mirror of
https://github.com/btcsuite/btcd.git
synced 2024-11-19 01:40:07 +01:00
95330bc1bb
Signed-off-by: xiaoxiangxianzi <zhaoyizheng@outlook.com>
1703 lines
54 KiB
Go
1703 lines
54 KiB
Go
// Copyright (c) 2013-2017 The btcsuite developers
|
|
// Use of this source code is governed by an ISC
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package netsync
|
|
|
|
import (
|
|
"container/list"
|
|
"math/rand"
|
|
"net"
|
|
"sync"
|
|
"sync/atomic"
|
|
"time"
|
|
|
|
"github.com/btcsuite/btcd/blockchain"
|
|
"github.com/btcsuite/btcd/btcutil"
|
|
"github.com/btcsuite/btcd/chaincfg"
|
|
"github.com/btcsuite/btcd/chaincfg/chainhash"
|
|
"github.com/btcsuite/btcd/database"
|
|
"github.com/btcsuite/btcd/mempool"
|
|
peerpkg "github.com/btcsuite/btcd/peer"
|
|
"github.com/btcsuite/btcd/wire"
|
|
)
|
|
|
|
const (
|
|
// minInFlightBlocks is the minimum number of blocks that should be
|
|
// in the request queue for headers-first mode before requesting
|
|
// more.
|
|
minInFlightBlocks = 10
|
|
|
|
// maxRejectedTxns is the maximum number of rejected transactions
|
|
// hashes to store in memory.
|
|
maxRejectedTxns = 1000
|
|
|
|
// maxRequestedBlocks is the maximum number of requested block
|
|
// hashes to store in memory.
|
|
maxRequestedBlocks = wire.MaxInvPerMsg
|
|
|
|
// maxRequestedTxns is the maximum number of requested transactions
|
|
// hashes to store in memory.
|
|
maxRequestedTxns = wire.MaxInvPerMsg
|
|
|
|
// maxStallDuration is the time after which we will disconnect our
|
|
// current sync peer if we haven't made progress.
|
|
maxStallDuration = 3 * time.Minute
|
|
|
|
// stallSampleInterval the interval at which we will check to see if our
|
|
// sync has stalled.
|
|
stallSampleInterval = 30 * time.Second
|
|
)
|
|
|
|
// zeroHash is the zero value hash (all zeros). It is defined as a convenience.
|
|
var zeroHash chainhash.Hash
|
|
|
|
// newPeerMsg signifies a newly connected peer to the block handler.
|
|
type newPeerMsg struct {
|
|
peer *peerpkg.Peer
|
|
}
|
|
|
|
// blockMsg packages a bitcoin block message and the peer it came from together
|
|
// so the block handler has access to that information.
|
|
type blockMsg struct {
|
|
block *btcutil.Block
|
|
peer *peerpkg.Peer
|
|
reply chan struct{}
|
|
}
|
|
|
|
// invMsg packages a bitcoin inv message and the peer it came from together
|
|
// so the block handler has access to that information.
|
|
type invMsg struct {
|
|
inv *wire.MsgInv
|
|
peer *peerpkg.Peer
|
|
}
|
|
|
|
// headersMsg packages a bitcoin headers message and the peer it came from
|
|
// together so the block handler has access to that information.
|
|
type headersMsg struct {
|
|
headers *wire.MsgHeaders
|
|
peer *peerpkg.Peer
|
|
}
|
|
|
|
// notFoundMsg packages a bitcoin notfound message and the peer it came from
|
|
// together so the block handler has access to that information.
|
|
type notFoundMsg struct {
|
|
notFound *wire.MsgNotFound
|
|
peer *peerpkg.Peer
|
|
}
|
|
|
|
// donePeerMsg signifies a newly disconnected peer to the block handler.
|
|
type donePeerMsg struct {
|
|
peer *peerpkg.Peer
|
|
}
|
|
|
|
// txMsg packages a bitcoin tx message and the peer it came from together
|
|
// so the block handler has access to that information.
|
|
type txMsg struct {
|
|
tx *btcutil.Tx
|
|
peer *peerpkg.Peer
|
|
reply chan struct{}
|
|
}
|
|
|
|
// getSyncPeerMsg is a message type to be sent across the message channel for
|
|
// retrieving the current sync peer.
|
|
type getSyncPeerMsg struct {
|
|
reply chan int32
|
|
}
|
|
|
|
// processBlockResponse is a response sent to the reply channel of a
|
|
// processBlockMsg.
|
|
type processBlockResponse struct {
|
|
isOrphan bool
|
|
err error
|
|
}
|
|
|
|
// processBlockMsg is a message type to be sent across the message channel
|
|
// for requested a block is processed. Note this call differs from blockMsg
|
|
// above in that blockMsg is intended for blocks that came from peers and have
|
|
// extra handling whereas this message essentially is just a concurrent safe
|
|
// way to call ProcessBlock on the internal block chain instance.
|
|
type processBlockMsg struct {
|
|
block *btcutil.Block
|
|
flags blockchain.BehaviorFlags
|
|
reply chan processBlockResponse
|
|
}
|
|
|
|
// isCurrentMsg is a message type to be sent across the message channel for
|
|
// requesting whether or not the sync manager believes it is synced with the
|
|
// currently connected peers.
|
|
type isCurrentMsg struct {
|
|
reply chan bool
|
|
}
|
|
|
|
// pauseMsg is a message type to be sent across the message channel for
|
|
// pausing the sync manager. This effectively provides the caller with
|
|
// exclusive access over the manager until a receive is performed on the
|
|
// unpause channel.
|
|
type pauseMsg struct {
|
|
unpause <-chan struct{}
|
|
}
|
|
|
|
// headerNode is used as a node in a list of headers that are linked together
|
|
// between checkpoints.
|
|
type headerNode struct {
|
|
height int32
|
|
hash *chainhash.Hash
|
|
}
|
|
|
|
// peerSyncState stores additional information that the SyncManager tracks
|
|
// about a peer.
|
|
type peerSyncState struct {
|
|
syncCandidate bool
|
|
requestQueue []*wire.InvVect
|
|
requestedTxns map[chainhash.Hash]struct{}
|
|
requestedBlocks map[chainhash.Hash]struct{}
|
|
}
|
|
|
|
// limitAdd is a helper function for maps that require a maximum limit by
|
|
// evicting a random value if adding the new value would cause it to
|
|
// overflow the maximum allowed.
|
|
func limitAdd(m map[chainhash.Hash]struct{}, hash chainhash.Hash, limit int) {
|
|
if len(m)+1 > limit {
|
|
// Remove a random entry from the map. For most compilers, Go's
|
|
// range statement iterates starting at a random item although
|
|
// that is not 100% guaranteed by the spec. The iteration order
|
|
// is not important here because an adversary would have to be
|
|
// able to pull off preimage attacks on the hashing function in
|
|
// order to target eviction of specific entries anyways.
|
|
for txHash := range m {
|
|
delete(m, txHash)
|
|
break
|
|
}
|
|
}
|
|
m[hash] = struct{}{}
|
|
}
|
|
|
|
// SyncManager is used to communicate block related messages with peers. The
|
|
// SyncManager is started as by executing Start() in a goroutine. Once started,
|
|
// it selects peers to sync from and starts the initial block download. Once the
|
|
// chain is in sync, the SyncManager handles incoming block and header
|
|
// notifications and relays announcements of new blocks to peers.
|
|
type SyncManager struct {
|
|
peerNotifier PeerNotifier
|
|
started int32
|
|
shutdown int32
|
|
chain *blockchain.BlockChain
|
|
txMemPool *mempool.TxPool
|
|
chainParams *chaincfg.Params
|
|
progressLogger *blockProgressLogger
|
|
msgChan chan interface{}
|
|
wg sync.WaitGroup
|
|
quit chan struct{}
|
|
|
|
// These fields should only be accessed from the blockHandler thread
|
|
rejectedTxns map[chainhash.Hash]struct{}
|
|
requestedTxns map[chainhash.Hash]struct{}
|
|
requestedBlocks map[chainhash.Hash]struct{}
|
|
syncPeer *peerpkg.Peer
|
|
peerStates map[*peerpkg.Peer]*peerSyncState
|
|
lastProgressTime time.Time
|
|
|
|
// The following fields are used for headers-first mode.
|
|
headersFirstMode bool
|
|
headerList *list.List
|
|
startHeader *list.Element
|
|
nextCheckpoint *chaincfg.Checkpoint
|
|
|
|
// An optional fee estimator.
|
|
feeEstimator *mempool.FeeEstimator
|
|
}
|
|
|
|
// resetHeaderState sets the headers-first mode state to values appropriate for
|
|
// syncing from a new peer.
|
|
func (sm *SyncManager) resetHeaderState(newestHash *chainhash.Hash, newestHeight int32) {
|
|
sm.headersFirstMode = false
|
|
sm.headerList.Init()
|
|
sm.startHeader = nil
|
|
|
|
// When there is a next checkpoint, add an entry for the latest known
|
|
// block into the header pool. This allows the next downloaded header
|
|
// to prove it links to the chain properly.
|
|
if sm.nextCheckpoint != nil {
|
|
node := headerNode{height: newestHeight, hash: newestHash}
|
|
sm.headerList.PushBack(&node)
|
|
}
|
|
}
|
|
|
|
// findNextHeaderCheckpoint returns the next checkpoint after the passed height.
|
|
// It returns nil when there is not one either because the height is already
|
|
// later than the final checkpoint or some other reason such as disabled
|
|
// checkpoints.
|
|
func (sm *SyncManager) findNextHeaderCheckpoint(height int32) *chaincfg.Checkpoint {
|
|
checkpoints := sm.chain.Checkpoints()
|
|
if len(checkpoints) == 0 {
|
|
return nil
|
|
}
|
|
|
|
// There is no next checkpoint if the height is already after the final
|
|
// checkpoint.
|
|
finalCheckpoint := &checkpoints[len(checkpoints)-1]
|
|
if height >= finalCheckpoint.Height {
|
|
return nil
|
|
}
|
|
|
|
// Find the next checkpoint.
|
|
nextCheckpoint := finalCheckpoint
|
|
for i := len(checkpoints) - 2; i >= 0; i-- {
|
|
if height >= checkpoints[i].Height {
|
|
break
|
|
}
|
|
nextCheckpoint = &checkpoints[i]
|
|
}
|
|
return nextCheckpoint
|
|
}
|
|
|
|
// startSync will choose the best peer among the available candidate peers to
|
|
// download/sync the blockchain from. When syncing is already running, it
|
|
// simply returns. It also examines the candidates for any which are no longer
|
|
// candidates and removes them as needed.
|
|
func (sm *SyncManager) startSync() {
|
|
// Return now if we're already syncing.
|
|
if sm.syncPeer != nil {
|
|
return
|
|
}
|
|
|
|
// Once the segwit soft-fork package has activated, we only
|
|
// want to sync from peers which are witness enabled to ensure
|
|
// that we fully validate all blockchain data.
|
|
segwitActive, err := sm.chain.IsDeploymentActive(chaincfg.DeploymentSegwit)
|
|
if err != nil {
|
|
log.Errorf("Unable to query for segwit soft-fork state: %v", err)
|
|
return
|
|
}
|
|
|
|
best := sm.chain.BestSnapshot()
|
|
var higherPeers, equalPeers []*peerpkg.Peer
|
|
for peer, state := range sm.peerStates {
|
|
if !state.syncCandidate {
|
|
continue
|
|
}
|
|
|
|
if segwitActive && !peer.IsWitnessEnabled() {
|
|
log.Debugf("peer %v not witness enabled, skipping", peer)
|
|
continue
|
|
}
|
|
|
|
// Remove sync candidate peers that are no longer candidates due
|
|
// to passing their latest known block. NOTE: The < is
|
|
// intentional as opposed to <=. While technically the peer
|
|
// doesn't have a later block when it's equal, it will likely
|
|
// have one soon so it is a reasonable choice. It also allows
|
|
// the case where both are at 0 such as during regression test.
|
|
if peer.LastBlock() < best.Height {
|
|
state.syncCandidate = false
|
|
continue
|
|
}
|
|
|
|
// If the peer is at the same height as us, we'll add it a set
|
|
// of backup peers in case we do not find one with a higher
|
|
// height. If we are synced up with all of our peers, all of
|
|
// them will be in this set.
|
|
if peer.LastBlock() == best.Height {
|
|
equalPeers = append(equalPeers, peer)
|
|
continue
|
|
}
|
|
|
|
// This peer has a height greater than our own, we'll consider
|
|
// it in the set of better peers from which we'll randomly
|
|
// select.
|
|
higherPeers = append(higherPeers, peer)
|
|
}
|
|
|
|
// Pick randomly from the set of peers greater than our block height,
|
|
// falling back to a random peer of the same height if none are greater.
|
|
//
|
|
// TODO(conner): Use a better algorithm to ranking peers based on
|
|
// observed metrics and/or sync in parallel.
|
|
var bestPeer *peerpkg.Peer
|
|
switch {
|
|
case len(higherPeers) > 0:
|
|
bestPeer = higherPeers[rand.Intn(len(higherPeers))]
|
|
|
|
case len(equalPeers) > 0:
|
|
bestPeer = equalPeers[rand.Intn(len(equalPeers))]
|
|
}
|
|
|
|
// Start syncing from the best peer if one was selected.
|
|
if bestPeer != nil {
|
|
// Clear the requestedBlocks if the sync peer changes, otherwise
|
|
// we may ignore blocks we need that the last sync peer failed
|
|
// to send.
|
|
sm.requestedBlocks = make(map[chainhash.Hash]struct{})
|
|
|
|
locator, err := sm.chain.LatestBlockLocator()
|
|
if err != nil {
|
|
log.Errorf("Failed to get block locator for the "+
|
|
"latest block: %v", err)
|
|
return
|
|
}
|
|
|
|
log.Infof("Syncing to block height %d from peer %v",
|
|
bestPeer.LastBlock(), bestPeer.Addr())
|
|
|
|
// When the current height is less than a known checkpoint we
|
|
// can use block headers to learn about which blocks comprise
|
|
// the chain up to the checkpoint and perform less validation
|
|
// for them. This is possible since each header contains the
|
|
// hash of the previous header and a merkle root. Therefore if
|
|
// we validate all of the received headers link together
|
|
// properly and the checkpoint hashes match, we can be sure the
|
|
// hashes for the blocks in between are accurate. Further, once
|
|
// the full blocks are downloaded, the merkle root is computed
|
|
// and compared against the value in the header which proves the
|
|
// full block hasn't been tampered with.
|
|
//
|
|
// Once we have passed the final checkpoint, or checkpoints are
|
|
// disabled, use standard inv messages learn about the blocks
|
|
// and fully validate them. Finally, regression test mode does
|
|
// not support the headers-first approach so do normal block
|
|
// downloads when in regression test mode.
|
|
if sm.nextCheckpoint != nil &&
|
|
best.Height < sm.nextCheckpoint.Height &&
|
|
sm.chainParams != &chaincfg.RegressionNetParams {
|
|
|
|
bestPeer.PushGetHeadersMsg(locator, sm.nextCheckpoint.Hash)
|
|
sm.headersFirstMode = true
|
|
log.Infof("Downloading headers for blocks %d to "+
|
|
"%d from peer %s", best.Height+1,
|
|
sm.nextCheckpoint.Height, bestPeer.Addr())
|
|
} else {
|
|
bestPeer.PushGetBlocksMsg(locator, &zeroHash)
|
|
}
|
|
sm.syncPeer = bestPeer
|
|
|
|
// Reset the last progress time now that we have a non-nil
|
|
// syncPeer to avoid instantly detecting it as stalled in the
|
|
// event the progress time hasn't been updated recently.
|
|
sm.lastProgressTime = time.Now()
|
|
} else {
|
|
log.Warnf("No sync peer candidates available")
|
|
}
|
|
}
|
|
|
|
// isSyncCandidate returns whether or not the peer is a candidate to consider
|
|
// syncing from.
|
|
func (sm *SyncManager) isSyncCandidate(peer *peerpkg.Peer) bool {
|
|
// Typically a peer is not a candidate for sync if it's not a full node,
|
|
// however regression test is special in that the regression tool is
|
|
// not a full node and still needs to be considered a sync candidate.
|
|
if sm.chainParams == &chaincfg.RegressionNetParams {
|
|
// The peer is not a candidate if it's not coming from localhost
|
|
// or the hostname can't be determined for some reason.
|
|
host, _, err := net.SplitHostPort(peer.Addr())
|
|
if err != nil {
|
|
return false
|
|
}
|
|
|
|
if host != "127.0.0.1" && host != "localhost" {
|
|
return false
|
|
}
|
|
|
|
// Candidate if all checks passed.
|
|
return true
|
|
}
|
|
|
|
// If the segwit soft-fork package has activated, then the peer must
|
|
// also be upgraded.
|
|
segwitActive, err := sm.chain.IsDeploymentActive(
|
|
chaincfg.DeploymentSegwit,
|
|
)
|
|
if err != nil {
|
|
log.Errorf("Unable to query for segwit soft-fork state: %v",
|
|
err)
|
|
}
|
|
|
|
if segwitActive && !peer.IsWitnessEnabled() {
|
|
return false
|
|
}
|
|
|
|
var (
|
|
nodeServices = peer.Services()
|
|
fullNode = nodeServices.HasFlag(wire.SFNodeNetwork)
|
|
prunedNode = nodeServices.HasFlag(wire.SFNodeNetworkLimited)
|
|
)
|
|
|
|
switch {
|
|
case fullNode:
|
|
// Node is a sync candidate if it has all the blocks.
|
|
|
|
case prunedNode:
|
|
// Even if the peer is pruned, if they have the node network
|
|
// limited flag, they are able to serve 2 days worth of blocks
|
|
// from the current tip. Therefore, check if our chaintip is
|
|
// within that range.
|
|
bestHeight := sm.chain.BestSnapshot().Height
|
|
peerLastBlock := peer.LastBlock()
|
|
|
|
// bestHeight+1 as we need the peer to serve us the next block,
|
|
// not the one we already have.
|
|
if bestHeight+1 <=
|
|
peerLastBlock-wire.NodeNetworkLimitedBlockThreshold {
|
|
|
|
return false
|
|
}
|
|
|
|
default:
|
|
// If the peer isn't an archival node, and it's not signaling
|
|
// NODE_NETWORK_LIMITED, we can't sync off of this node.
|
|
return false
|
|
}
|
|
|
|
// Candidate if all checks passed.
|
|
return true
|
|
}
|
|
|
|
// handleNewPeerMsg deals with new peers that have signalled they may
|
|
// be considered as a sync peer (they have already successfully negotiated). It
|
|
// also starts syncing if needed. It is invoked from the syncHandler goroutine.
|
|
func (sm *SyncManager) handleNewPeerMsg(peer *peerpkg.Peer) {
|
|
// Ignore if in the process of shutting down.
|
|
if atomic.LoadInt32(&sm.shutdown) != 0 {
|
|
return
|
|
}
|
|
|
|
log.Infof("New valid peer %s (%s)", peer, peer.UserAgent())
|
|
|
|
// Initialize the peer state.
|
|
isSyncCandidate := sm.isSyncCandidate(peer)
|
|
sm.peerStates[peer] = &peerSyncState{
|
|
syncCandidate: isSyncCandidate,
|
|
requestedTxns: make(map[chainhash.Hash]struct{}),
|
|
requestedBlocks: make(map[chainhash.Hash]struct{}),
|
|
}
|
|
|
|
// Start syncing by choosing the best candidate if needed.
|
|
if isSyncCandidate && sm.syncPeer == nil {
|
|
sm.startSync()
|
|
}
|
|
}
|
|
|
|
// handleStallSample will switch to a new sync peer if the current one has
|
|
// stalled. This is detected when by comparing the last progress timestamp with
|
|
// the current time, and disconnecting the peer if we stalled before reaching
|
|
// their highest advertised block.
|
|
func (sm *SyncManager) handleStallSample() {
|
|
if atomic.LoadInt32(&sm.shutdown) != 0 {
|
|
return
|
|
}
|
|
|
|
// If we don't have an active sync peer, exit early.
|
|
if sm.syncPeer == nil {
|
|
return
|
|
}
|
|
|
|
// If the stall timeout has not elapsed, exit early.
|
|
if time.Since(sm.lastProgressTime) <= maxStallDuration {
|
|
return
|
|
}
|
|
|
|
// Check to see that the peer's sync state exists.
|
|
state, exists := sm.peerStates[sm.syncPeer]
|
|
if !exists {
|
|
return
|
|
}
|
|
|
|
sm.clearRequestedState(state)
|
|
|
|
disconnectSyncPeer := sm.shouldDCStalledSyncPeer()
|
|
sm.updateSyncPeer(disconnectSyncPeer)
|
|
}
|
|
|
|
// shouldDCStalledSyncPeer determines whether or not we should disconnect a
|
|
// stalled sync peer. If the peer has stalled and its reported height is greater
|
|
// than our own best height, we will disconnect it. Otherwise, we will keep the
|
|
// peer connected in case we are already at tip.
|
|
func (sm *SyncManager) shouldDCStalledSyncPeer() bool {
|
|
lastBlock := sm.syncPeer.LastBlock()
|
|
startHeight := sm.syncPeer.StartingHeight()
|
|
|
|
var peerHeight int32
|
|
if lastBlock > startHeight {
|
|
peerHeight = lastBlock
|
|
} else {
|
|
peerHeight = startHeight
|
|
}
|
|
|
|
// If we've stalled out yet the sync peer reports having more blocks for
|
|
// us we will disconnect them. This allows us at tip to not disconnect
|
|
// peers when we are equal or they temporarily lag behind us.
|
|
best := sm.chain.BestSnapshot()
|
|
return peerHeight > best.Height
|
|
}
|
|
|
|
// handleDonePeerMsg deals with peers that have signalled they are done. It
|
|
// removes the peer as a candidate for syncing and in the case where it was
|
|
// the current sync peer, attempts to select a new best peer to sync from. It
|
|
// is invoked from the syncHandler goroutine.
|
|
func (sm *SyncManager) handleDonePeerMsg(peer *peerpkg.Peer) {
|
|
state, exists := sm.peerStates[peer]
|
|
if !exists {
|
|
log.Warnf("Received done peer message for unknown peer %s", peer)
|
|
return
|
|
}
|
|
|
|
// Remove the peer from the list of candidate peers.
|
|
delete(sm.peerStates, peer)
|
|
|
|
log.Infof("Lost peer %s", peer)
|
|
|
|
sm.clearRequestedState(state)
|
|
|
|
if peer == sm.syncPeer {
|
|
// Update the sync peer. The server has already disconnected the
|
|
// peer before signaling to the sync manager.
|
|
sm.updateSyncPeer(false)
|
|
}
|
|
}
|
|
|
|
// clearRequestedState wipes all expected transactions and blocks from the sync
|
|
// manager's requested maps that were requested under a peer's sync state, This
|
|
// allows them to be rerequested by a subsequent sync peer.
|
|
func (sm *SyncManager) clearRequestedState(state *peerSyncState) {
|
|
// Remove requested transactions from the global map so that they will
|
|
// be fetched from elsewhere next time we get an inv.
|
|
for txHash := range state.requestedTxns {
|
|
delete(sm.requestedTxns, txHash)
|
|
}
|
|
|
|
// Remove requested blocks from the global map so that they will be
|
|
// fetched from elsewhere next time we get an inv.
|
|
// TODO: we could possibly here check which peers have these blocks
|
|
// and request them now to speed things up a little.
|
|
for blockHash := range state.requestedBlocks {
|
|
delete(sm.requestedBlocks, blockHash)
|
|
}
|
|
}
|
|
|
|
// updateSyncPeer choose a new sync peer to replace the current one. If
|
|
// dcSyncPeer is true, this method will also disconnect the current sync peer.
|
|
// If we are in header first mode, any header state related to prefetching is
|
|
// also reset in preparation for the next sync peer.
|
|
func (sm *SyncManager) updateSyncPeer(dcSyncPeer bool) {
|
|
log.Debugf("Updating sync peer, no progress for: %v",
|
|
time.Since(sm.lastProgressTime))
|
|
|
|
// First, disconnect the current sync peer if requested.
|
|
if dcSyncPeer {
|
|
sm.syncPeer.Disconnect()
|
|
}
|
|
|
|
// Reset any header state before we choose our next active sync peer.
|
|
if sm.headersFirstMode {
|
|
best := sm.chain.BestSnapshot()
|
|
sm.resetHeaderState(&best.Hash, best.Height)
|
|
}
|
|
|
|
sm.syncPeer = nil
|
|
sm.startSync()
|
|
}
|
|
|
|
// handleTxMsg handles transaction messages from all peers.
|
|
func (sm *SyncManager) handleTxMsg(tmsg *txMsg) {
|
|
peer := tmsg.peer
|
|
state, exists := sm.peerStates[peer]
|
|
if !exists {
|
|
log.Warnf("Received tx message from unknown peer %s", peer)
|
|
return
|
|
}
|
|
|
|
// NOTE: BitcoinJ, and possibly other wallets, don't follow the spec of
|
|
// sending an inventory message and allowing the remote peer to decide
|
|
// whether or not they want to request the transaction via a getdata
|
|
// message. Unfortunately, the reference implementation permits
|
|
// unrequested data, so it has allowed wallets that don't follow the
|
|
// spec to proliferate. While this is not ideal, there is no check here
|
|
// to disconnect peers for sending unsolicited transactions to provide
|
|
// interoperability.
|
|
txHash := tmsg.tx.Hash()
|
|
|
|
// Ignore transactions that we have already rejected. Do not
|
|
// send a reject message here because if the transaction was already
|
|
// rejected, the transaction was unsolicited.
|
|
if _, exists = sm.rejectedTxns[*txHash]; exists {
|
|
log.Debugf("Ignoring unsolicited previously rejected "+
|
|
"transaction %v from %s", txHash, peer)
|
|
return
|
|
}
|
|
|
|
// Process the transaction to include validation, insertion in the
|
|
// memory pool, orphan handling, etc.
|
|
acceptedTxs, err := sm.txMemPool.ProcessTransaction(tmsg.tx,
|
|
true, true, mempool.Tag(peer.ID()))
|
|
|
|
// Remove transaction from request maps. Either the mempool/chain
|
|
// already knows about it and as such we shouldn't have any more
|
|
// instances of trying to fetch it, or we failed to insert and thus
|
|
// we'll retry next time we get an inv.
|
|
delete(state.requestedTxns, *txHash)
|
|
delete(sm.requestedTxns, *txHash)
|
|
|
|
if err != nil {
|
|
// Do not request this transaction again until a new block
|
|
// has been processed.
|
|
limitAdd(sm.rejectedTxns, *txHash, maxRejectedTxns)
|
|
|
|
// When the error is a rule error, it means the transaction was
|
|
// simply rejected as opposed to something actually going wrong,
|
|
// so log it as such. Otherwise, something really did go wrong,
|
|
// so log it as an actual error.
|
|
if _, ok := err.(mempool.RuleError); ok {
|
|
log.Debugf("Rejected transaction %v from %s: %v",
|
|
txHash, peer, err)
|
|
} else {
|
|
log.Errorf("Failed to process transaction %v: %v",
|
|
txHash, err)
|
|
}
|
|
|
|
// Convert the error into an appropriate reject message and
|
|
// send it.
|
|
code, reason := mempool.ErrToRejectErr(err)
|
|
peer.PushRejectMsg(wire.CmdTx, code, reason, txHash, false)
|
|
return
|
|
}
|
|
|
|
sm.peerNotifier.AnnounceNewTransactions(acceptedTxs)
|
|
}
|
|
|
|
// current returns true if we believe we are synced with our peers, false if we
|
|
// still have blocks to check
|
|
func (sm *SyncManager) current() bool {
|
|
if !sm.chain.IsCurrent() {
|
|
return false
|
|
}
|
|
|
|
// if blockChain thinks we are current and we have no syncPeer it
|
|
// is probably right.
|
|
if sm.syncPeer == nil {
|
|
return true
|
|
}
|
|
|
|
// No matter what chain thinks, if we are below the block we are syncing
|
|
// to we are not current.
|
|
if sm.chain.BestSnapshot().Height < sm.syncPeer.LastBlock() {
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
// handleBlockMsg handles block messages from all peers.
|
|
func (sm *SyncManager) handleBlockMsg(bmsg *blockMsg) {
|
|
peer := bmsg.peer
|
|
state, exists := sm.peerStates[peer]
|
|
if !exists {
|
|
log.Warnf("Received block message from unknown peer %s", peer)
|
|
return
|
|
}
|
|
|
|
// If we didn't ask for this block then the peer is misbehaving.
|
|
blockHash := bmsg.block.Hash()
|
|
if _, exists = state.requestedBlocks[*blockHash]; !exists {
|
|
// The regression test intentionally sends some blocks twice
|
|
// to test duplicate block insertion fails. Don't disconnect
|
|
// the peer or ignore the block when we're in regression test
|
|
// mode in this case so the chain code is actually fed the
|
|
// duplicate blocks.
|
|
if sm.chainParams != &chaincfg.RegressionNetParams {
|
|
log.Warnf("Got unrequested block %v from %s -- "+
|
|
"disconnecting", blockHash, peer.Addr())
|
|
peer.Disconnect()
|
|
return
|
|
}
|
|
}
|
|
|
|
// When in headers-first mode, if the block matches the hash of the
|
|
// first header in the list of headers that are being fetched, it's
|
|
// eligible for less validation since the headers have already been
|
|
// verified to link together and are valid up to the next checkpoint.
|
|
// Also, remove the list entry for all blocks except the checkpoint
|
|
// since it is needed to verify the next round of headers links
|
|
// properly.
|
|
isCheckpointBlock := false
|
|
behaviorFlags := blockchain.BFNone
|
|
if sm.headersFirstMode {
|
|
firstNodeEl := sm.headerList.Front()
|
|
if firstNodeEl != nil {
|
|
firstNode := firstNodeEl.Value.(*headerNode)
|
|
if blockHash.IsEqual(firstNode.hash) {
|
|
behaviorFlags |= blockchain.BFFastAdd
|
|
if firstNode.hash.IsEqual(sm.nextCheckpoint.Hash) {
|
|
isCheckpointBlock = true
|
|
} else {
|
|
sm.headerList.Remove(firstNodeEl)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Remove block from request maps. Either chain will know about it and
|
|
// so we shouldn't have any more instances of trying to fetch it, or we
|
|
// will fail the insert and thus we'll retry next time we get an inv.
|
|
delete(state.requestedBlocks, *blockHash)
|
|
delete(sm.requestedBlocks, *blockHash)
|
|
|
|
// Process the block to include validation, best chain selection, orphan
|
|
// handling, etc.
|
|
_, isOrphan, err := sm.chain.ProcessBlock(bmsg.block, behaviorFlags)
|
|
if err != nil {
|
|
// When the error is a rule error, it means the block was simply
|
|
// rejected as opposed to something actually going wrong, so log
|
|
// it as such. Otherwise, something really did go wrong, so log
|
|
// it as an actual error.
|
|
if _, ok := err.(blockchain.RuleError); ok {
|
|
log.Infof("Rejected block %v from %s: %v", blockHash,
|
|
peer, err)
|
|
} else {
|
|
log.Errorf("Failed to process block %v: %v",
|
|
blockHash, err)
|
|
}
|
|
if dbErr, ok := err.(database.Error); ok && dbErr.ErrorCode ==
|
|
database.ErrCorruption {
|
|
panic(dbErr)
|
|
}
|
|
|
|
// Convert the error into an appropriate reject message and
|
|
// send it.
|
|
code, reason := mempool.ErrToRejectErr(err)
|
|
peer.PushRejectMsg(wire.CmdBlock, code, reason, blockHash, false)
|
|
return
|
|
}
|
|
|
|
// Meta-data about the new block this peer is reporting. We use this
|
|
// below to update this peer's latest block height and the heights of
|
|
// other peers based on their last announced block hash. This allows us
|
|
// to dynamically update the block heights of peers, avoiding stale
|
|
// heights when looking for a new sync peer. Upon acceptance of a block
|
|
// or recognition of an orphan, we also use this information to update
|
|
// the block heights over other peers who's invs may have been ignored
|
|
// if we are actively syncing while the chain is not yet current or
|
|
// who may have lost the lock announcement race.
|
|
var heightUpdate int32
|
|
var blkHashUpdate *chainhash.Hash
|
|
|
|
// Request the parents for the orphan block from the peer that sent it.
|
|
if isOrphan {
|
|
// We've just received an orphan block from a peer. In order
|
|
// to update the height of the peer, we try to extract the
|
|
// block height from the scriptSig of the coinbase transaction.
|
|
// Extraction is only attempted if the block's version is
|
|
// high enough (ver 2+).
|
|
header := &bmsg.block.MsgBlock().Header
|
|
if blockchain.ShouldHaveSerializedBlockHeight(header) {
|
|
coinbaseTx := bmsg.block.Transactions()[0]
|
|
cbHeight, err := blockchain.ExtractCoinbaseHeight(coinbaseTx)
|
|
if err != nil {
|
|
log.Warnf("Unable to extract height from "+
|
|
"coinbase tx: %v", err)
|
|
} else {
|
|
log.Debugf("Extracted height of %v from "+
|
|
"orphan block", cbHeight)
|
|
heightUpdate = cbHeight
|
|
blkHashUpdate = blockHash
|
|
}
|
|
}
|
|
|
|
orphanRoot := sm.chain.GetOrphanRoot(blockHash)
|
|
locator, err := sm.chain.LatestBlockLocator()
|
|
if err != nil {
|
|
log.Warnf("Failed to get block locator for the "+
|
|
"latest block: %v", err)
|
|
} else {
|
|
peer.PushGetBlocksMsg(locator, orphanRoot)
|
|
}
|
|
} else {
|
|
if peer == sm.syncPeer {
|
|
sm.lastProgressTime = time.Now()
|
|
}
|
|
|
|
// When the block is not an orphan, log information about it and
|
|
// update the chain state.
|
|
sm.progressLogger.LogBlockHeight(bmsg.block, sm.chain)
|
|
|
|
// Update this peer's latest block height, for future
|
|
// potential sync node candidacy.
|
|
best := sm.chain.BestSnapshot()
|
|
heightUpdate = best.Height
|
|
blkHashUpdate = &best.Hash
|
|
|
|
// Clear the rejected transactions.
|
|
sm.rejectedTxns = make(map[chainhash.Hash]struct{})
|
|
}
|
|
|
|
// Update the block height for this peer. But only send a message to
|
|
// the server for updating peer heights if this is an orphan or our
|
|
// chain is "current". This avoids sending a spammy amount of messages
|
|
// if we're syncing the chain from scratch.
|
|
if blkHashUpdate != nil && heightUpdate != 0 {
|
|
peer.UpdateLastBlockHeight(heightUpdate)
|
|
if isOrphan || sm.current() {
|
|
go sm.peerNotifier.UpdatePeerHeights(blkHashUpdate, heightUpdate,
|
|
peer)
|
|
}
|
|
}
|
|
|
|
// If we are not in headers first mode, it's a good time to periodically
|
|
// flush the blockchain cache because we don't expect new blocks immediately.
|
|
// After that, there is nothing more to do.
|
|
if !sm.headersFirstMode {
|
|
if err := sm.chain.FlushUtxoCache(blockchain.FlushPeriodic); err != nil {
|
|
log.Errorf("Error while flushing the blockchain cache: %v", err)
|
|
}
|
|
return
|
|
}
|
|
|
|
// This is headers-first mode, so if the block is not a checkpoint
|
|
// request more blocks using the header list when the request queue is
|
|
// getting short.
|
|
if !isCheckpointBlock {
|
|
if sm.startHeader != nil &&
|
|
len(state.requestedBlocks) < minInFlightBlocks {
|
|
sm.fetchHeaderBlocks()
|
|
}
|
|
return
|
|
}
|
|
|
|
// This is headers-first mode and the block is a checkpoint. When
|
|
// there is a next checkpoint, get the next round of headers by asking
|
|
// for headers starting from the block after this one up to the next
|
|
// checkpoint.
|
|
prevHeight := sm.nextCheckpoint.Height
|
|
prevHash := sm.nextCheckpoint.Hash
|
|
sm.nextCheckpoint = sm.findNextHeaderCheckpoint(prevHeight)
|
|
if sm.nextCheckpoint != nil {
|
|
locator := blockchain.BlockLocator([]*chainhash.Hash{prevHash})
|
|
err := peer.PushGetHeadersMsg(locator, sm.nextCheckpoint.Hash)
|
|
if err != nil {
|
|
log.Warnf("Failed to send getheaders message to "+
|
|
"peer %s: %v", peer.Addr(), err)
|
|
return
|
|
}
|
|
log.Infof("Downloading headers for blocks %d to %d from "+
|
|
"peer %s", prevHeight+1, sm.nextCheckpoint.Height,
|
|
sm.syncPeer.Addr())
|
|
return
|
|
}
|
|
|
|
// This is headers-first mode, the block is a checkpoint, and there are
|
|
// no more checkpoints, so switch to normal mode by requesting blocks
|
|
// from the block after this one up to the end of the chain (zero hash).
|
|
sm.headersFirstMode = false
|
|
sm.headerList.Init()
|
|
log.Infof("Reached the final checkpoint -- switching to normal mode")
|
|
locator := blockchain.BlockLocator([]*chainhash.Hash{blockHash})
|
|
err = peer.PushGetBlocksMsg(locator, &zeroHash)
|
|
if err != nil {
|
|
log.Warnf("Failed to send getblocks message to peer %s: %v",
|
|
peer.Addr(), err)
|
|
return
|
|
}
|
|
}
|
|
|
|
// fetchHeaderBlocks creates and sends a request to the syncPeer for the next
|
|
// list of blocks to be downloaded based on the current list of headers.
|
|
func (sm *SyncManager) fetchHeaderBlocks() {
|
|
// Nothing to do if there is no start header.
|
|
if sm.startHeader == nil {
|
|
log.Warnf("fetchHeaderBlocks called with no start header")
|
|
return
|
|
}
|
|
|
|
// Build up a getdata request for the list of blocks the headers
|
|
// describe. The size hint will be limited to wire.MaxInvPerMsg by
|
|
// the function, so no need to double check it here.
|
|
gdmsg := wire.NewMsgGetDataSizeHint(uint(sm.headerList.Len()))
|
|
numRequested := 0
|
|
for e := sm.startHeader; e != nil; e = e.Next() {
|
|
node, ok := e.Value.(*headerNode)
|
|
if !ok {
|
|
log.Warn("Header list node type is not a headerNode")
|
|
continue
|
|
}
|
|
|
|
iv := wire.NewInvVect(wire.InvTypeBlock, node.hash)
|
|
haveInv, err := sm.haveInventory(iv)
|
|
if err != nil {
|
|
log.Warnf("Unexpected failure when checking for "+
|
|
"existing inventory during header block "+
|
|
"fetch: %v", err)
|
|
}
|
|
if !haveInv {
|
|
syncPeerState := sm.peerStates[sm.syncPeer]
|
|
|
|
sm.requestedBlocks[*node.hash] = struct{}{}
|
|
syncPeerState.requestedBlocks[*node.hash] = struct{}{}
|
|
|
|
// If we're fetching from a witness enabled peer
|
|
// post-fork, then ensure that we receive all the
|
|
// witness data in the blocks.
|
|
if sm.syncPeer.IsWitnessEnabled() {
|
|
iv.Type = wire.InvTypeWitnessBlock
|
|
}
|
|
|
|
gdmsg.AddInvVect(iv)
|
|
numRequested++
|
|
}
|
|
sm.startHeader = e.Next()
|
|
if numRequested >= wire.MaxInvPerMsg {
|
|
break
|
|
}
|
|
}
|
|
if len(gdmsg.InvList) > 0 {
|
|
sm.syncPeer.QueueMessage(gdmsg, nil)
|
|
}
|
|
}
|
|
|
|
// handleHeadersMsg handles block header messages from all peers. Headers are
|
|
// requested when performing a headers-first sync.
|
|
func (sm *SyncManager) handleHeadersMsg(hmsg *headersMsg) {
|
|
peer := hmsg.peer
|
|
_, exists := sm.peerStates[peer]
|
|
if !exists {
|
|
log.Warnf("Received headers message from unknown peer %s", peer)
|
|
return
|
|
}
|
|
|
|
// The remote peer is misbehaving if we didn't request headers.
|
|
msg := hmsg.headers
|
|
numHeaders := len(msg.Headers)
|
|
if !sm.headersFirstMode {
|
|
log.Warnf("Got %d unrequested headers from %s -- "+
|
|
"disconnecting", numHeaders, peer.Addr())
|
|
peer.Disconnect()
|
|
return
|
|
}
|
|
|
|
// Nothing to do for an empty headers message.
|
|
if numHeaders == 0 {
|
|
return
|
|
}
|
|
|
|
// Process all of the received headers ensuring each one connects to the
|
|
// previous and that checkpoints match.
|
|
receivedCheckpoint := false
|
|
var finalHash *chainhash.Hash
|
|
for _, blockHeader := range msg.Headers {
|
|
blockHash := blockHeader.BlockHash()
|
|
finalHash = &blockHash
|
|
|
|
// Ensure there is a previous header to compare against.
|
|
prevNodeEl := sm.headerList.Back()
|
|
if prevNodeEl == nil {
|
|
log.Warnf("Header list does not contain a previous" +
|
|
"element as expected -- disconnecting peer")
|
|
peer.Disconnect()
|
|
return
|
|
}
|
|
|
|
// Ensure the header properly connects to the previous one and
|
|
// add it to the list of headers.
|
|
node := headerNode{hash: &blockHash}
|
|
prevNode := prevNodeEl.Value.(*headerNode)
|
|
if prevNode.hash.IsEqual(&blockHeader.PrevBlock) {
|
|
node.height = prevNode.height + 1
|
|
e := sm.headerList.PushBack(&node)
|
|
if sm.startHeader == nil {
|
|
sm.startHeader = e
|
|
}
|
|
} else {
|
|
log.Warnf("Received block header that does not "+
|
|
"properly connect to the chain from peer %s "+
|
|
"-- disconnecting", peer.Addr())
|
|
peer.Disconnect()
|
|
return
|
|
}
|
|
|
|
// Verify the header at the next checkpoint height matches.
|
|
if node.height == sm.nextCheckpoint.Height {
|
|
if node.hash.IsEqual(sm.nextCheckpoint.Hash) {
|
|
receivedCheckpoint = true
|
|
log.Infof("Verified downloaded block "+
|
|
"header against checkpoint at height "+
|
|
"%d/hash %s", node.height, node.hash)
|
|
} else {
|
|
log.Warnf("Block header at height %d/hash "+
|
|
"%s from peer %s does NOT match "+
|
|
"expected checkpoint hash of %s -- "+
|
|
"disconnecting", node.height,
|
|
node.hash, peer.Addr(),
|
|
sm.nextCheckpoint.Hash)
|
|
peer.Disconnect()
|
|
return
|
|
}
|
|
break
|
|
}
|
|
}
|
|
|
|
// When this header is a checkpoint, switch to fetching the blocks for
|
|
// all of the headers since the last checkpoint.
|
|
if receivedCheckpoint {
|
|
// Since the first entry of the list is always the final block
|
|
// that is already in the database and is only used to ensure
|
|
// the next header links properly, it must be removed before
|
|
// fetching the blocks.
|
|
sm.headerList.Remove(sm.headerList.Front())
|
|
log.Infof("Received %v block headers: Fetching blocks",
|
|
sm.headerList.Len())
|
|
sm.progressLogger.SetLastLogTime(time.Now())
|
|
sm.fetchHeaderBlocks()
|
|
return
|
|
}
|
|
|
|
// This header is not a checkpoint, so request the next batch of
|
|
// headers starting from the latest known header and ending with the
|
|
// next checkpoint.
|
|
locator := blockchain.BlockLocator([]*chainhash.Hash{finalHash})
|
|
err := peer.PushGetHeadersMsg(locator, sm.nextCheckpoint.Hash)
|
|
if err != nil {
|
|
log.Warnf("Failed to send getheaders message to "+
|
|
"peer %s: %v", peer.Addr(), err)
|
|
return
|
|
}
|
|
}
|
|
|
|
// handleNotFoundMsg handles notfound messages from all peers.
|
|
func (sm *SyncManager) handleNotFoundMsg(nfmsg *notFoundMsg) {
|
|
peer := nfmsg.peer
|
|
state, exists := sm.peerStates[peer]
|
|
if !exists {
|
|
log.Warnf("Received notfound message from unknown peer %s", peer)
|
|
return
|
|
}
|
|
for _, inv := range nfmsg.notFound.InvList {
|
|
// verify the hash was actually announced by the peer
|
|
// before deleting from the global requested maps.
|
|
switch inv.Type {
|
|
case wire.InvTypeWitnessBlock:
|
|
fallthrough
|
|
case wire.InvTypeBlock:
|
|
if _, exists := state.requestedBlocks[inv.Hash]; exists {
|
|
delete(state.requestedBlocks, inv.Hash)
|
|
delete(sm.requestedBlocks, inv.Hash)
|
|
}
|
|
|
|
case wire.InvTypeWitnessTx:
|
|
fallthrough
|
|
case wire.InvTypeTx:
|
|
if _, exists := state.requestedTxns[inv.Hash]; exists {
|
|
delete(state.requestedTxns, inv.Hash)
|
|
delete(sm.requestedTxns, inv.Hash)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// haveInventory returns whether or not the inventory represented by the passed
|
|
// inventory vector is known. This includes checking all of the various places
|
|
// inventory can be when it is in different states such as blocks that are part
|
|
// of the main chain, on a side chain, in the orphan pool, and transactions that
|
|
// are in the memory pool (either the main pool or orphan pool).
|
|
func (sm *SyncManager) haveInventory(invVect *wire.InvVect) (bool, error) {
|
|
switch invVect.Type {
|
|
case wire.InvTypeWitnessBlock:
|
|
fallthrough
|
|
case wire.InvTypeBlock:
|
|
// Ask chain if the block is known to it in any form (main
|
|
// chain, side chain, or orphan).
|
|
return sm.chain.HaveBlock(&invVect.Hash)
|
|
|
|
case wire.InvTypeWitnessTx:
|
|
fallthrough
|
|
case wire.InvTypeTx:
|
|
// Ask the transaction memory pool if the transaction is known
|
|
// to it in any form (main pool or orphan).
|
|
if sm.txMemPool.HaveTransaction(&invVect.Hash) {
|
|
return true, nil
|
|
}
|
|
|
|
// Check if the transaction exists from the point of view of the
|
|
// end of the main chain. Note that this is only a best effort
|
|
// since it is expensive to check existence of every output and
|
|
// the only purpose of this check is to avoid downloading
|
|
// already known transactions. Only the first two outputs are
|
|
// checked because the vast majority of transactions consist of
|
|
// two outputs where one is some form of "pay-to-somebody-else"
|
|
// and the other is a change output.
|
|
prevOut := wire.OutPoint{Hash: invVect.Hash}
|
|
for i := uint32(0); i < 2; i++ {
|
|
prevOut.Index = i
|
|
entry, err := sm.chain.FetchUtxoEntry(prevOut)
|
|
if err != nil {
|
|
return false, err
|
|
}
|
|
if entry != nil && !entry.IsSpent() {
|
|
return true, nil
|
|
}
|
|
}
|
|
|
|
return false, nil
|
|
}
|
|
|
|
// The requested inventory is an unsupported type, so just claim
|
|
// it is known to avoid requesting it.
|
|
return true, nil
|
|
}
|
|
|
|
// handleInvMsg handles inv messages from all peers.
|
|
// We examine the inventory advertised by the remote peer and act accordingly.
|
|
func (sm *SyncManager) handleInvMsg(imsg *invMsg) {
|
|
peer := imsg.peer
|
|
state, exists := sm.peerStates[peer]
|
|
if !exists {
|
|
log.Warnf("Received inv message from unknown peer %s", peer)
|
|
return
|
|
}
|
|
|
|
// Attempt to find the final block in the inventory list. There may
|
|
// not be one.
|
|
lastBlock := -1
|
|
invVects := imsg.inv.InvList
|
|
for i := len(invVects) - 1; i >= 0; i-- {
|
|
if invVects[i].Type == wire.InvTypeBlock {
|
|
lastBlock = i
|
|
break
|
|
}
|
|
}
|
|
|
|
// If this inv contains a block announcement, and this isn't coming from
|
|
// our current sync peer or we're current, then update the last
|
|
// announced block for this peer. We'll use this information later to
|
|
// update the heights of peers based on blocks we've accepted that they
|
|
// previously announced.
|
|
if lastBlock != -1 && (peer != sm.syncPeer || sm.current()) {
|
|
peer.UpdateLastAnnouncedBlock(&invVects[lastBlock].Hash)
|
|
}
|
|
|
|
// Ignore invs from peers that aren't the sync if we are not current.
|
|
// Helps prevent fetching a mass of orphans.
|
|
if peer != sm.syncPeer && !sm.current() {
|
|
return
|
|
}
|
|
|
|
// If our chain is current and a peer announces a block we already
|
|
// know of, then update their current block height.
|
|
if lastBlock != -1 && sm.current() {
|
|
blkHeight, err := sm.chain.BlockHeightByHash(&invVects[lastBlock].Hash)
|
|
if err == nil {
|
|
peer.UpdateLastBlockHeight(blkHeight)
|
|
}
|
|
}
|
|
|
|
// Request the advertised inventory if we don't already have it. Also,
|
|
// request parent blocks of orphans if we receive one we already have.
|
|
// Finally, attempt to detect potential stalls due to long side chains
|
|
// we already have and request more blocks to prevent them.
|
|
for i, iv := range invVects {
|
|
// Ignore unsupported inventory types.
|
|
switch iv.Type {
|
|
case wire.InvTypeBlock:
|
|
case wire.InvTypeTx:
|
|
case wire.InvTypeWitnessBlock:
|
|
case wire.InvTypeWitnessTx:
|
|
default:
|
|
continue
|
|
}
|
|
|
|
// Add the inventory to the cache of known inventory
|
|
// for the peer.
|
|
peer.AddKnownInventory(iv)
|
|
|
|
// Ignore inventory when we're in headers-first mode.
|
|
if sm.headersFirstMode {
|
|
continue
|
|
}
|
|
|
|
// Request the inventory if we don't already have it.
|
|
haveInv, err := sm.haveInventory(iv)
|
|
if err != nil {
|
|
log.Warnf("Unexpected failure when checking for "+
|
|
"existing inventory during inv message "+
|
|
"processing: %v", err)
|
|
continue
|
|
}
|
|
if !haveInv {
|
|
if iv.Type == wire.InvTypeTx {
|
|
// Skip the transaction if it has already been
|
|
// rejected.
|
|
if _, exists := sm.rejectedTxns[iv.Hash]; exists {
|
|
continue
|
|
}
|
|
}
|
|
|
|
// Ignore invs block invs from non-witness enabled
|
|
// peers, as after segwit activation we only want to
|
|
// download from peers that can provide us full witness
|
|
// data for blocks.
|
|
if !peer.IsWitnessEnabled() && iv.Type == wire.InvTypeBlock {
|
|
continue
|
|
}
|
|
|
|
// Add it to the request queue.
|
|
state.requestQueue = append(state.requestQueue, iv)
|
|
continue
|
|
}
|
|
|
|
if iv.Type == wire.InvTypeBlock {
|
|
// The block is an orphan block that we already have.
|
|
// When the existing orphan was processed, it requested
|
|
// the missing parent blocks. When this scenario
|
|
// happens, it means there were more blocks missing
|
|
// than are allowed into a single inventory message. As
|
|
// a result, once this peer requested the final
|
|
// advertised block, the remote peer noticed and is now
|
|
// resending the orphan block as an available block
|
|
// to signal there are more missing blocks that need to
|
|
// be requested.
|
|
if sm.chain.IsKnownOrphan(&iv.Hash) {
|
|
// Request blocks starting at the latest known
|
|
// up to the root of the orphan that just came
|
|
// in.
|
|
orphanRoot := sm.chain.GetOrphanRoot(&iv.Hash)
|
|
locator, err := sm.chain.LatestBlockLocator()
|
|
if err != nil {
|
|
log.Errorf("PEER: Failed to get block "+
|
|
"locator for the latest block: "+
|
|
"%v", err)
|
|
continue
|
|
}
|
|
peer.PushGetBlocksMsg(locator, orphanRoot)
|
|
continue
|
|
}
|
|
|
|
// We already have the final block advertised by this
|
|
// inventory message, so force a request for more. This
|
|
// should only happen if we're on a really long side
|
|
// chain.
|
|
if i == lastBlock {
|
|
// Request blocks after this one up to the
|
|
// final one the remote peer knows about (zero
|
|
// stop hash).
|
|
locator := sm.chain.BlockLocatorFromHash(&iv.Hash)
|
|
peer.PushGetBlocksMsg(locator, &zeroHash)
|
|
}
|
|
}
|
|
}
|
|
|
|
// Request as much as possible at once. Anything that won't fit into
|
|
// the request will be requested on the next inv message.
|
|
numRequested := 0
|
|
gdmsg := wire.NewMsgGetData()
|
|
requestQueue := state.requestQueue
|
|
for len(requestQueue) != 0 {
|
|
iv := requestQueue[0]
|
|
requestQueue[0] = nil
|
|
requestQueue = requestQueue[1:]
|
|
|
|
switch iv.Type {
|
|
case wire.InvTypeWitnessBlock:
|
|
fallthrough
|
|
case wire.InvTypeBlock:
|
|
// Request the block if there is not already a pending
|
|
// request.
|
|
if _, exists := sm.requestedBlocks[iv.Hash]; !exists {
|
|
limitAdd(sm.requestedBlocks, iv.Hash, maxRequestedBlocks)
|
|
limitAdd(state.requestedBlocks, iv.Hash, maxRequestedBlocks)
|
|
|
|
if peer.IsWitnessEnabled() {
|
|
iv.Type = wire.InvTypeWitnessBlock
|
|
}
|
|
|
|
gdmsg.AddInvVect(iv)
|
|
numRequested++
|
|
}
|
|
|
|
case wire.InvTypeWitnessTx:
|
|
fallthrough
|
|
case wire.InvTypeTx:
|
|
// Request the transaction if there is not already a
|
|
// pending request.
|
|
if _, exists := sm.requestedTxns[iv.Hash]; !exists {
|
|
limitAdd(sm.requestedTxns, iv.Hash, maxRequestedTxns)
|
|
limitAdd(state.requestedTxns, iv.Hash, maxRequestedTxns)
|
|
|
|
// If the peer is capable, request the txn
|
|
// including all witness data.
|
|
if peer.IsWitnessEnabled() {
|
|
iv.Type = wire.InvTypeWitnessTx
|
|
}
|
|
|
|
gdmsg.AddInvVect(iv)
|
|
numRequested++
|
|
}
|
|
}
|
|
|
|
if numRequested >= wire.MaxInvPerMsg {
|
|
break
|
|
}
|
|
}
|
|
state.requestQueue = requestQueue
|
|
if len(gdmsg.InvList) > 0 {
|
|
peer.QueueMessage(gdmsg, nil)
|
|
}
|
|
}
|
|
|
|
// blockHandler is the main handler for the sync manager. It must be run as a
|
|
// goroutine. It processes block and inv messages in a separate goroutine
|
|
// from the peer handlers so the block (MsgBlock) messages are handled by a
|
|
// single thread without needing to lock memory data structures. This is
|
|
// important because the sync manager controls which blocks are needed and how
|
|
// the fetching should proceed.
|
|
func (sm *SyncManager) blockHandler() {
|
|
stallTicker := time.NewTicker(stallSampleInterval)
|
|
defer stallTicker.Stop()
|
|
|
|
out:
|
|
for {
|
|
select {
|
|
case m := <-sm.msgChan:
|
|
switch msg := m.(type) {
|
|
case *newPeerMsg:
|
|
sm.handleNewPeerMsg(msg.peer)
|
|
|
|
case *txMsg:
|
|
sm.handleTxMsg(msg)
|
|
msg.reply <- struct{}{}
|
|
|
|
case *blockMsg:
|
|
sm.handleBlockMsg(msg)
|
|
msg.reply <- struct{}{}
|
|
|
|
case *invMsg:
|
|
sm.handleInvMsg(msg)
|
|
|
|
case *headersMsg:
|
|
sm.handleHeadersMsg(msg)
|
|
|
|
case *notFoundMsg:
|
|
sm.handleNotFoundMsg(msg)
|
|
|
|
case *donePeerMsg:
|
|
sm.handleDonePeerMsg(msg.peer)
|
|
|
|
case getSyncPeerMsg:
|
|
var peerID int32
|
|
if sm.syncPeer != nil {
|
|
peerID = sm.syncPeer.ID()
|
|
}
|
|
msg.reply <- peerID
|
|
|
|
case processBlockMsg:
|
|
_, isOrphan, err := sm.chain.ProcessBlock(
|
|
msg.block, msg.flags)
|
|
if err != nil {
|
|
msg.reply <- processBlockResponse{
|
|
isOrphan: false,
|
|
err: err,
|
|
}
|
|
}
|
|
|
|
msg.reply <- processBlockResponse{
|
|
isOrphan: isOrphan,
|
|
err: nil,
|
|
}
|
|
|
|
case isCurrentMsg:
|
|
msg.reply <- sm.current()
|
|
|
|
case pauseMsg:
|
|
// Wait until the sender unpauses the manager.
|
|
<-msg.unpause
|
|
|
|
default:
|
|
log.Warnf("Invalid message type in block "+
|
|
"handler: %T", msg)
|
|
}
|
|
|
|
case <-stallTicker.C:
|
|
sm.handleStallSample()
|
|
|
|
case <-sm.quit:
|
|
break out
|
|
}
|
|
}
|
|
|
|
log.Debug("Block handler shutting down: flushing blockchain caches...")
|
|
if err := sm.chain.FlushUtxoCache(blockchain.FlushRequired); err != nil {
|
|
log.Errorf("Error while flushing blockchain caches: %v", err)
|
|
}
|
|
|
|
sm.wg.Done()
|
|
log.Trace("Block handler done")
|
|
}
|
|
|
|
// handleBlockchainNotification handles notifications from blockchain. It does
|
|
// things such as request orphan block parents and relay accepted blocks to
|
|
// connected peers.
|
|
func (sm *SyncManager) handleBlockchainNotification(notification *blockchain.Notification) {
|
|
switch notification.Type {
|
|
// A block has been accepted into the block chain. Relay it to other
|
|
// peers.
|
|
case blockchain.NTBlockAccepted:
|
|
// Don't relay if we are not current. Other peers that are
|
|
// current should already know about it.
|
|
if !sm.current() {
|
|
return
|
|
}
|
|
|
|
block, ok := notification.Data.(*btcutil.Block)
|
|
if !ok {
|
|
log.Warnf("Chain accepted notification is not a block.")
|
|
break
|
|
}
|
|
|
|
// Generate the inventory vector and relay it.
|
|
iv := wire.NewInvVect(wire.InvTypeBlock, block.Hash())
|
|
sm.peerNotifier.RelayInventory(iv, block.MsgBlock().Header)
|
|
|
|
// A block has been connected to the main block chain.
|
|
case blockchain.NTBlockConnected:
|
|
// Don't attempt to update the mempool if we're not current.
|
|
// The mempool is empty and the fee estimator is useless unless
|
|
// we're caught up.
|
|
if !sm.current() {
|
|
return
|
|
}
|
|
|
|
block, ok := notification.Data.(*btcutil.Block)
|
|
if !ok {
|
|
log.Warnf("Chain connected notification is not a block.")
|
|
break
|
|
}
|
|
|
|
// Remove all of the transactions (except the coinbase) in the
|
|
// connected block from the transaction pool. Secondly, remove any
|
|
// transactions which are now double spends as a result of these
|
|
// new transactions. Finally, remove any transaction that is
|
|
// no longer an orphan. Transactions which depend on a confirmed
|
|
// transaction are NOT removed recursively because they are still
|
|
// valid.
|
|
for _, tx := range block.Transactions()[1:] {
|
|
sm.txMemPool.RemoveTransaction(tx, false)
|
|
sm.txMemPool.RemoveDoubleSpends(tx)
|
|
sm.txMemPool.RemoveOrphan(tx)
|
|
sm.peerNotifier.TransactionConfirmed(tx)
|
|
acceptedTxs := sm.txMemPool.ProcessOrphans(tx)
|
|
sm.peerNotifier.AnnounceNewTransactions(acceptedTxs)
|
|
}
|
|
|
|
// Register block with the fee estimator, if it exists.
|
|
if sm.feeEstimator != nil {
|
|
err := sm.feeEstimator.RegisterBlock(block)
|
|
|
|
// If an error is somehow generated then the fee estimator
|
|
// has entered an invalid state. Since it doesn't know how
|
|
// to recover, create a new one.
|
|
if err != nil {
|
|
sm.feeEstimator = mempool.NewFeeEstimator(
|
|
mempool.DefaultEstimateFeeMaxRollback,
|
|
mempool.DefaultEstimateFeeMinRegisteredBlocks)
|
|
}
|
|
}
|
|
|
|
// A block has been disconnected from the main block chain.
|
|
case blockchain.NTBlockDisconnected:
|
|
block, ok := notification.Data.(*btcutil.Block)
|
|
if !ok {
|
|
log.Warnf("Chain disconnected notification is not a block.")
|
|
break
|
|
}
|
|
|
|
// Reinsert all of the transactions (except the coinbase) into
|
|
// the transaction pool.
|
|
for _, tx := range block.Transactions()[1:] {
|
|
_, _, err := sm.txMemPool.MaybeAcceptTransaction(tx,
|
|
false, false)
|
|
if err != nil {
|
|
// Remove the transaction and all transactions
|
|
// that depend on it if it wasn't accepted into
|
|
// the transaction pool.
|
|
sm.txMemPool.RemoveTransaction(tx, true)
|
|
}
|
|
}
|
|
|
|
// Rollback previous block recorded by the fee estimator.
|
|
if sm.feeEstimator != nil {
|
|
sm.feeEstimator.Rollback(block.Hash())
|
|
}
|
|
}
|
|
}
|
|
|
|
// NewPeer informs the sync manager of a newly active peer.
|
|
func (sm *SyncManager) NewPeer(peer *peerpkg.Peer) {
|
|
// Ignore if we are shutting down.
|
|
if atomic.LoadInt32(&sm.shutdown) != 0 {
|
|
return
|
|
}
|
|
sm.msgChan <- &newPeerMsg{peer: peer}
|
|
}
|
|
|
|
// QueueTx adds the passed transaction message and peer to the block handling
|
|
// queue. Responds to the done channel argument after the tx message is
|
|
// processed.
|
|
func (sm *SyncManager) QueueTx(tx *btcutil.Tx, peer *peerpkg.Peer, done chan struct{}) {
|
|
// Don't accept more transactions if we're shutting down.
|
|
if atomic.LoadInt32(&sm.shutdown) != 0 {
|
|
done <- struct{}{}
|
|
return
|
|
}
|
|
|
|
sm.msgChan <- &txMsg{tx: tx, peer: peer, reply: done}
|
|
}
|
|
|
|
// QueueBlock adds the passed block message and peer to the block handling
|
|
// queue. Responds to the done channel argument after the block message is
|
|
// processed.
|
|
func (sm *SyncManager) QueueBlock(block *btcutil.Block, peer *peerpkg.Peer, done chan struct{}) {
|
|
// Don't accept more blocks if we're shutting down.
|
|
if atomic.LoadInt32(&sm.shutdown) != 0 {
|
|
done <- struct{}{}
|
|
return
|
|
}
|
|
|
|
sm.msgChan <- &blockMsg{block: block, peer: peer, reply: done}
|
|
}
|
|
|
|
// QueueInv adds the passed inv message and peer to the block handling queue.
|
|
func (sm *SyncManager) QueueInv(inv *wire.MsgInv, peer *peerpkg.Peer) {
|
|
// No channel handling here because peers do not need to block on inv
|
|
// messages.
|
|
if atomic.LoadInt32(&sm.shutdown) != 0 {
|
|
return
|
|
}
|
|
|
|
sm.msgChan <- &invMsg{inv: inv, peer: peer}
|
|
}
|
|
|
|
// QueueHeaders adds the passed headers message and peer to the block handling
|
|
// queue.
|
|
func (sm *SyncManager) QueueHeaders(headers *wire.MsgHeaders, peer *peerpkg.Peer) {
|
|
// No channel handling here because peers do not need to block on
|
|
// headers messages.
|
|
if atomic.LoadInt32(&sm.shutdown) != 0 {
|
|
return
|
|
}
|
|
|
|
sm.msgChan <- &headersMsg{headers: headers, peer: peer}
|
|
}
|
|
|
|
// QueueNotFound adds the passed notfound message and peer to the block handling
|
|
// queue.
|
|
func (sm *SyncManager) QueueNotFound(notFound *wire.MsgNotFound, peer *peerpkg.Peer) {
|
|
// No channel handling here because peers do not need to block on
|
|
// reject messages.
|
|
if atomic.LoadInt32(&sm.shutdown) != 0 {
|
|
return
|
|
}
|
|
|
|
sm.msgChan <- ¬FoundMsg{notFound: notFound, peer: peer}
|
|
}
|
|
|
|
// DonePeer informs the blockmanager that a peer has disconnected.
|
|
func (sm *SyncManager) DonePeer(peer *peerpkg.Peer) {
|
|
// Ignore if we are shutting down.
|
|
if atomic.LoadInt32(&sm.shutdown) != 0 {
|
|
return
|
|
}
|
|
|
|
sm.msgChan <- &donePeerMsg{peer: peer}
|
|
}
|
|
|
|
// Start begins the core block handler which processes block and inv messages.
|
|
func (sm *SyncManager) Start() {
|
|
// Already started?
|
|
if atomic.AddInt32(&sm.started, 1) != 1 {
|
|
return
|
|
}
|
|
|
|
log.Trace("Starting sync manager")
|
|
sm.wg.Add(1)
|
|
go sm.blockHandler()
|
|
}
|
|
|
|
// Stop gracefully shuts down the sync manager by stopping all asynchronous
|
|
// handlers and waiting for them to finish.
|
|
func (sm *SyncManager) Stop() error {
|
|
if atomic.AddInt32(&sm.shutdown, 1) != 1 {
|
|
log.Warnf("Sync manager is already in the process of " +
|
|
"shutting down")
|
|
return nil
|
|
}
|
|
|
|
log.Infof("Sync manager shutting down")
|
|
close(sm.quit)
|
|
sm.wg.Wait()
|
|
return nil
|
|
}
|
|
|
|
// SyncPeerID returns the ID of the current sync peer, or 0 if there is none.
|
|
func (sm *SyncManager) SyncPeerID() int32 {
|
|
reply := make(chan int32)
|
|
sm.msgChan <- getSyncPeerMsg{reply: reply}
|
|
return <-reply
|
|
}
|
|
|
|
// ProcessBlock makes use of ProcessBlock on an internal instance of a block
|
|
// chain.
|
|
func (sm *SyncManager) ProcessBlock(block *btcutil.Block, flags blockchain.BehaviorFlags) (bool, error) {
|
|
reply := make(chan processBlockResponse, 1)
|
|
sm.msgChan <- processBlockMsg{block: block, flags: flags, reply: reply}
|
|
response := <-reply
|
|
return response.isOrphan, response.err
|
|
}
|
|
|
|
// IsCurrent returns whether or not the sync manager believes it is synced with
|
|
// the connected peers.
|
|
func (sm *SyncManager) IsCurrent() bool {
|
|
reply := make(chan bool)
|
|
sm.msgChan <- isCurrentMsg{reply: reply}
|
|
return <-reply
|
|
}
|
|
|
|
// Pause pauses the sync manager until the returned channel is closed.
|
|
//
|
|
// Note that while paused, all peer and block processing is halted. The
|
|
// message sender should avoid pausing the sync manager for long durations.
|
|
func (sm *SyncManager) Pause() chan<- struct{} {
|
|
c := make(chan struct{})
|
|
sm.msgChan <- pauseMsg{c}
|
|
return c
|
|
}
|
|
|
|
// New constructs a new SyncManager. Use Start to begin processing asynchronous
|
|
// block, tx, and inv updates.
|
|
func New(config *Config) (*SyncManager, error) {
|
|
sm := SyncManager{
|
|
peerNotifier: config.PeerNotifier,
|
|
chain: config.Chain,
|
|
txMemPool: config.TxMemPool,
|
|
chainParams: config.ChainParams,
|
|
rejectedTxns: make(map[chainhash.Hash]struct{}),
|
|
requestedTxns: make(map[chainhash.Hash]struct{}),
|
|
requestedBlocks: make(map[chainhash.Hash]struct{}),
|
|
peerStates: make(map[*peerpkg.Peer]*peerSyncState),
|
|
progressLogger: newBlockProgressLogger("Processed", log),
|
|
msgChan: make(chan interface{}, config.MaxPeers*3),
|
|
headerList: list.New(),
|
|
quit: make(chan struct{}),
|
|
feeEstimator: config.FeeEstimator,
|
|
}
|
|
|
|
best := sm.chain.BestSnapshot()
|
|
if !config.DisableCheckpoints {
|
|
// Initialize the next checkpoint based on the current height.
|
|
sm.nextCheckpoint = sm.findNextHeaderCheckpoint(best.Height)
|
|
if sm.nextCheckpoint != nil {
|
|
sm.resetHeaderState(&best.Hash, best.Height)
|
|
}
|
|
} else {
|
|
log.Info("Checkpoints are disabled")
|
|
}
|
|
|
|
sm.chain.Subscribe(sm.handleBlockchainNotification)
|
|
|
|
return &sm, nil
|
|
}
|