mirror of
https://github.com/btcsuite/btcd.git
synced 2024-11-19 01:40:07 +01:00
b580cdb7d3
This commit removes the old database package, moves the new package into its place, and updates all imports accordingly.
361 lines
11 KiB
Go
361 lines
11 KiB
Go
// Copyright (c) 2015-2016 The btcsuite developers
|
|
// Use of this source code is governed by an ISC
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package treap
|
|
|
|
import (
|
|
"bytes"
|
|
"math/rand"
|
|
)
|
|
|
|
// cloneTreapNode returns a shallow copy of the passed node.
|
|
func cloneTreapNode(node *treapNode) *treapNode {
|
|
return &treapNode{
|
|
key: node.key,
|
|
value: node.value,
|
|
priority: node.priority,
|
|
left: node.left,
|
|
right: node.right,
|
|
}
|
|
}
|
|
|
|
// Immutable represents a treap data structure which is used to hold ordered
|
|
// key/value pairs using a combination of binary search tree and heap semantics.
|
|
// It is a self-organizing and randomized data structure that doesn't require
|
|
// complex operations to maintain balance. Search, insert, and delete
|
|
// operations are all O(log n). In addition, it provides O(1) snapshots for
|
|
// multi-version concurrency control (MVCC).
|
|
//
|
|
// All operations which result in modifying the treap return a new version of
|
|
// the treap with only the modified nodes updated. All unmodified nodes are
|
|
// shared with the previous version. This is extremely useful in concurrent
|
|
// applications since the caller only has to atomically replace the treap
|
|
// pointer with the newly returned version after performing any mutations. All
|
|
// readers can simply use their existing pointer as a snapshot since the treap
|
|
// it points to is immutable. This effectively provides O(1) snapshot
|
|
// capability with efficient memory usage characteristics since the old nodes
|
|
// only remain allocated until there are no longer any references to them.
|
|
type Immutable struct {
|
|
root *treapNode
|
|
count int
|
|
|
|
// totalSize is the best estimate of the total size of of all data in
|
|
// the treap including the keys, values, and node sizes.
|
|
totalSize uint64
|
|
}
|
|
|
|
// newImmutable returns a new immutable treap given the passed parameters.
|
|
func newImmutable(root *treapNode, count int, totalSize uint64) *Immutable {
|
|
return &Immutable{root: root, count: count, totalSize: totalSize}
|
|
}
|
|
|
|
// Len returns the number of items stored in the treap.
|
|
func (t *Immutable) Len() int {
|
|
return t.count
|
|
}
|
|
|
|
// Size returns a best estimate of the total number of bytes the treap is
|
|
// consuming including all of the fields used to represent the nodes as well as
|
|
// the size of the keys and values. Shared values are not detected, so the
|
|
// returned size assumes each value is pointing to different memory.
|
|
func (t *Immutable) Size() uint64 {
|
|
return t.totalSize
|
|
}
|
|
|
|
// get returns the treap node that contains the passed key. It will return nil
|
|
// when the key does not exist.
|
|
func (t *Immutable) get(key []byte) *treapNode {
|
|
for node := t.root; node != nil; {
|
|
// Traverse left or right depending on the result of the
|
|
// comparison.
|
|
compareResult := bytes.Compare(key, node.key)
|
|
if compareResult < 0 {
|
|
node = node.left
|
|
continue
|
|
}
|
|
if compareResult > 0 {
|
|
node = node.right
|
|
continue
|
|
}
|
|
|
|
// The key exists.
|
|
return node
|
|
}
|
|
|
|
// A nil node was reached which means the key does not exist.
|
|
return nil
|
|
}
|
|
|
|
// Has returns whether or not the passed key exists.
|
|
func (t *Immutable) Has(key []byte) bool {
|
|
if node := t.get(key); node != nil {
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
// Get returns the value for the passed key. The function will return nil when
|
|
// the key does not exist.
|
|
func (t *Immutable) Get(key []byte) []byte {
|
|
if node := t.get(key); node != nil {
|
|
return node.value
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// Put inserts the passed key/value pair.
|
|
func (t *Immutable) Put(key, value []byte) *Immutable {
|
|
// Use an empty byte slice for the value when none was provided. This
|
|
// ultimately allows key existence to be determined from the value since
|
|
// an empty byte slice is distinguishable from nil.
|
|
if value == nil {
|
|
value = emptySlice
|
|
}
|
|
|
|
// The node is the root of the tree if there isn't already one.
|
|
if t.root == nil {
|
|
root := newTreapNode(key, value, rand.Int())
|
|
return newImmutable(root, 1, nodeSize(root))
|
|
}
|
|
|
|
// Find the binary tree insertion point and construct a replaced list of
|
|
// parents while doing so. This is done because this is an immutable
|
|
// data structure so regardless of where in the treap the new key/value
|
|
// pair ends up, all ancestors up to and including the root need to be
|
|
// replaced.
|
|
//
|
|
// When the key matches an entry already in the treap, replace the node
|
|
// with a new one that has the new value set and return.
|
|
var parents parentStack
|
|
var compareResult int
|
|
for node := t.root; node != nil; {
|
|
// Clone the node and link its parent to it if needed.
|
|
nodeCopy := cloneTreapNode(node)
|
|
if oldParent := parents.At(0); oldParent != nil {
|
|
if oldParent.left == node {
|
|
oldParent.left = nodeCopy
|
|
} else {
|
|
oldParent.right = nodeCopy
|
|
}
|
|
}
|
|
parents.Push(nodeCopy)
|
|
|
|
// Traverse left or right depending on the result of comparing
|
|
// the keys.
|
|
compareResult = bytes.Compare(key, node.key)
|
|
if compareResult < 0 {
|
|
node = node.left
|
|
continue
|
|
}
|
|
if compareResult > 0 {
|
|
node = node.right
|
|
continue
|
|
}
|
|
|
|
// The key already exists, so update its value.
|
|
nodeCopy.value = value
|
|
|
|
// Return new immutable treap with the replaced node and
|
|
// ancestors up to and including the root of the tree.
|
|
newRoot := parents.At(parents.Len() - 1)
|
|
newTotalSize := t.totalSize - uint64(len(node.value)) +
|
|
uint64(len(value))
|
|
return newImmutable(newRoot, t.count, newTotalSize)
|
|
}
|
|
|
|
// Link the new node into the binary tree in the correct position.
|
|
node := newTreapNode(key, value, rand.Int())
|
|
parent := parents.At(0)
|
|
if compareResult < 0 {
|
|
parent.left = node
|
|
} else {
|
|
parent.right = node
|
|
}
|
|
|
|
// Perform any rotations needed to maintain the min-heap and replace
|
|
// the ancestors up to and including the tree root.
|
|
newRoot := parents.At(parents.Len() - 1)
|
|
for parents.Len() > 0 {
|
|
// There is nothing left to do when the node's priority is
|
|
// greater than or equal to its parent's priority.
|
|
parent = parents.Pop()
|
|
if node.priority >= parent.priority {
|
|
break
|
|
}
|
|
|
|
// Perform a right rotation if the node is on the left side or
|
|
// a left rotation if the node is on the right side.
|
|
if parent.left == node {
|
|
node.right, parent.left = parent, node.right
|
|
} else {
|
|
node.left, parent.right = parent, node.left
|
|
}
|
|
|
|
// Either set the new root of the tree when there is no
|
|
// grandparent or relink the grandparent to the node based on
|
|
// which side the old parent the node is replacing was on.
|
|
grandparent := parents.At(0)
|
|
if grandparent == nil {
|
|
newRoot = node
|
|
} else if grandparent.left == parent {
|
|
grandparent.left = node
|
|
} else {
|
|
grandparent.right = node
|
|
}
|
|
}
|
|
|
|
return newImmutable(newRoot, t.count+1, t.totalSize+nodeSize(node))
|
|
}
|
|
|
|
// Delete removes the passed key from the treap and returns the resulting treap
|
|
// if it exists. The original immutable treap is returned if the key does not
|
|
// exist.
|
|
func (t *Immutable) Delete(key []byte) *Immutable {
|
|
// Find the node for the key while constructing a list of parents while
|
|
// doing so.
|
|
var parents parentStack
|
|
var delNode *treapNode
|
|
for node := t.root; node != nil; {
|
|
parents.Push(node)
|
|
|
|
// Traverse left or right depending on the result of the
|
|
// comparison.
|
|
compareResult := bytes.Compare(key, node.key)
|
|
if compareResult < 0 {
|
|
node = node.left
|
|
continue
|
|
}
|
|
if compareResult > 0 {
|
|
node = node.right
|
|
continue
|
|
}
|
|
|
|
// The key exists.
|
|
delNode = node
|
|
break
|
|
}
|
|
|
|
// There is nothing to do if the key does not exist.
|
|
if delNode == nil {
|
|
return t
|
|
}
|
|
|
|
// When the only node in the tree is the root node and it is the one
|
|
// being deleted, there is nothing else to do besides removing it.
|
|
parent := parents.At(1)
|
|
if parent == nil && delNode.left == nil && delNode.right == nil {
|
|
return newImmutable(nil, 0, 0)
|
|
}
|
|
|
|
// Construct a replaced list of parents and the node to delete itself.
|
|
// This is done because this is an immutable data structure and
|
|
// therefore all ancestors of the node that will be deleted, up to and
|
|
// including the root, need to be replaced.
|
|
var newParents parentStack
|
|
for i := parents.Len(); i > 0; i-- {
|
|
node := parents.At(i - 1)
|
|
nodeCopy := cloneTreapNode(node)
|
|
if oldParent := newParents.At(0); oldParent != nil {
|
|
if oldParent.left == node {
|
|
oldParent.left = nodeCopy
|
|
} else {
|
|
oldParent.right = nodeCopy
|
|
}
|
|
}
|
|
newParents.Push(nodeCopy)
|
|
}
|
|
delNode = newParents.Pop()
|
|
parent = newParents.At(0)
|
|
|
|
// Perform rotations to move the node to delete to a leaf position while
|
|
// maintaining the min-heap while replacing the modified children.
|
|
var child *treapNode
|
|
newRoot := newParents.At(newParents.Len() - 1)
|
|
for delNode.left != nil || delNode.right != nil {
|
|
// Choose the child with the higher priority.
|
|
var isLeft bool
|
|
if delNode.left == nil {
|
|
child = delNode.right
|
|
} else if delNode.right == nil {
|
|
child = delNode.left
|
|
isLeft = true
|
|
} else if delNode.left.priority >= delNode.right.priority {
|
|
child = delNode.left
|
|
isLeft = true
|
|
} else {
|
|
child = delNode.right
|
|
}
|
|
|
|
// Rotate left or right depending on which side the child node
|
|
// is on. This has the effect of moving the node to delete
|
|
// towards the bottom of the tree while maintaining the
|
|
// min-heap.
|
|
child = cloneTreapNode(child)
|
|
if isLeft {
|
|
child.right, delNode.left = delNode, child.right
|
|
} else {
|
|
child.left, delNode.right = delNode, child.left
|
|
}
|
|
|
|
// Either set the new root of the tree when there is no
|
|
// grandparent or relink the grandparent to the node based on
|
|
// which side the old parent the node is replacing was on.
|
|
//
|
|
// Since the node to be deleted was just moved down a level, the
|
|
// new grandparent is now the current parent and the new parent
|
|
// is the current child.
|
|
if parent == nil {
|
|
newRoot = child
|
|
} else if parent.left == delNode {
|
|
parent.left = child
|
|
} else {
|
|
parent.right = child
|
|
}
|
|
|
|
// The parent for the node to delete is now what was previously
|
|
// its child.
|
|
parent = child
|
|
}
|
|
|
|
// Delete the node, which is now a leaf node, by disconnecting it from
|
|
// its parent.
|
|
if parent.right == delNode {
|
|
parent.right = nil
|
|
} else {
|
|
parent.left = nil
|
|
}
|
|
|
|
return newImmutable(newRoot, t.count-1, t.totalSize-nodeSize(delNode))
|
|
}
|
|
|
|
// ForEach invokes the passed function with every key/value pair in the treap
|
|
// in ascending order.
|
|
func (t *Immutable) ForEach(fn func(k, v []byte) bool) {
|
|
// Add the root node and all children to the left of it to the list of
|
|
// nodes to traverse and loop until they, and all of their child nodes,
|
|
// have been traversed.
|
|
var parents parentStack
|
|
for node := t.root; node != nil; node = node.left {
|
|
parents.Push(node)
|
|
}
|
|
for parents.Len() > 0 {
|
|
node := parents.Pop()
|
|
if !fn(node.key, node.value) {
|
|
return
|
|
}
|
|
|
|
// Extend the nodes to traverse by all children to the left of
|
|
// the current node's right child.
|
|
for node := node.right; node != nil; node = node.left {
|
|
parents.Push(node)
|
|
}
|
|
}
|
|
}
|
|
|
|
// NewImmutable returns a new empty immutable treap ready for use. See the
|
|
// documentation for the Immutable structure for more details.
|
|
func NewImmutable() *Immutable {
|
|
return &Immutable{}
|
|
}
|