RFC6979.
func BenchmarkNonceRFC6979(b *testing.B) {
// Randomly generated keypair.
// Private key: 9e0699c91ca1e3b7e3c9ba71eb71c89890872be97576010fe593fbf3fd57e66d
// X: d2e670a19c6d753d1a6d8b20bd045df8a08fb162cf508956c31268c6d81ffdab
// Y: ab65528eefbb8057aa85d597258a3fbd481a24633bc9b47a9aa045c91371de52
privKeyStr := "9e0699c91ca1e3b7e3c9ba71eb71c89890872be97576010fe593fbf3fd57e66d"
privKey := hexToBytes(privKeyStr)
// BLAKE-256 of []byte{0x01, 0x02, 0x03, 0x04}.
msgHash := hexToBytes("c301ba9de5d6053caad9f5eb46523f007702add2c62fa39de03146a36b8026b7")
b.ReportAllocs()
b.ResetTimer()
var noElideNonce *secp256k1.ModNScalar
for i := 0; i < b.N; i++ {
noElideNonce = secp256k1.NonceRFC6979(privKey, msgHash, nil, nil, 0)
}
_ = noElideNonce
}
// BenchmarkSignCompact benchmarks how long it takes to produce a compact
// signature for a message.
func BenchmarkSignCompact(b *testing.B) {
d := hexToModNScalar("9e0699c91ca1e3b7e3c9ba71eb71c89890872be97576010fe593fbf3fd57e66d")
privKey := secp256k1.NewPrivateKey(d)
// blake256 of []byte{0x01, 0x02, 0x03, 0x04}.
msgHash := hexToBytes("c301ba9de5d6053caad9f5eb46523f007702add2c62fa39de03146a36b8026b7")
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
_, _ = SignCompact(privKey, msgHash, true)
}
}
// BenchmarkSignCompact benchmarks how long it takes to recover a public key
// given a compact signature and message.
func BenchmarkRecoverCompact(b *testing.B) {
// Private key: 9e0699c91ca1e3b7e3c9ba71eb71c89890872be97576010fe593fbf3fd57e66d
wantPubKey := secp256k1.NewPublicKey(
hexToFieldVal("d2e670a19c6d753d1a6d8b20bd045df8a08fb162cf508956c31268c6d81ffdab"),
hexToFieldVal("ab65528eefbb8057aa85d597258a3fbd481a24633bc9b47a9aa045c91371de52"),
)
compactSig := hexToBytes("205978b7896bc71676ba2e459882a8f52e1299449596c4f" +
"93c59bf1fbfa2f9d3b76ecd0c99406f61a6de2bb5a8937c061c176ecf381d0231e0d" +
"af73b922c8952c7")
// blake256 of []byte{0x01, 0x02, 0x03, 0x04}.
msgHash := hexToBytes("c301ba9de5d6053caad9f5eb46523f007702add2c62fa39de03146a36b8026b7")
// Ensure a valid compact signature is being benchmarked.
pubKey, wasCompressed, err := RecoverCompact(compactSig, msgHash)
if err != nil {
b.Fatalf("unexpected err: %v", err)
}
if !wasCompressed {
b.Fatal("recover claims uncompressed pubkey")
}
if !pubKey.IsEqual(wantPubKey) {
b.Fatal("recover returned unexpected pubkey")
}
b.ReportAllocs()
b.ResetTimer()
for i := 0; i < b.N; i++ {
_, _, _ = RecoverCompact(compactSig, msgHash)
}
}