btcd/blockchain/blockindex.go
Calvin Kim bc6396ddfd blockchain: Add IsAncestor method to blockNode
IsAncestor() provides functionality for testing if a block node is
an ancestor of anther block node.
2024-04-08 17:47:26 +09:00

518 lines
16 KiB
Go

// Copyright (c) 2015-2017 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package blockchain
import (
"math/big"
"sort"
"sync"
"time"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/database"
"github.com/btcsuite/btcd/wire"
)
// blockStatus is a bit field representing the validation state of the block.
type blockStatus byte
const (
// statusDataStored indicates that the block's payload is stored on disk.
statusDataStored blockStatus = 1 << iota
// statusValid indicates that the block has been fully validated.
statusValid
// statusValidateFailed indicates that the block has failed validation.
statusValidateFailed
// statusInvalidAncestor indicates that one of the block's ancestors has
// has failed validation, thus the block is also invalid.
statusInvalidAncestor
// statusNone indicates that the block has no validation state flags set.
//
// NOTE: This must be defined last in order to avoid influencing iota.
statusNone blockStatus = 0
)
// HaveData returns whether the full block data is stored in the database. This
// will return false for a block node where only the header is downloaded or
// kept.
func (status blockStatus) HaveData() bool {
return status&statusDataStored != 0
}
// KnownValid returns whether the block is known to be valid. This will return
// false for a valid block that has not been fully validated yet.
func (status blockStatus) KnownValid() bool {
return status&statusValid != 0
}
// KnownInvalid returns whether the block is known to be invalid. This may be
// because the block itself failed validation or any of its ancestors is
// invalid. This will return false for invalid blocks that have not been proven
// invalid yet.
func (status blockStatus) KnownInvalid() bool {
return status&(statusValidateFailed|statusInvalidAncestor) != 0
}
// blockNode represents a block within the block chain and is primarily used to
// aid in selecting the best chain to be the main chain. The main chain is
// stored into the block database.
type blockNode struct {
// NOTE: Additions, deletions, or modifications to the order of the
// definitions in this struct should not be changed without considering
// how it affects alignment on 64-bit platforms. The current order is
// specifically crafted to result in minimal padding. There will be
// hundreds of thousands of these in memory, so a few extra bytes of
// padding adds up.
// parent is the parent block for this node.
parent *blockNode
// ancestor is a block that is more than one block back from this node.
ancestor *blockNode
// hash is the double sha 256 of the block.
hash chainhash.Hash
// workSum is the total amount of work in the chain up to and including
// this node.
workSum *big.Int
// height is the position in the block chain.
height int32
// Some fields from block headers to aid in best chain selection and
// reconstructing headers from memory. These must be treated as
// immutable and are intentionally ordered to avoid padding on 64-bit
// platforms.
version int32
bits uint32
nonce uint32
timestamp int64
merkleRoot chainhash.Hash
// status is a bitfield representing the validation state of the block. The
// status field, unlike the other fields, may be written to and so should
// only be accessed using the concurrent-safe NodeStatus method on
// blockIndex once the node has been added to the global index.
status blockStatus
}
// initBlockNode initializes a block node from the given header and parent node,
// calculating the height and workSum from the respective fields on the parent.
// This function is NOT safe for concurrent access. It must only be called when
// initially creating a node.
func initBlockNode(node *blockNode, blockHeader *wire.BlockHeader, parent *blockNode) {
*node = blockNode{
hash: blockHeader.BlockHash(),
workSum: CalcWork(blockHeader.Bits),
version: blockHeader.Version,
bits: blockHeader.Bits,
nonce: blockHeader.Nonce,
timestamp: blockHeader.Timestamp.Unix(),
merkleRoot: blockHeader.MerkleRoot,
}
if parent != nil {
node.parent = parent
node.height = parent.height + 1
node.workSum = node.workSum.Add(parent.workSum, node.workSum)
node.buildAncestor()
}
}
// newBlockNode returns a new block node for the given block header and parent
// node, calculating the height and workSum from the respective fields on the
// parent. This function is NOT safe for concurrent access.
func newBlockNode(blockHeader *wire.BlockHeader, parent *blockNode) *blockNode {
var node blockNode
initBlockNode(&node, blockHeader, parent)
return &node
}
// Equals compares all the fields of the block node except for the parent and
// ancestor and returns true if they're equal.
func (node *blockNode) Equals(other *blockNode) bool {
return node.hash == other.hash &&
node.workSum.Cmp(other.workSum) == 0 &&
node.height == other.height &&
node.version == other.version &&
node.bits == other.bits &&
node.nonce == other.nonce &&
node.timestamp == other.timestamp &&
node.merkleRoot == other.merkleRoot &&
node.status == other.status
}
// Header constructs a block header from the node and returns it.
//
// This function is safe for concurrent access.
func (node *blockNode) Header() wire.BlockHeader {
// No lock is needed because all accessed fields are immutable.
prevHash := &zeroHash
if node.parent != nil {
prevHash = &node.parent.hash
}
return wire.BlockHeader{
Version: node.version,
PrevBlock: *prevHash,
MerkleRoot: node.merkleRoot,
Timestamp: time.Unix(node.timestamp, 0),
Bits: node.bits,
Nonce: node.nonce,
}
}
// invertLowestOne turns the lowest 1 bit in the binary representation of a number into a 0.
func invertLowestOne(n int32) int32 {
return n & (n - 1)
}
// getAncestorHeight returns a suitable ancestor for the node at the given height.
func getAncestorHeight(height int32) int32 {
// We pop off two 1 bits of the height.
// This results in a maximum of 330 steps to go back to an ancestor
// from height 1<<29.
return invertLowestOne(invertLowestOne(height))
}
// buildAncestor sets an ancestor for the given blocknode.
func (node *blockNode) buildAncestor() {
if node.parent != nil {
node.ancestor = node.parent.Ancestor(getAncestorHeight(node.height))
}
}
// Ancestor returns the ancestor block node at the provided height by following
// the chain backwards from this node. The returned block will be nil when a
// height is requested that is after the height of the passed node or is less
// than zero.
//
// This function is safe for concurrent access.
func (node *blockNode) Ancestor(height int32) *blockNode {
if height < 0 || height > node.height {
return nil
}
// Traverse back until we find the desired node.
n := node
for n != nil && n.height != height {
// If there's an ancestor available, use it. Otherwise, just
// follow the parent.
if n.ancestor != nil {
// Calculate the height for this ancestor and
// check if we can take the ancestor skip.
if getAncestorHeight(n.height) >= height {
n = n.ancestor
continue
}
}
// We couldn't take the ancestor skip so traverse back to the parent.
n = n.parent
}
return n
}
// Height returns the blockNode's height in the chain.
//
// NOTE: Part of the HeaderCtx interface.
func (node *blockNode) Height() int32 {
return node.height
}
// Bits returns the blockNode's nBits.
//
// NOTE: Part of the HeaderCtx interface.
func (node *blockNode) Bits() uint32 {
return node.bits
}
// Timestamp returns the blockNode's timestamp.
//
// NOTE: Part of the HeaderCtx interface.
func (node *blockNode) Timestamp() int64 {
return node.timestamp
}
// Parent returns the blockNode's parent.
//
// NOTE: Part of the HeaderCtx interface.
func (node *blockNode) Parent() HeaderCtx {
if node.parent == nil {
// This is required since node.parent is a *blockNode and if we
// do not explicitly return nil here, the caller may fail when
// nil-checking this.
return nil
}
return node.parent
}
// RelativeAncestorCtx returns the blockNode's ancestor that is distance blocks
// before it in the chain. This is equivalent to the RelativeAncestor function
// below except that the return type is different.
//
// This function is safe for concurrent access.
//
// NOTE: Part of the HeaderCtx interface.
func (node *blockNode) RelativeAncestorCtx(distance int32) HeaderCtx {
ancestor := node.RelativeAncestor(distance)
if ancestor == nil {
// This is required since RelativeAncestor returns a *blockNode
// and if we do not explicitly return nil here, the caller may
// fail when nil-checking this.
return nil
}
return ancestor
}
// IsAncestor returns if the other node is an ancestor of this block node.
func (node *blockNode) IsAncestor(otherNode *blockNode) bool {
// Return early as false if the otherNode is nil.
if otherNode == nil {
return false
}
ancestor := node.Ancestor(otherNode.height)
if ancestor == nil {
return false
}
// If the otherNode has the same height as me, then the returned
// ancestor will be me. Return false since I'm not an ancestor of me.
if node.height == ancestor.height {
return false
}
// Return true if the fetched ancestor is other node.
return ancestor.Equals(otherNode)
}
// RelativeAncestor returns the ancestor block node a relative 'distance' blocks
// before this node. This is equivalent to calling Ancestor with the node's
// height minus provided distance.
//
// This function is safe for concurrent access.
func (node *blockNode) RelativeAncestor(distance int32) *blockNode {
return node.Ancestor(node.height - distance)
}
// CalcPastMedianTime calculates the median time of the previous few blocks
// prior to, and including, the block node.
//
// This function is safe for concurrent access.
func CalcPastMedianTime(node HeaderCtx) time.Time {
// Create a slice of the previous few block timestamps used to calculate
// the median per the number defined by the constant medianTimeBlocks.
timestamps := make([]int64, medianTimeBlocks)
numNodes := 0
iterNode := node
for i := 0; i < medianTimeBlocks && iterNode != nil; i++ {
timestamps[i] = iterNode.Timestamp()
numNodes++
iterNode = iterNode.Parent()
}
// Prune the slice to the actual number of available timestamps which
// will be fewer than desired near the beginning of the block chain
// and sort them.
timestamps = timestamps[:numNodes]
sort.Sort(timeSorter(timestamps))
// NOTE: The consensus rules incorrectly calculate the median for even
// numbers of blocks. A true median averages the middle two elements
// for a set with an even number of elements in it. Since the constant
// for the previous number of blocks to be used is odd, this is only an
// issue for a few blocks near the beginning of the chain. I suspect
// this is an optimization even though the result is slightly wrong for
// a few of the first blocks since after the first few blocks, there
// will always be an odd number of blocks in the set per the constant.
//
// This code follows suit to ensure the same rules are used, however, be
// aware that should the medianTimeBlocks constant ever be changed to an
// even number, this code will be wrong.
medianTimestamp := timestamps[numNodes/2]
return time.Unix(medianTimestamp, 0)
}
// A compile-time assertion to ensure blockNode implements the HeaderCtx
// interface.
var _ HeaderCtx = (*blockNode)(nil)
// blockIndex provides facilities for keeping track of an in-memory index of the
// block chain. Although the name block chain suggests a single chain of
// blocks, it is actually a tree-shaped structure where any node can have
// multiple children. However, there can only be one active branch which does
// indeed form a chain from the tip all the way back to the genesis block.
type blockIndex struct {
// The following fields are set when the instance is created and can't
// be changed afterwards, so there is no need to protect them with a
// separate mutex.
db database.DB
chainParams *chaincfg.Params
sync.RWMutex
index map[chainhash.Hash]*blockNode
dirty map[*blockNode]struct{}
}
// newBlockIndex returns a new empty instance of a block index. The index will
// be dynamically populated as block nodes are loaded from the database and
// manually added.
func newBlockIndex(db database.DB, chainParams *chaincfg.Params) *blockIndex {
return &blockIndex{
db: db,
chainParams: chainParams,
index: make(map[chainhash.Hash]*blockNode),
dirty: make(map[*blockNode]struct{}),
}
}
// HaveBlock returns whether or not the block index contains the provided hash.
//
// This function is safe for concurrent access.
func (bi *blockIndex) HaveBlock(hash *chainhash.Hash) bool {
bi.RLock()
_, hasBlock := bi.index[*hash]
bi.RUnlock()
return hasBlock
}
// LookupNode returns the block node identified by the provided hash. It will
// return nil if there is no entry for the hash.
//
// This function is safe for concurrent access.
func (bi *blockIndex) LookupNode(hash *chainhash.Hash) *blockNode {
bi.RLock()
node := bi.index[*hash]
bi.RUnlock()
return node
}
// AddNode adds the provided node to the block index and marks it as dirty.
// Duplicate entries are not checked so it is up to caller to avoid adding them.
//
// This function is safe for concurrent access.
func (bi *blockIndex) AddNode(node *blockNode) {
bi.Lock()
bi.addNode(node)
bi.dirty[node] = struct{}{}
bi.Unlock()
}
// addNode adds the provided node to the block index, but does not mark it as
// dirty. This can be used while initializing the block index.
//
// This function is NOT safe for concurrent access.
func (bi *blockIndex) addNode(node *blockNode) {
bi.index[node.hash] = node
}
// NodeStatus provides concurrent-safe access to the status field of a node.
//
// This function is safe for concurrent access.
func (bi *blockIndex) NodeStatus(node *blockNode) blockStatus {
bi.RLock()
status := node.status
bi.RUnlock()
return status
}
// SetStatusFlags flips the provided status flags on the block node to on,
// regardless of whether they were on or off previously. This does not unset any
// flags currently on.
//
// This function is safe for concurrent access.
func (bi *blockIndex) SetStatusFlags(node *blockNode, flags blockStatus) {
bi.Lock()
node.status |= flags
bi.dirty[node] = struct{}{}
bi.Unlock()
}
// UnsetStatusFlags flips the provided status flags on the block node to off,
// regardless of whether they were on or off previously.
//
// This function is safe for concurrent access.
func (bi *blockIndex) UnsetStatusFlags(node *blockNode, flags blockStatus) {
bi.Lock()
node.status &^= flags
bi.dirty[node] = struct{}{}
bi.Unlock()
}
// InactiveTips returns all the block nodes that aren't in the best chain.
//
// This function is safe for concurrent access.
func (bi *blockIndex) InactiveTips(bestChain *chainView) []*blockNode {
bi.RLock()
defer bi.RUnlock()
// Look through the entire blockindex and look for nodes that aren't in
// the best chain. We're gonna keep track of all the orphans and the parents
// of the orphans.
orphans := make(map[chainhash.Hash]*blockNode)
orphanParent := make(map[chainhash.Hash]*blockNode)
for hash, node := range bi.index {
found := bestChain.Contains(node)
if !found {
orphans[hash] = node
orphanParent[node.parent.hash] = node.parent
}
}
// If an orphan isn't pointed to by another orphan, it is a chain tip.
//
// We can check this by looking for the orphan in the orphan parent map.
// If the orphan exists in the orphan parent map, it means that another
// orphan is pointing to it.
tips := make([]*blockNode, 0, len(orphans))
for hash, orphan := range orphans {
_, found := orphanParent[hash]
if !found {
tips = append(tips, orphan)
}
delete(orphanParent, hash)
}
return tips
}
// flushToDB writes all dirty block nodes to the database. If all writes
// succeed, this clears the dirty set.
func (bi *blockIndex) flushToDB() error {
bi.Lock()
if len(bi.dirty) == 0 {
bi.Unlock()
return nil
}
err := bi.db.Update(func(dbTx database.Tx) error {
for node := range bi.dirty {
err := dbStoreBlockNode(dbTx, node)
if err != nil {
return err
}
}
return nil
})
// If write was successful, clear the dirty set.
if err == nil {
bi.dirty = make(map[*blockNode]struct{})
}
bi.Unlock()
return err
}