// Copyright 2013-2022 The btcsuite developers package musig2 import ( "bytes" "sort" "github.com/btcsuite/btcd/btcec/v2" "github.com/btcsuite/btcd/btcec/v2/schnorr" "github.com/btcsuite/btcd/chaincfg/chainhash" ) var ( // KeyAggTagList is the tagged hash tag used to compute the hash of the // list of sorted public keys. KeyAggTagList = []byte("KeyAgg list") // KeyAggTagCoeff is the tagged hash tag used to compute the key // aggregation coefficient for each key. KeyAggTagCoeff = []byte("KeyAgg coefficient") ) // sortableKeys defines a type of slice of public keys that implements the sort // interface for BIP 340 keys. type sortableKeys []*btcec.PublicKey // Less reports whether the element with index i must sort before the element // with index j. func (s sortableKeys) Less(i, j int) bool { // TODO(roasbeef): more efficient way to compare... keyIBytes := schnorr.SerializePubKey(s[i]) keyJBytes := schnorr.SerializePubKey(s[j]) return bytes.Compare(keyIBytes, keyJBytes) == -1 } // Swap swaps the elements with indexes i and j. func (s sortableKeys) Swap(i, j int) { s[i], s[j] = s[j], s[i] } // Len is the number of elements in the collection. func (s sortableKeys) Len() int { return len(s) } // sortKeys takes a set of schnorr public keys and returns a new slice that is // a copy of the keys sorted in lexicographical order bytes on the x-only // pubkey serialization. func sortKeys(keys []*btcec.PublicKey) []*btcec.PublicKey { keySet := sortableKeys(keys) if sort.IsSorted(keySet) { return keys } sort.Sort(keySet) return keySet } // keyHashFingerprint computes the tagged hash of the series of (sorted) public // keys passed as input. This is used to compute the aggregation coefficient // for each key. The final computation is: // * H(tag=KeyAgg list, pk1 || pk2..) func keyHashFingerprint(keys []*btcec.PublicKey, sort bool) []byte { if sort { keys = sortKeys(keys) } // We'll create a single buffer and slice into that so the bytes buffer // doesn't continually need to grow the underlying buffer. keyAggBuf := make([]byte, 32*len(keys)) keyBytes := bytes.NewBuffer(keyAggBuf[0:0]) for _, key := range keys { keyBytes.Write(schnorr.SerializePubKey(key)) } h := chainhash.TaggedHash(KeyAggTagList, keyBytes.Bytes()) return h[:] } // keyBytesEqual returns true if two keys are the same from the PoV of BIP // 340's 32-byte x-only public keys. func keyBytesEqual(a, b *btcec.PublicKey) bool { return bytes.Equal( schnorr.SerializePubKey(a), schnorr.SerializePubKey(b), ) } // aggregationCoefficient computes the key aggregation coefficient for the // specified target key. The coefficient is computed as: // * H(tag=KeyAgg coefficient, keyHashFingerprint(pks) || pk) func aggregationCoefficient(keySet []*btcec.PublicKey, targetKey *btcec.PublicKey, keysHash []byte, secondKeyIdx int) *btcec.ModNScalar { var mu btcec.ModNScalar // If this is the second key, then this coefficient is just one. if secondKeyIdx != -1 && keyBytesEqual(keySet[secondKeyIdx], targetKey) { return mu.SetInt(1) } // Otherwise, we'll compute the full finger print hash for this given // key and then use that to compute the coefficient tagged hash: // * H(tag=KeyAgg coefficient, keyHashFingerprint(pks, pk) || pk) var coefficientBytes [64]byte copy(coefficientBytes[:], keysHash[:]) copy(coefficientBytes[32:], schnorr.SerializePubKey(targetKey)) muHash := chainhash.TaggedHash(KeyAggTagCoeff, coefficientBytes[:]) mu.SetByteSlice(muHash[:]) return &mu } // secondUniqueKeyIndex returns the index of the second unique key. If all keys // are the same, then a value of -1 is returned. func secondUniqueKeyIndex(keySet []*btcec.PublicKey, sort bool) int { if sort { keySet = sortKeys(keySet) } // Find the first key that isn't the same as the very first key (second // unique key). for i := range keySet { if !keyBytesEqual(keySet[i], keySet[0]) { return i } } // A value of negative one is used to indicate that all the keys in the // sign set are actually equal, which in practice actually makes musig2 // useless, but we need a value to distinguish this case. return -1 } // KeyAggOption is a functional option argument that allows callers to specify // more or less information that has been pre-computed to the main routine. type KeyAggOption func(*keyAggOption) // keyAggOption houses the set of functional options that modify key // aggregation. type keyAggOption struct { // keyHash is the output of keyHashFingerprint for a given set of keys. keyHash []byte // uniqueKeyIndex is the pre-computed index of the second unique key. uniqueKeyIndex *int } // WithKeysHash allows key aggregation to be optimize, by allowing the caller // to specify the hash of all the keys. func WithKeysHash(keyHash []byte) KeyAggOption { return func(o *keyAggOption) { o.keyHash = keyHash } } // WithUniqueKeyIndex allows the caller to specify the index of the second // unique key. func WithUniqueKeyIndex(idx int) KeyAggOption { return func(o *keyAggOption) { i := idx o.uniqueKeyIndex = &i } } // defaultKeyAggOptions returns the set of default arguments for key // aggregation. func defaultKeyAggOptions() *keyAggOption { return &keyAggOption{} } // AggregateKeys takes a list of possibly unsorted keys and returns a single // aggregated key as specified by the musig2 key aggregation algorithm. A nil // value can be passed for keyHash, which causes this function to re-derive it. func AggregateKeys(keys []*btcec.PublicKey, sort bool, keyOpts ...KeyAggOption) *btcec.PublicKey { // First, parse the set of optional signing options. opts := defaultKeyAggOptions() for _, option := range keyOpts { option(opts) } // Sort the set of public key so we know we're working with them in // sorted order for all the routines below. if sort { keys = sortKeys(keys) } // The caller may provide the hash of all the keys as an optimization // during signing, as it already needs to be computed. if opts.keyHash == nil { opts.keyHash = keyHashFingerprint(keys, sort) } // A caller may also specify the unique key index themselves so we // don't need to re-compute it. if opts.uniqueKeyIndex == nil { idx := secondUniqueKeyIndex(keys, sort) opts.uniqueKeyIndex = &idx } // For each key, we'll compute the intermediate blinded key: a_i*P_i, // where a_i is the aggregation coefficient for that key, and P_i is // the key itself, then accumulate that (addition) into the main final // key: P = P_1 + P_2 ... P_N. var finalKeyJ btcec.JacobianPoint for _, key := range keys { // Port the key over to Jacobian coordinates as we need it in // this format for the routines below. var keyJ btcec.JacobianPoint key.AsJacobian(&keyJ) // Compute the aggregation coefficient for the key, then // multiply it by the key itself: P_i' = a_i*P_i. var tweakedKeyJ btcec.JacobianPoint a := aggregationCoefficient( keys, key, opts.keyHash, *opts.uniqueKeyIndex, ) btcec.ScalarMultNonConst(a, &keyJ, &tweakedKeyJ) // Finally accumulate this into the final key in an incremental // fashion. btcec.AddNonConst(&finalKeyJ, &tweakedKeyJ, &finalKeyJ) } finalKeyJ.ToAffine() return btcec.NewPublicKey(&finalKeyJ.X, &finalKeyJ.Y) }