btcd/btcec/btcec_test.go
Calvin Kim ba5407615d multi: Run gofmt on the entire repository
The doc formatting changes introduced in the recent go version is
increasing the diff for all of the new commits.  Formatting it all in
this commit will help the readability of future PRs by reducing the
diff.
2023-06-21 22:31:09 +09:00

892 lines
31 KiB
Go

// Copyright 2011 The Go Authors. All rights reserved.
// Copyright 2011 ThePiachu. All rights reserved.
// Copyright 2013-2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package btcec
import (
"crypto/rand"
"fmt"
"math/big"
"testing"
)
// isJacobianOnS256Curve returns boolean if the point (x,y,z) is on the
// secp256k1 curve.
func isJacobianOnS256Curve(point *JacobianPoint) bool {
// Elliptic curve equation for secp256k1 is: y^2 = x^3 + 7
// In Jacobian coordinates, Y = y/z^3 and X = x/z^2
// Thus:
// (y/z^3)^2 = (x/z^2)^3 + 7
// y^2/z^6 = x^3/z^6 + 7
// y^2 = x^3 + 7*z^6
var y2, z2, x3, result FieldVal
y2.SquareVal(&point.Y).Normalize()
z2.SquareVal(&point.Z)
x3.SquareVal(&point.X).Mul(&point.X)
result.SquareVal(&z2).Mul(&z2).MulInt(7).Add(&x3).Normalize()
return y2.Equals(&result)
}
// TestAddJacobian tests addition of points projected in Jacobian coordinates.
func TestAddJacobian(t *testing.T) {
tests := []struct {
x1, y1, z1 string // Coordinates (in hex) of first point to add
x2, y2, z2 string // Coordinates (in hex) of second point to add
x3, y3, z3 string // Coordinates (in hex) of expected point
}{
// Addition with a point at infinity (left hand side).
// ∞ + P = P
{
"0",
"0",
"0",
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
"1",
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
"1",
},
// Addition with a point at infinity (right hand side).
// P + ∞ = P
{
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
"1",
"0",
"0",
"0",
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
"1",
},
// Addition with z1=z2=1 different x values.
{
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"1",
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
"1",
"0cfbc7da1e569b334460788faae0286e68b3af7379d5504efc25e4dba16e46a6",
"e205f79361bbe0346b037b4010985dbf4f9e1e955e7d0d14aca876bfa79aad87",
"44a5646b446e3877a648d6d381370d9ef55a83b666ebce9df1b1d7d65b817b2f",
},
// Addition with z1=z2=1 same x opposite y.
// P(x, y, z) + P(x, -y, z) = infinity
{
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"1",
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"f48e156428cf0276dc092da5856e182288d7569f97934a56fe44be60f0d359fd",
"1",
"0",
"0",
"0",
},
// Addition with z1=z2=1 same point.
// P(x, y, z) + P(x, y, z) = 2P
{
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"1",
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"1",
"ec9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee64f87c50c27",
"b082b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd0755c8f2a",
"16e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c1e594464",
},
// Addition with z1=z2 (!=1) different x values.
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"5d2fe112c21891d440f65a98473cb626111f8a234d2cd82f22172e369f002147",
"98e3386a0a622a35c4561ffb32308d8e1c6758e10ebb1b4ebd3d04b4eb0ecbe8",
"2",
"cfbc7da1e569b334460788faae0286e68b3af7379d5504efc25e4dba16e46a60",
"817de4d86ef80d1ac0ded00426176fd3e787a5579f43452b2a1db021e6ac3778",
"129591ad11b8e1de99235b4e04dc367bd56a0ed99baf3a77c6c75f5a6e05f08d",
},
// Addition with z1=z2 (!=1) same x opposite y.
// P(x, y, z) + P(x, -y, z) = infinity
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"a470ab21467813b6e0496d2c2b70c11446bab4fcbc9a52b7f225f30e869aea9f",
"2",
"0",
"0",
"0",
},
// Addition with z1=z2 (!=1) same point.
// P(x, y, z) + P(x, y, z) = 2P
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee65073c50fabac",
"2b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd125dc91cb988",
"6e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c2e5944a11",
},
// Addition with z1!=z2 and z2=1 different x values.
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
"1",
"3ef1f68795a6ccd1181e23eab80a1b9a2cebdcde755413bf097936eb5b91b4f3",
"0bef26c377c068d606f6802130bb7e9f3c3d2abcfa1a295950ed81133561cb04",
"252b235a2371c3bd3246b69c09b86cf7aad41db3375e74ef8d8ebeb4dc0be11a",
},
// Addition with z1!=z2 and z2=1 same x opposite y.
// P(x, y, z) + P(x, -y, z) = infinity
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"f48e156428cf0276dc092da5856e182288d7569f97934a56fe44be60f0d359fd",
"1",
"0",
"0",
"0",
},
// Addition with z1!=z2 and z2=1 same point.
// P(x, y, z) + P(x, y, z) = 2P
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"1",
"9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee65073c50fabac",
"2b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd125dc91cb988",
"6e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c2e5944a11",
},
// Addition with z1!=z2 and z2!=1 different x values.
// P(x, y, z) + P(x, y, z) = 2P
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"91abba6a34b7481d922a4bd6a04899d5a686f6cf6da4e66a0cb427fb25c04bd4",
"03fede65e30b4e7576a2abefc963ddbf9fdccbf791b77c29beadefe49951f7d1",
"3",
"3f07081927fd3f6dadd4476614c89a09eba7f57c1c6c3b01fa2d64eac1eef31e",
"949166e04ebc7fd95a9d77e5dfd88d1492ecffd189792e3944eb2b765e09e031",
"eb8cba81bcffa4f44d75427506737e1f045f21e6d6f65543ee0e1d163540c931",
}, // Addition with z1!=z2 and z2!=1 same x opposite y.
// P(x, y, z) + P(x, -y, z) = infinity
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"dcc3768780c74a0325e2851edad0dc8a566fa61a9e7fc4a34d13dcb509f99bc7",
"cafc41904dd5428934f7d075129c8ba46eb622d4fc88d72cd1401452664add18",
"3",
"0",
"0",
"0",
},
// Addition with z1!=z2 and z2!=1 same point.
// P(x, y, z) + P(x, y, z) = 2P
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"dcc3768780c74a0325e2851edad0dc8a566fa61a9e7fc4a34d13dcb509f99bc7",
"3503be6fb22abd76cb082f8aed63745b9149dd2b037728d32ebfebac99b51f17",
"3",
"9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee65073c50fabac",
"2b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd125dc91cb988",
"6e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c2e5944a11",
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
// Convert hex to Jacobian points.
p1 := jacobianPointFromHex(test.x1, test.y1, test.z1)
p2 := jacobianPointFromHex(test.x2, test.y2, test.z2)
want := jacobianPointFromHex(test.x3, test.y3, test.z3)
// Ensure the test data is using points that are actually on
// the curve (or the point at infinity).
if !p1.Z.IsZero() && !isJacobianOnS256Curve(&p1) {
t.Errorf("#%d first point is not on the curve -- "+
"invalid test data", i)
continue
}
if !p2.Z.IsZero() && !isJacobianOnS256Curve(&p2) {
t.Errorf("#%d second point is not on the curve -- "+
"invalid test data", i)
continue
}
if !want.Z.IsZero() && !isJacobianOnS256Curve(&want) {
t.Errorf("#%d expected point is not on the curve -- "+
"invalid test data", i)
continue
}
// Add the two points.
var r JacobianPoint
AddNonConst(&p1, &p2, &r)
// Ensure result matches expected.
if !r.X.Equals(&want.X) || !r.Y.Equals(&want.Y) || !r.Z.Equals(&want.Z) {
t.Errorf("#%d wrong result\ngot: (%v, %v, %v)\n"+
"want: (%v, %v, %v)", i, r.X, r.Y, r.Z, want.X, want.Y, want.Z)
continue
}
}
}
// TestAddAffine tests addition of points in affine coordinates.
func TestAddAffine(t *testing.T) {
tests := []struct {
x1, y1 string // Coordinates (in hex) of first point to add
x2, y2 string // Coordinates (in hex) of second point to add
x3, y3 string // Coordinates (in hex) of expected point
}{
// Addition with a point at infinity (left hand side).
// ∞ + P = P
{
"0",
"0",
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
},
// Addition with a point at infinity (right hand side).
// P + ∞ = P
{
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
"0",
"0",
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
},
// Addition with different x values.
{
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575",
"131c670d414c4546b88ac3ff664611b1c38ceb1c21d76369d7a7a0969d61d97d",
"fd5b88c21d3143518d522cd2796f3d726793c88b3e05636bc829448e053fed69",
"21cf4f6a5be5ff6380234c50424a970b1f7e718f5eb58f68198c108d642a137f",
},
// Addition with same x opposite y.
// P(x, y) + P(x, -y) = infinity
{
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"f48e156428cf0276dc092da5856e182288d7569f97934a56fe44be60f0d359fd",
"0",
"0",
},
// Addition with same point.
// P(x, y) + P(x, y) = 2P
{
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"59477d88ae64a104dbb8d31ec4ce2d91b2fe50fa628fb6a064e22582196b365b",
"938dc8c0f13d1e75c987cb1a220501bd614b0d3dd9eb5c639847e1240216e3b6",
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
// Convert hex to field values.
x1, y1 := fromHex(test.x1), fromHex(test.y1)
x2, y2 := fromHex(test.x2), fromHex(test.y2)
x3, y3 := fromHex(test.x3), fromHex(test.y3)
// Ensure the test data is using points that are actually on
// the curve (or the point at infinity).
if !(x1.Sign() == 0 && y1.Sign() == 0) && !S256().IsOnCurve(x1, y1) {
t.Errorf("#%d first point is not on the curve -- "+
"invalid test data", i)
continue
}
if !(x2.Sign() == 0 && y2.Sign() == 0) && !S256().IsOnCurve(x2, y2) {
t.Errorf("#%d second point is not on the curve -- "+
"invalid test data", i)
continue
}
if !(x3.Sign() == 0 && y3.Sign() == 0) && !S256().IsOnCurve(x3, y3) {
t.Errorf("#%d expected point is not on the curve -- "+
"invalid test data", i)
continue
}
// Add the two points.
rx, ry := S256().Add(x1, y1, x2, y2)
// Ensure result matches expected.
if rx.Cmp(x3) != 00 || ry.Cmp(y3) != 0 {
t.Errorf("#%d wrong result\ngot: (%x, %x)\n"+
"want: (%x, %x)", i, rx, ry, x3, y3)
continue
}
}
}
// isStrictlyEqual returns whether or not the two Jacobian points are strictly
// equal for use in the tests. Recall that several Jacobian points can be
// equal in affine coordinates, while not having the same coordinates in
// projective space, so the two points not being equal doesn't necessarily mean
// they aren't actually the same affine point.
func isStrictlyEqual(p, other *JacobianPoint) bool {
return p.X.Equals(&other.X) && p.Y.Equals(&other.Y) && p.Z.Equals(&other.Z)
}
// TestDoubleJacobian tests doubling of points projected in Jacobian
// coordinates.
func TestDoubleJacobian(t *testing.T) {
tests := []struct {
x1, y1, z1 string // Coordinates (in hex) of point to double
x3, y3, z3 string // Coordinates (in hex) of expected point
}{
// Doubling a point at infinity is still infinity.
{
"0",
"0",
"0",
"0",
"0",
"0",
},
// Doubling with z1=1.
{
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
"1",
"ec9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee64f87c50c27",
"b082b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd0755c8f2a",
"16e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c1e594464",
},
// Doubling with z1!=1.
{
"d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718",
"5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190",
"2",
"9f153b13ee7bd915882859635ea9730bf0dc7611b2c7b0e37ee65073c50fabac",
"2b53702c466dcf6e984a35671756c506c67c2fcb8adb408c44dd125dc91cb988",
"6e3d537ae61fb1247eda4b4f523cfbaee5152c0d0d96b520376833c2e5944a11",
},
// From btcd issue #709.
{
"201e3f75715136d2f93c4f4598f91826f94ca01f4233a5bd35de9708859ca50d",
"bdf18566445e7562c6ada68aef02d498d7301503de5b18c6aef6e2b1722412e1",
"0000000000000000000000000000000000000000000000000000000000000001",
"4a5e0559863ebb4e9ed85f5c4fa76003d05d9a7626616e614a1f738621e3c220",
"00000000000000000000000000000000000000000000000000000001b1388778",
"7be30acc88bceac58d5b4d15de05a931ae602a07bcb6318d5dedc563e4482993",
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
// Convert hex to field values.
p1 := jacobianPointFromHex(test.x1, test.y1, test.z1)
want := jacobianPointFromHex(test.x3, test.y3, test.z3)
// Ensure the test data is using points that are actually on
// the curve (or the point at infinity).
if !p1.Z.IsZero() && !isJacobianOnS256Curve(&p1) {
t.Errorf("#%d first point is not on the curve -- "+
"invalid test data", i)
continue
}
if !want.Z.IsZero() && !isJacobianOnS256Curve(&want) {
t.Errorf("#%d expected point is not on the curve -- "+
"invalid test data", i)
continue
}
// Double the point.
var result JacobianPoint
DoubleNonConst(&p1, &result)
// Ensure result matches expected.
if !isStrictlyEqual(&result, &want) {
t.Errorf("#%d wrong result\ngot: (%v, %v, %v)\n"+
"want: (%v, %v, %v)", i, result.X, result.Y, result.Z,
want.X, want.Y, want.Z)
continue
}
}
}
// TestDoubleAffine tests doubling of points in affine coordinates.
func TestDoubleAffine(t *testing.T) {
tests := []struct {
x1, y1 string // Coordinates (in hex) of point to double
x3, y3 string // Coordinates (in hex) of expected point
}{
// Doubling a point at infinity is still infinity.
// 2*∞ = ∞ (point at infinity)
{
"0",
"0",
"0",
"0",
},
// Random points.
{
"e41387ffd8baaeeb43c2faa44e141b19790e8ac1f7ff43d480dc132230536f86",
"1b88191d430f559896149c86cbcb703193105e3cf3213c0c3556399836a2b899",
"88da47a089d333371bd798c548ef7caae76e737c1980b452d367b3cfe3082c19",
"3b6f659b09a362821dfcfefdbfbc2e59b935ba081b6c249eb147b3c2100b1bc1",
},
{
"b3589b5d984f03ef7c80aeae444f919374799edf18d375cab10489a3009cff0c",
"c26cf343875b3630e15bccc61202815b5d8f1fd11308934a584a5babe69db36a",
"e193860172998751e527bb12563855602a227fc1f612523394da53b746bb2fb1",
"2bfcf13d2f5ab8bb5c611fab5ebbed3dc2f057062b39a335224c22f090c04789",
},
{
"2b31a40fbebe3440d43ac28dba23eee71c62762c3fe3dbd88b4ab82dc6a82340",
"9ba7deb02f5c010e217607fd49d58db78ec273371ea828b49891ce2fd74959a1",
"2c8d5ef0d343b1a1a48aa336078eadda8481cb048d9305dc4fdf7ee5f65973a2",
"bb4914ac729e26d3cd8f8dc8f702f3f4bb7e0e9c5ae43335f6e94c2de6c3dc95",
},
{
"61c64b760b51981fab54716d5078ab7dffc93730b1d1823477e27c51f6904c7a",
"ef6eb16ea1a36af69d7f66524c75a3a5e84c13be8fbc2e811e0563c5405e49bd",
"5f0dcdd2595f5ad83318a0f9da481039e36f135005420393e72dfca985b482f4",
"a01c849b0837065c1cb481b0932c441f49d1cab1b4b9f355c35173d93f110ae0",
},
}
t.Logf("Running %d tests", len(tests))
for i, test := range tests {
// Convert hex to field values.
x1, y1 := fromHex(test.x1), fromHex(test.y1)
x3, y3 := fromHex(test.x3), fromHex(test.y3)
// Ensure the test data is using points that are actually on
// the curve (or the point at infinity).
if !(x1.Sign() == 0 && y1.Sign() == 0) && !S256().IsOnCurve(x1, y1) {
t.Errorf("#%d first point is not on the curve -- "+
"invalid test data", i)
continue
}
if !(x3.Sign() == 0 && y3.Sign() == 0) && !S256().IsOnCurve(x3, y3) {
t.Errorf("#%d expected point is not on the curve -- "+
"invalid test data", i)
continue
}
// Double the point.
rx, ry := S256().Double(x1, y1)
// Ensure result matches expected.
if rx.Cmp(x3) != 00 || ry.Cmp(y3) != 0 {
t.Errorf("#%d wrong result\ngot: (%x, %x)\n"+
"want: (%x, %x)", i, rx, ry, x3, y3)
continue
}
}
}
func TestOnCurve(t *testing.T) {
s256 := S256()
if !s256.IsOnCurve(s256.Params().Gx, s256.Params().Gy) {
t.Errorf("FAIL S256")
}
}
type baseMultTest struct {
k string
x, y string
}
// TODO: add more test vectors
var s256BaseMultTests = []baseMultTest{
{
"AA5E28D6A97A2479A65527F7290311A3624D4CC0FA1578598EE3C2613BF99522",
"34F9460F0E4F08393D192B3C5133A6BA099AA0AD9FD54EBCCFACDFA239FF49C6",
"B71EA9BD730FD8923F6D25A7A91E7DD7728A960686CB5A901BB419E0F2CA232",
},
{
"7E2B897B8CEBC6361663AD410835639826D590F393D90A9538881735256DFAE3",
"D74BF844B0862475103D96A611CF2D898447E288D34B360BC885CB8CE7C00575",
"131C670D414C4546B88AC3FF664611B1C38CEB1C21D76369D7A7A0969D61D97D",
},
{
"6461E6DF0FE7DFD05329F41BF771B86578143D4DD1F7866FB4CA7E97C5FA945D",
"E8AECC370AEDD953483719A116711963CE201AC3EB21D3F3257BB48668C6A72F",
"C25CAF2F0EBA1DDB2F0F3F47866299EF907867B7D27E95B3873BF98397B24EE1",
},
{
"376A3A2CDCD12581EFFF13EE4AD44C4044B8A0524C42422A7E1E181E4DEECCEC",
"14890E61FCD4B0BD92E5B36C81372CA6FED471EF3AA60A3E415EE4FE987DABA1",
"297B858D9F752AB42D3BCA67EE0EB6DCD1C2B7B0DBE23397E66ADC272263F982",
},
{
"1B22644A7BE026548810C378D0B2994EEFA6D2B9881803CB02CEFF865287D1B9",
"F73C65EAD01C5126F28F442D087689BFA08E12763E0CEC1D35B01751FD735ED3",
"F449A8376906482A84ED01479BD18882B919C140D638307F0C0934BA12590BDE",
},
}
// TODO: test different curves as well?
func TestBaseMult(t *testing.T) {
s256 := S256()
for i, e := range s256BaseMultTests {
k, ok := new(big.Int).SetString(e.k, 16)
if !ok {
t.Errorf("%d: bad value for k: %s", i, e.k)
}
x, y := s256.ScalarBaseMult(k.Bytes())
if fmt.Sprintf("%X", x) != e.x || fmt.Sprintf("%X", y) != e.y {
t.Errorf("%d: bad output for k=%s: got (%X, %X), want (%s, %s)", i, e.k, x, y, e.x, e.y)
}
if testing.Short() && i > 5 {
break
}
}
}
func TestBaseMultVerify(t *testing.T) {
s256 := S256()
for bytes := 1; bytes < 40; bytes++ {
for i := 0; i < 30; i++ {
data := make([]byte, bytes)
_, err := rand.Read(data)
if err != nil {
t.Errorf("failed to read random data for %d", i)
continue
}
x, y := s256.ScalarBaseMult(data)
xWant, yWant := s256.ScalarMult(s256.Gx, s256.Gy, data)
if x.Cmp(xWant) != 0 || y.Cmp(yWant) != 0 {
t.Errorf("%d: bad output for %X: got (%X, %X), want (%X, %X)", i, data, x, y, xWant, yWant)
}
if testing.Short() && i > 2 {
break
}
}
}
}
func TestScalarMult(t *testing.T) {
tests := []struct {
x string
y string
k string
rx string
ry string
}{
// base mult, essentially.
{
"79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798",
"483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8",
"18e14a7b6a307f426a94f8114701e7c8e774e7f9a47e2c2035db29a206321725",
"50863ad64a87ae8a2fe83c1af1a8403cb53f53e486d8511dad8a04887e5b2352",
"2cd470243453a299fa9e77237716103abc11a1df38855ed6f2ee187e9c582ba6",
},
// From btcd issue #709.
{
"000000000000000000000000000000000000000000000000000000000000002c",
"420e7a99bba18a9d3952597510fd2b6728cfeafc21a4e73951091d4d8ddbe94e",
"a2e8ba2e8ba2e8ba2e8ba2e8ba2e8ba219b51835b55cc30ebfe2f6599bc56f58",
"a2112dcdfbcd10ae1133a358de7b82db68e0a3eb4b492cc8268d1e7118c98788",
"27fc7463b7bb3c5f98ecf2c84a6272bb1681ed553d92c69f2dfe25a9f9fd3836",
},
}
s256 := S256()
for i, test := range tests {
x, _ := new(big.Int).SetString(test.x, 16)
y, _ := new(big.Int).SetString(test.y, 16)
k, _ := new(big.Int).SetString(test.k, 16)
xWant, _ := new(big.Int).SetString(test.rx, 16)
yWant, _ := new(big.Int).SetString(test.ry, 16)
xGot, yGot := s256.ScalarMult(x, y, k.Bytes())
if xGot.Cmp(xWant) != 0 || yGot.Cmp(yWant) != 0 {
t.Fatalf("%d: bad output: got (%X, %X), want (%X, %X)", i, xGot, yGot, xWant, yWant)
}
}
}
func TestScalarMultRand(t *testing.T) {
// Strategy for this test:
// Get a random exponent from the generator point at first
// This creates a new point which is used in the next iteration
// Use another random exponent on the new point.
// We use BaseMult to verify by multiplying the previous exponent
// and the new random exponent together (mod N)
s256 := S256()
x, y := s256.Gx, s256.Gy
exponent := big.NewInt(1)
for i := 0; i < 1024; i++ {
data := make([]byte, 32)
_, err := rand.Read(data)
if err != nil {
t.Fatalf("failed to read random data at %d", i)
break
}
x, y = s256.ScalarMult(x, y, data)
exponent.Mul(exponent, new(big.Int).SetBytes(data))
xWant, yWant := s256.ScalarBaseMult(exponent.Bytes())
if x.Cmp(xWant) != 0 || y.Cmp(yWant) != 0 {
t.Fatalf("%d: bad output for %X: got (%X, %X), want (%X, %X)", i, data, x, y, xWant, yWant)
break
}
}
}
var (
// Next 6 constants are from Hal Finney's bitcointalk.org post:
// https://bitcointalk.org/index.php?topic=3238.msg45565#msg45565
// May he rest in peace.
//
// They have also been independently derived from the code in the
// EndomorphismVectors function in genstatics.go.
endomorphismLambda = fromHex("5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72")
endomorphismBeta = hexToFieldVal("7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee")
endomorphismA1 = fromHex("3086d221a7d46bcde86c90e49284eb15")
endomorphismB1 = fromHex("-e4437ed6010e88286f547fa90abfe4c3")
endomorphismA2 = fromHex("114ca50f7a8e2f3f657c1108d9d44cfd8")
endomorphismB2 = fromHex("3086d221a7d46bcde86c90e49284eb15")
)
// splitK returns a balanced length-two representation of k and their signs.
// This is algorithm 3.74 from [GECC].
//
// One thing of note about this algorithm is that no matter what c1 and c2 are,
// the final equation of k = k1 + k2 * lambda (mod n) will hold. This is
// provable mathematically due to how a1/b1/a2/b2 are computed.
//
// c1 and c2 are chosen to minimize the max(k1,k2).
func splitK(k []byte) ([]byte, []byte, int, int) {
// All math here is done with big.Int, which is slow.
// At some point, it might be useful to write something similar to
// FieldVal but for N instead of P as the prime field if this ends up
// being a bottleneck.
bigIntK := new(big.Int)
c1, c2 := new(big.Int), new(big.Int)
tmp1, tmp2 := new(big.Int), new(big.Int)
k1, k2 := new(big.Int), new(big.Int)
bigIntK.SetBytes(k)
// c1 = round(b2 * k / n) from step 4.
// Rounding isn't really necessary and costs too much, hence skipped
c1.Mul(endomorphismB2, bigIntK)
c1.Div(c1, Params().N)
// c2 = round(b1 * k / n) from step 4 (sign reversed to optimize one step)
// Rounding isn't really necessary and costs too much, hence skipped
c2.Mul(endomorphismB1, bigIntK)
c2.Div(c2, Params().N)
// k1 = k - c1 * a1 - c2 * a2 from step 5 (note c2's sign is reversed)
tmp1.Mul(c1, endomorphismA1)
tmp2.Mul(c2, endomorphismA2)
k1.Sub(bigIntK, tmp1)
k1.Add(k1, tmp2)
// k2 = - c1 * b1 - c2 * b2 from step 5 (note c2's sign is reversed)
tmp1.Mul(c1, endomorphismB1)
tmp2.Mul(c2, endomorphismB2)
k2.Sub(tmp2, tmp1)
// Note Bytes() throws out the sign of k1 and k2. This matters
// since k1 and/or k2 can be negative. Hence, we pass that
// back separately.
return k1.Bytes(), k2.Bytes(), k1.Sign(), k2.Sign()
}
func TestSplitK(t *testing.T) {
tests := []struct {
k string
k1, k2 string
s1, s2 int
}{
{
"6df2b5d30854069ccdec40ae022f5c948936324a4e9ebed8eb82cfd5a6b6d766",
"00000000000000000000000000000000b776e53fb55f6b006a270d42d64ec2b1",
"00000000000000000000000000000000d6cc32c857f1174b604eefc544f0c7f7",
-1, -1,
},
{
"6ca00a8f10632170accc1b3baf2a118fa5725f41473f8959f34b8f860c47d88d",
"0000000000000000000000000000000007b21976c1795723c1bfbfa511e95b84",
"00000000000000000000000000000000d8d2d5f9d20fc64fd2cf9bda09a5bf90",
1, -1,
},
{
"b2eda8ab31b259032d39cbc2a234af17fcee89c863a8917b2740b67568166289",
"00000000000000000000000000000000507d930fecda7414fc4a523b95ef3c8c",
"00000000000000000000000000000000f65ffb179df189675338c6185cb839be",
-1, -1,
},
{
"f6f00e44f179936f2befc7442721b0633f6bafdf7161c167ffc6f7751980e3a0",
"0000000000000000000000000000000008d0264f10bcdcd97da3faa38f85308d",
"0000000000000000000000000000000065fed1506eb6605a899a54e155665f79",
-1, -1,
},
{
"8679085ab081dc92cdd23091ce3ee998f6b320e419c3475fae6b5b7d3081996e",
"0000000000000000000000000000000089fbf24fbaa5c3c137b4f1cedc51d975",
"00000000000000000000000000000000d38aa615bd6754d6f4d51ccdaf529fea",
-1, -1,
},
{
"6b1247bb7931dfcae5b5603c8b5ae22ce94d670138c51872225beae6bba8cdb3",
"000000000000000000000000000000008acc2a521b21b17cfb002c83be62f55d",
"0000000000000000000000000000000035f0eff4d7430950ecb2d94193dedc79",
-1, -1,
},
{
"a2e8ba2e8ba2e8ba2e8ba2e8ba2e8ba219b51835b55cc30ebfe2f6599bc56f58",
"0000000000000000000000000000000045c53aa1bb56fcd68c011e2dad6758e4",
"00000000000000000000000000000000a2e79d200f27f2360fba57619936159b",
-1, -1,
},
}
s256 := S256()
for i, test := range tests {
k, ok := new(big.Int).SetString(test.k, 16)
if !ok {
t.Errorf("%d: bad value for k: %s", i, test.k)
}
k1, k2, k1Sign, k2Sign := splitK(k.Bytes())
k1str := fmt.Sprintf("%064x", k1)
if test.k1 != k1str {
t.Errorf("%d: bad k1: got %v, want %v", i, k1str, test.k1)
}
k2str := fmt.Sprintf("%064x", k2)
if test.k2 != k2str {
t.Errorf("%d: bad k2: got %v, want %v", i, k2str, test.k2)
}
if test.s1 != k1Sign {
t.Errorf("%d: bad k1 sign: got %d, want %d", i, k1Sign, test.s1)
}
if test.s2 != k2Sign {
t.Errorf("%d: bad k2 sign: got %d, want %d", i, k2Sign, test.s2)
}
k1Int := new(big.Int).SetBytes(k1)
k1SignInt := new(big.Int).SetInt64(int64(k1Sign))
k1Int.Mul(k1Int, k1SignInt)
k2Int := new(big.Int).SetBytes(k2)
k2SignInt := new(big.Int).SetInt64(int64(k2Sign))
k2Int.Mul(k2Int, k2SignInt)
gotK := new(big.Int).Mul(k2Int, endomorphismLambda)
gotK.Add(k1Int, gotK)
gotK.Mod(gotK, s256.N)
if k.Cmp(gotK) != 0 {
t.Errorf("%d: bad k: got %X, want %X", i, gotK.Bytes(), k.Bytes())
}
}
}
func TestSplitKRand(t *testing.T) {
s256 := S256()
for i := 0; i < 1024; i++ {
bytesK := make([]byte, 32)
_, err := rand.Read(bytesK)
if err != nil {
t.Fatalf("failed to read random data at %d", i)
break
}
k := new(big.Int).SetBytes(bytesK)
k1, k2, k1Sign, k2Sign := splitK(bytesK)
k1Int := new(big.Int).SetBytes(k1)
k1SignInt := new(big.Int).SetInt64(int64(k1Sign))
k1Int.Mul(k1Int, k1SignInt)
k2Int := new(big.Int).SetBytes(k2)
k2SignInt := new(big.Int).SetInt64(int64(k2Sign))
k2Int.Mul(k2Int, k2SignInt)
gotK := new(big.Int).Mul(k2Int, endomorphismLambda)
gotK.Add(k1Int, gotK)
gotK.Mod(gotK, s256.N)
if k.Cmp(gotK) != 0 {
t.Errorf("%d: bad k: got %X, want %X", i, gotK.Bytes(), k.Bytes())
}
}
}
// Test this curve's usage with the ecdsa package.
func testKeyGeneration(t *testing.T, c *KoblitzCurve, tag string) {
priv, err := NewPrivateKey()
if err != nil {
t.Errorf("%s: error: %s", tag, err)
return
}
pub := priv.PubKey()
if !c.IsOnCurve(pub.X(), pub.Y()) {
t.Errorf("%s: public key invalid: %s", tag, err)
}
}
func TestKeyGeneration(t *testing.T) {
testKeyGeneration(t, S256(), "S256")
}
// checkNAFEncoding returns an error if the provided positive and negative
// portions of an overall NAF encoding do not adhere to the requirements or they
// do not sum back to the provided original value.
func checkNAFEncoding(pos, neg []byte, origValue *big.Int) error {
// NAF must not have a leading zero byte and the number of negative
// bytes must not exceed the positive portion.
if len(pos) > 0 && pos[0] == 0 {
return fmt.Errorf("positive has leading zero -- got %x", pos)
}
if len(neg) > len(pos) {
return fmt.Errorf("negative has len %d > pos len %d", len(neg),
len(pos))
}
// Ensure the result doesn't have any adjacent non-zero digits.
gotPos := new(big.Int).SetBytes(pos)
gotNeg := new(big.Int).SetBytes(neg)
posOrNeg := new(big.Int).Or(gotPos, gotNeg)
prevBit := posOrNeg.Bit(0)
for bit := 1; bit < posOrNeg.BitLen(); bit++ {
thisBit := posOrNeg.Bit(bit)
if prevBit == 1 && thisBit == 1 {
return fmt.Errorf("adjacent non-zero digits found at bit pos %d",
bit-1)
}
prevBit = thisBit
}
// Ensure the resulting positive and negative portions of the overall
// NAF representation sum back to the original value.
gotValue := new(big.Int).Sub(gotPos, gotNeg)
if origValue.Cmp(gotValue) != 0 {
return fmt.Errorf("pos-neg is not original value: got %x, want %x",
gotValue, origValue)
}
return nil
}