btcd/database/internal/treap/immutable.go
Dave Collins b580cdb7d3 database: Replace with new version.
This commit removes the old database package, moves the new package into
its place, and updates all imports accordingly.
2016-04-12 14:55:15 -05:00

361 lines
11 KiB
Go

// Copyright (c) 2015-2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package treap
import (
"bytes"
"math/rand"
)
// cloneTreapNode returns a shallow copy of the passed node.
func cloneTreapNode(node *treapNode) *treapNode {
return &treapNode{
key: node.key,
value: node.value,
priority: node.priority,
left: node.left,
right: node.right,
}
}
// Immutable represents a treap data structure which is used to hold ordered
// key/value pairs using a combination of binary search tree and heap semantics.
// It is a self-organizing and randomized data structure that doesn't require
// complex operations to maintain balance. Search, insert, and delete
// operations are all O(log n). In addition, it provides O(1) snapshots for
// multi-version concurrency control (MVCC).
//
// All operations which result in modifying the treap return a new version of
// the treap with only the modified nodes updated. All unmodified nodes are
// shared with the previous version. This is extremely useful in concurrent
// applications since the caller only has to atomically replace the treap
// pointer with the newly returned version after performing any mutations. All
// readers can simply use their existing pointer as a snapshot since the treap
// it points to is immutable. This effectively provides O(1) snapshot
// capability with efficient memory usage characteristics since the old nodes
// only remain allocated until there are no longer any references to them.
type Immutable struct {
root *treapNode
count int
// totalSize is the best estimate of the total size of of all data in
// the treap including the keys, values, and node sizes.
totalSize uint64
}
// newImmutable returns a new immutable treap given the passed parameters.
func newImmutable(root *treapNode, count int, totalSize uint64) *Immutable {
return &Immutable{root: root, count: count, totalSize: totalSize}
}
// Len returns the number of items stored in the treap.
func (t *Immutable) Len() int {
return t.count
}
// Size returns a best estimate of the total number of bytes the treap is
// consuming including all of the fields used to represent the nodes as well as
// the size of the keys and values. Shared values are not detected, so the
// returned size assumes each value is pointing to different memory.
func (t *Immutable) Size() uint64 {
return t.totalSize
}
// get returns the treap node that contains the passed key. It will return nil
// when the key does not exist.
func (t *Immutable) get(key []byte) *treapNode {
for node := t.root; node != nil; {
// Traverse left or right depending on the result of the
// comparison.
compareResult := bytes.Compare(key, node.key)
if compareResult < 0 {
node = node.left
continue
}
if compareResult > 0 {
node = node.right
continue
}
// The key exists.
return node
}
// A nil node was reached which means the key does not exist.
return nil
}
// Has returns whether or not the passed key exists.
func (t *Immutable) Has(key []byte) bool {
if node := t.get(key); node != nil {
return true
}
return false
}
// Get returns the value for the passed key. The function will return nil when
// the key does not exist.
func (t *Immutable) Get(key []byte) []byte {
if node := t.get(key); node != nil {
return node.value
}
return nil
}
// Put inserts the passed key/value pair.
func (t *Immutable) Put(key, value []byte) *Immutable {
// Use an empty byte slice for the value when none was provided. This
// ultimately allows key existence to be determined from the value since
// an empty byte slice is distinguishable from nil.
if value == nil {
value = emptySlice
}
// The node is the root of the tree if there isn't already one.
if t.root == nil {
root := newTreapNode(key, value, rand.Int())
return newImmutable(root, 1, nodeSize(root))
}
// Find the binary tree insertion point and construct a replaced list of
// parents while doing so. This is done because this is an immutable
// data structure so regardless of where in the treap the new key/value
// pair ends up, all ancestors up to and including the root need to be
// replaced.
//
// When the key matches an entry already in the treap, replace the node
// with a new one that has the new value set and return.
var parents parentStack
var compareResult int
for node := t.root; node != nil; {
// Clone the node and link its parent to it if needed.
nodeCopy := cloneTreapNode(node)
if oldParent := parents.At(0); oldParent != nil {
if oldParent.left == node {
oldParent.left = nodeCopy
} else {
oldParent.right = nodeCopy
}
}
parents.Push(nodeCopy)
// Traverse left or right depending on the result of comparing
// the keys.
compareResult = bytes.Compare(key, node.key)
if compareResult < 0 {
node = node.left
continue
}
if compareResult > 0 {
node = node.right
continue
}
// The key already exists, so update its value.
nodeCopy.value = value
// Return new immutable treap with the replaced node and
// ancestors up to and including the root of the tree.
newRoot := parents.At(parents.Len() - 1)
newTotalSize := t.totalSize - uint64(len(node.value)) +
uint64(len(value))
return newImmutable(newRoot, t.count, newTotalSize)
}
// Link the new node into the binary tree in the correct position.
node := newTreapNode(key, value, rand.Int())
parent := parents.At(0)
if compareResult < 0 {
parent.left = node
} else {
parent.right = node
}
// Perform any rotations needed to maintain the min-heap and replace
// the ancestors up to and including the tree root.
newRoot := parents.At(parents.Len() - 1)
for parents.Len() > 0 {
// There is nothing left to do when the node's priority is
// greater than or equal to its parent's priority.
parent = parents.Pop()
if node.priority >= parent.priority {
break
}
// Perform a right rotation if the node is on the left side or
// a left rotation if the node is on the right side.
if parent.left == node {
node.right, parent.left = parent, node.right
} else {
node.left, parent.right = parent, node.left
}
// Either set the new root of the tree when there is no
// grandparent or relink the grandparent to the node based on
// which side the old parent the node is replacing was on.
grandparent := parents.At(0)
if grandparent == nil {
newRoot = node
} else if grandparent.left == parent {
grandparent.left = node
} else {
grandparent.right = node
}
}
return newImmutable(newRoot, t.count+1, t.totalSize+nodeSize(node))
}
// Delete removes the passed key from the treap and returns the resulting treap
// if it exists. The original immutable treap is returned if the key does not
// exist.
func (t *Immutable) Delete(key []byte) *Immutable {
// Find the node for the key while constructing a list of parents while
// doing so.
var parents parentStack
var delNode *treapNode
for node := t.root; node != nil; {
parents.Push(node)
// Traverse left or right depending on the result of the
// comparison.
compareResult := bytes.Compare(key, node.key)
if compareResult < 0 {
node = node.left
continue
}
if compareResult > 0 {
node = node.right
continue
}
// The key exists.
delNode = node
break
}
// There is nothing to do if the key does not exist.
if delNode == nil {
return t
}
// When the only node in the tree is the root node and it is the one
// being deleted, there is nothing else to do besides removing it.
parent := parents.At(1)
if parent == nil && delNode.left == nil && delNode.right == nil {
return newImmutable(nil, 0, 0)
}
// Construct a replaced list of parents and the node to delete itself.
// This is done because this is an immutable data structure and
// therefore all ancestors of the node that will be deleted, up to and
// including the root, need to be replaced.
var newParents parentStack
for i := parents.Len(); i > 0; i-- {
node := parents.At(i - 1)
nodeCopy := cloneTreapNode(node)
if oldParent := newParents.At(0); oldParent != nil {
if oldParent.left == node {
oldParent.left = nodeCopy
} else {
oldParent.right = nodeCopy
}
}
newParents.Push(nodeCopy)
}
delNode = newParents.Pop()
parent = newParents.At(0)
// Perform rotations to move the node to delete to a leaf position while
// maintaining the min-heap while replacing the modified children.
var child *treapNode
newRoot := newParents.At(newParents.Len() - 1)
for delNode.left != nil || delNode.right != nil {
// Choose the child with the higher priority.
var isLeft bool
if delNode.left == nil {
child = delNode.right
} else if delNode.right == nil {
child = delNode.left
isLeft = true
} else if delNode.left.priority >= delNode.right.priority {
child = delNode.left
isLeft = true
} else {
child = delNode.right
}
// Rotate left or right depending on which side the child node
// is on. This has the effect of moving the node to delete
// towards the bottom of the tree while maintaining the
// min-heap.
child = cloneTreapNode(child)
if isLeft {
child.right, delNode.left = delNode, child.right
} else {
child.left, delNode.right = delNode, child.left
}
// Either set the new root of the tree when there is no
// grandparent or relink the grandparent to the node based on
// which side the old parent the node is replacing was on.
//
// Since the node to be deleted was just moved down a level, the
// new grandparent is now the current parent and the new parent
// is the current child.
if parent == nil {
newRoot = child
} else if parent.left == delNode {
parent.left = child
} else {
parent.right = child
}
// The parent for the node to delete is now what was previously
// its child.
parent = child
}
// Delete the node, which is now a leaf node, by disconnecting it from
// its parent.
if parent.right == delNode {
parent.right = nil
} else {
parent.left = nil
}
return newImmutable(newRoot, t.count-1, t.totalSize-nodeSize(delNode))
}
// ForEach invokes the passed function with every key/value pair in the treap
// in ascending order.
func (t *Immutable) ForEach(fn func(k, v []byte) bool) {
// Add the root node and all children to the left of it to the list of
// nodes to traverse and loop until they, and all of their child nodes,
// have been traversed.
var parents parentStack
for node := t.root; node != nil; node = node.left {
parents.Push(node)
}
for parents.Len() > 0 {
node := parents.Pop()
if !fn(node.key, node.value) {
return
}
// Extend the nodes to traverse by all children to the left of
// the current node's right child.
for node := node.right; node != nil; node = node.left {
parents.Push(node)
}
}
}
// NewImmutable returns a new empty immutable treap ready for use. See the
// documentation for the Immutable structure for more details.
func NewImmutable() *Immutable {
return &Immutable{}
}