mirror of
https://github.com/btcsuite/btcd.git
synced 2024-11-19 01:40:07 +01:00
btcec: convert package into go module, alias to dcrec
In this commit, we turn the package into a new Go module (version 2), and then port over the current set of types and functions to mainly alias to the more optimized and maintained dcrec variant. Taking a look at the benchmarks, most operations other than normalization (which IIRC is a bit slower now due to constant time fixes) enjoy some nice speeds up: ``` benchcmp is deprecated in favor of benchstat: https://pkg.go.dev/golang.org/x/perf/cmd/benchstat benchmark old ns/op new ns/op delta BenchmarkAddJacobian-8 464 328 -29.20% BenchmarkAddJacobianNotZOne-8 1138 372 -67.27% BenchmarkScalarBaseMult-8 47336 31531 -33.39% BenchmarkScalarBaseMultLarge-8 42465 32057 -24.51% BenchmarkScalarMult-8 123355 117579 -4.68% BenchmarkNAF-8 582 168 -71.12% BenchmarkSigVerify-8 175414 120794 -31.14% BenchmarkFieldNormalize-8 23.8 24.4 +2.39% BenchmarkParseCompressedPubKey-8 24282 10907 -55.08% ```
This commit is contained in:
parent
588c0714c3
commit
87e8fe92c9
@ -3,7 +3,7 @@ btcec
|
||||
|
||||
[![Build Status](https://github.com/btcsuite/btcd/workflows/Build%20and%20Test/badge.svg)](https://github.com/btcsuite/btcd/actions)
|
||||
[![ISC License](http://img.shields.io/badge/license-ISC-blue.svg)](http://copyfree.org)
|
||||
[![GoDoc](https://pkg.go.dev/github.com/btcsuite/btcd/btcec?status.png)](https://pkg.go.dev/github.com/btcsuite/btcd/btcec)
|
||||
[![GoDoc](https://pkg.go.dev/github.com/btcsuite/btcd/btcec/v2?status.png)](https://pkg.go.dev/github.com/btcsuite/btcd/btcec/v2)
|
||||
|
||||
Package btcec implements elliptic curve cryptography needed for working with
|
||||
Bitcoin (secp256k1 only for now). It is designed so that it may be used with the
|
||||
@ -20,47 +20,19 @@ use secp256k1 elliptic curve cryptography.
|
||||
## Installation and Updating
|
||||
|
||||
```bash
|
||||
$ go get -u github.com/btcsuite/btcd/btcec
|
||||
$ go install -u -v github.com/btcsuite/btcd/btcec/v2
|
||||
```
|
||||
|
||||
## Examples
|
||||
|
||||
* [Sign Message](https://pkg.go.dev/github.com/btcsuite/btcd/btcec#example-package--SignMessage)
|
||||
* [Sign Message](https://pkg.go.dev/github.com/btcsuite/btcd/btcec/v2#example-package--SignMessage)
|
||||
Demonstrates signing a message with a secp256k1 private key that is first
|
||||
parsed form raw bytes and serializing the generated signature.
|
||||
|
||||
* [Verify Signature](https://pkg.go.dev/github.com/btcsuite/btcd/btcec#example-package--VerifySignature)
|
||||
* [Verify Signature](https://pkg.go.dev/github.com/btcsuite/btcd/btcec/v2#example-package--VerifySignature)
|
||||
Demonstrates verifying a secp256k1 signature against a public key that is
|
||||
first parsed from raw bytes. The signature is also parsed from raw bytes.
|
||||
|
||||
* [Encryption](https://pkg.go.dev/github.com/btcsuite/btcd/btcec#example-package--EncryptMessage)
|
||||
Demonstrates encrypting a message for a public key that is first parsed from
|
||||
raw bytes, then decrypting it using the corresponding private key.
|
||||
|
||||
* [Decryption](https://pkg.go.dev/github.com/btcsuite/btcd/btcec#example-package--DecryptMessage)
|
||||
Demonstrates decrypting a message using a private key that is first parsed
|
||||
from raw bytes.
|
||||
|
||||
## GPG Verification Key
|
||||
|
||||
All official release tags are signed by Conformal so users can ensure the code
|
||||
has not been tampered with and is coming from the btcsuite developers. To
|
||||
verify the signature perform the following:
|
||||
|
||||
- Download the public key from the Conformal website at
|
||||
https://opensource.conformal.com/GIT-GPG-KEY-conformal.txt
|
||||
|
||||
- Import the public key into your GPG keyring:
|
||||
```bash
|
||||
gpg --import GIT-GPG-KEY-conformal.txt
|
||||
```
|
||||
|
||||
- Verify the release tag with the following command where `TAG_NAME` is a
|
||||
placeholder for the specific tag:
|
||||
```bash
|
||||
git tag -v TAG_NAME
|
||||
```
|
||||
|
||||
## License
|
||||
|
||||
Package btcec is licensed under the [copyfree](http://copyfree.org) ISC License
|
||||
|
@ -6,43 +6,114 @@ package btcec
|
||||
|
||||
import (
|
||||
"encoding/hex"
|
||||
"math/big"
|
||||
"testing"
|
||||
|
||||
secp "github.com/decred/dcrd/dcrec/secp256k1/v4"
|
||||
)
|
||||
|
||||
// BenchmarkAddJacobian benchmarks the secp256k1 curve addJacobian function with
|
||||
// setHex decodes the passed big-endian hex string into the internal field value
|
||||
// representation. Only the first 32-bytes are used.
|
||||
//
|
||||
// This is NOT constant time.
|
||||
//
|
||||
// The field value is returned to support chaining. This enables syntax like:
|
||||
// f := new(FieldVal).SetHex("0abc").Add(1) so that f = 0x0abc + 1
|
||||
func setHex(hexString string) *FieldVal {
|
||||
if len(hexString)%2 != 0 {
|
||||
hexString = "0" + hexString
|
||||
}
|
||||
bytes, _ := hex.DecodeString(hexString)
|
||||
|
||||
var f FieldVal
|
||||
f.SetByteSlice(bytes)
|
||||
|
||||
return &f
|
||||
}
|
||||
|
||||
// hexToFieldVal converts the passed hex string into a FieldVal and will panic
|
||||
// if there is an error. This is only provided for the hard-coded constants so
|
||||
// errors in the source code can be detected. It will only (and must only) be
|
||||
// called with hard-coded values.
|
||||
func hexToFieldVal(s string) *FieldVal {
|
||||
b, err := hex.DecodeString(s)
|
||||
if err != nil {
|
||||
panic("invalid hex in source file: " + s)
|
||||
}
|
||||
var f FieldVal
|
||||
if overflow := f.SetByteSlice(b); overflow {
|
||||
panic("hex in source file overflows mod P: " + s)
|
||||
}
|
||||
return &f
|
||||
}
|
||||
|
||||
// fromHex converts the passed hex string into a big integer pointer and will
|
||||
// panic is there is an error. This is only provided for the hard-coded
|
||||
// constants so errors in the source code can bet detected. It will only (and
|
||||
// must only) be called for initialization purposes.
|
||||
func fromHex(s string) *big.Int {
|
||||
if s == "" {
|
||||
return big.NewInt(0)
|
||||
}
|
||||
r, ok := new(big.Int).SetString(s, 16)
|
||||
if !ok {
|
||||
panic("invalid hex in source file: " + s)
|
||||
}
|
||||
return r
|
||||
}
|
||||
|
||||
// jacobianPointFromHex decodes the passed big-endian hex strings into a
|
||||
// Jacobian point with its internal fields set to the resulting values. Only
|
||||
// the first 32-bytes are used.
|
||||
func jacobianPointFromHex(x, y, z string) JacobianPoint {
|
||||
var p JacobianPoint
|
||||
p.X = *setHex(x)
|
||||
p.Y = *setHex(y)
|
||||
p.Z = *setHex(z)
|
||||
|
||||
return p
|
||||
}
|
||||
|
||||
// BenchmarkAddNonConst benchmarks the secp256k1 curve AddNonConst function with
|
||||
// Z values of 1 so that the associated optimizations are used.
|
||||
func BenchmarkAddJacobian(b *testing.B) {
|
||||
b.StopTimer()
|
||||
x1 := new(fieldVal).SetHex("34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6")
|
||||
y1 := new(fieldVal).SetHex("0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232")
|
||||
z1 := new(fieldVal).SetHex("1")
|
||||
x2 := new(fieldVal).SetHex("34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6")
|
||||
y2 := new(fieldVal).SetHex("0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232")
|
||||
z2 := new(fieldVal).SetHex("1")
|
||||
x3, y3, z3 := new(fieldVal), new(fieldVal), new(fieldVal)
|
||||
curve := S256()
|
||||
b.StartTimer()
|
||||
p1 := jacobianPointFromHex(
|
||||
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
|
||||
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
|
||||
"1",
|
||||
)
|
||||
p2 := jacobianPointFromHex(
|
||||
"34f9460f0e4f08393d192b3c5133a6ba099aa0ad9fd54ebccfacdfa239ff49c6",
|
||||
"0b71ea9bd730fd8923f6d25a7a91e7dd7728a960686cb5a901bb419e0f2ca232",
|
||||
"1",
|
||||
)
|
||||
|
||||
b.ReportAllocs()
|
||||
b.ResetTimer()
|
||||
var result JacobianPoint
|
||||
for i := 0; i < b.N; i++ {
|
||||
curve.addJacobian(x1, y1, z1, x2, y2, z2, x3, y3, z3)
|
||||
secp.AddNonConst(&p1, &p2, &result)
|
||||
}
|
||||
}
|
||||
|
||||
// BenchmarkAddJacobianNotZOne benchmarks the secp256k1 curve addJacobian
|
||||
// BenchmarkAddNonConstNotZOne benchmarks the secp256k1 curve AddNonConst
|
||||
// function with Z values other than one so the optimizations associated with
|
||||
// Z=1 aren't used.
|
||||
func BenchmarkAddJacobianNotZOne(b *testing.B) {
|
||||
b.StopTimer()
|
||||
x1 := new(fieldVal).SetHex("d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718")
|
||||
y1 := new(fieldVal).SetHex("5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190")
|
||||
z1 := new(fieldVal).SetHex("2")
|
||||
x2 := new(fieldVal).SetHex("91abba6a34b7481d922a4bd6a04899d5a686f6cf6da4e66a0cb427fb25c04bd4")
|
||||
y2 := new(fieldVal).SetHex("03fede65e30b4e7576a2abefc963ddbf9fdccbf791b77c29beadefe49951f7d1")
|
||||
z2 := new(fieldVal).SetHex("3")
|
||||
x3, y3, z3 := new(fieldVal), new(fieldVal), new(fieldVal)
|
||||
curve := S256()
|
||||
b.StartTimer()
|
||||
x1 := setHex("d3e5183c393c20e4f464acf144ce9ae8266a82b67f553af33eb37e88e7fd2718")
|
||||
y1 := setHex("5b8f54deb987ec491fb692d3d48f3eebb9454b034365ad480dda0cf079651190")
|
||||
z1 := setHex("2")
|
||||
x2 := setHex("91abba6a34b7481d922a4bd6a04899d5a686f6cf6da4e66a0cb427fb25c04bd4")
|
||||
y2 := setHex("03fede65e30b4e7576a2abefc963ddbf9fdccbf791b77c29beadefe49951f7d1")
|
||||
z2 := setHex("3")
|
||||
p1 := MakeJacobianPoint(x1, y1, z1)
|
||||
p2 := MakeJacobianPoint(x2, y2, z2)
|
||||
|
||||
b.ReportAllocs()
|
||||
b.ResetTimer()
|
||||
var result JacobianPoint
|
||||
for i := 0; i < b.N; i++ {
|
||||
curve.addJacobian(x1, y1, z1, x2, y2, z2, x3, y3, z3)
|
||||
AddNonConst(&p1, &p2, &result)
|
||||
}
|
||||
}
|
||||
|
||||
@ -77,12 +148,20 @@ func BenchmarkScalarMult(b *testing.B) {
|
||||
}
|
||||
}
|
||||
|
||||
// BenchmarkNAF benchmarks the NAF function.
|
||||
func BenchmarkNAF(b *testing.B) {
|
||||
k := fromHex("d74bf844b0862475103d96a611cf2d898447e288d34b360bc885cb8ce7c00575")
|
||||
for i := 0; i < b.N; i++ {
|
||||
NAF(k.Bytes())
|
||||
// hexToModNScalar converts the passed hex string into a ModNScalar and will
|
||||
// panic if there is an error. This is only provided for the hard-coded
|
||||
// constants so errors in the source code can be detected. It will only (and
|
||||
// must only) be called with hard-coded values.
|
||||
func hexToModNScalar(s string) *ModNScalar {
|
||||
b, err := hex.DecodeString(s)
|
||||
if err != nil {
|
||||
panic("invalid hex in source file: " + s)
|
||||
}
|
||||
var scalar ModNScalar
|
||||
if overflow := scalar.SetByteSlice(b); overflow {
|
||||
panic("hex in source file overflows mod N scalar: " + s)
|
||||
}
|
||||
return &scalar
|
||||
}
|
||||
|
||||
// BenchmarkSigVerify benchmarks how long it takes the secp256k1 curve to
|
||||
@ -91,27 +170,26 @@ func BenchmarkSigVerify(b *testing.B) {
|
||||
b.StopTimer()
|
||||
// Randomly generated keypair.
|
||||
// Private key: 9e0699c91ca1e3b7e3c9ba71eb71c89890872be97576010fe593fbf3fd57e66d
|
||||
pubKey := PublicKey{
|
||||
Curve: S256(),
|
||||
X: fromHex("d2e670a19c6d753d1a6d8b20bd045df8a08fb162cf508956c31268c6d81ffdab"),
|
||||
Y: fromHex("ab65528eefbb8057aa85d597258a3fbd481a24633bc9b47a9aa045c91371de52"),
|
||||
}
|
||||
pubKey := NewPublicKey(
|
||||
hexToFieldVal("d2e670a19c6d753d1a6d8b20bd045df8a08fb162cf508956c31268c6d81ffdab"),
|
||||
hexToFieldVal("ab65528eefbb8057aa85d597258a3fbd481a24633bc9b47a9aa045c91371de52"),
|
||||
)
|
||||
|
||||
// Double sha256 of []byte{0x01, 0x02, 0x03, 0x04}
|
||||
msgHash := fromHex("8de472e2399610baaa7f84840547cd409434e31f5d3bd71e4d947f283874f9c0")
|
||||
sig := Signature{
|
||||
R: fromHex("fef45d2892953aa5bbcdb057b5e98b208f1617a7498af7eb765574e29b5d9c2c"),
|
||||
S: fromHex("d47563f52aac6b04b55de236b7c515eb9311757db01e02cff079c3ca6efb063f"),
|
||||
}
|
||||
sig := NewSignature(
|
||||
hexToModNScalar("fef45d2892953aa5bbcdb057b5e98b208f1617a7498af7eb765574e29b5d9c2c"),
|
||||
hexToModNScalar("d47563f52aac6b04b55de236b7c515eb9311757db01e02cff079c3ca6efb063f"),
|
||||
)
|
||||
|
||||
if !sig.Verify(msgHash.Bytes(), &pubKey) {
|
||||
if !sig.Verify(msgHash.Bytes(), pubKey) {
|
||||
b.Errorf("Signature failed to verify")
|
||||
return
|
||||
}
|
||||
b.StartTimer()
|
||||
|
||||
for i := 0; i < b.N; i++ {
|
||||
sig.Verify(msgHash.Bytes(), &pubKey)
|
||||
sig.Verify(msgHash.Bytes(), pubKey)
|
||||
}
|
||||
}
|
||||
|
||||
@ -119,7 +197,7 @@ func BenchmarkSigVerify(b *testing.B) {
|
||||
// to perform normalization (which includes modular reduction).
|
||||
func BenchmarkFieldNormalize(b *testing.B) {
|
||||
// The normalize function is constant time so default value is fine.
|
||||
f := new(fieldVal)
|
||||
var f FieldVal
|
||||
for i := 0; i < b.N; i++ {
|
||||
f.Normalize()
|
||||
}
|
||||
@ -138,7 +216,7 @@ func BenchmarkParseCompressedPubKey(b *testing.B) {
|
||||
b.ReportAllocs()
|
||||
b.ResetTimer()
|
||||
for i := 0; i < b.N; i++ {
|
||||
pk, err = ParsePubKey(rawPk, S256())
|
||||
pk, err = ParsePubKey(rawPk)
|
||||
}
|
||||
_ = pk
|
||||
_ = err
|
||||
|
963
btcec/btcec.go
963
btcec/btcec.go
@ -20,959 +20,22 @@ package btcec
|
||||
// reverse the transform than to operate in affine coordinates.
|
||||
|
||||
import (
|
||||
"crypto/elliptic"
|
||||
"math/big"
|
||||
"sync"
|
||||
secp "github.com/decred/dcrd/dcrec/secp256k1/v4"
|
||||
)
|
||||
|
||||
var (
|
||||
// fieldOne is simply the integer 1 in field representation. It is
|
||||
// used to avoid needing to create it multiple times during the internal
|
||||
// arithmetic.
|
||||
fieldOne = new(fieldVal).SetInt(1)
|
||||
)
|
||||
|
||||
// KoblitzCurve supports a koblitz curve implementation that fits the ECC Curve
|
||||
// interface from crypto/elliptic.
|
||||
type KoblitzCurve struct {
|
||||
*elliptic.CurveParams
|
||||
|
||||
// q is the value (P+1)/4 used to compute the square root of field
|
||||
// elements.
|
||||
q *big.Int
|
||||
|
||||
H int // cofactor of the curve.
|
||||
halfOrder *big.Int // half the order N
|
||||
|
||||
// fieldB is the constant B of the curve as a fieldVal.
|
||||
fieldB *fieldVal
|
||||
|
||||
// byteSize is simply the bit size / 8 and is provided for convenience
|
||||
// since it is calculated repeatedly.
|
||||
byteSize int
|
||||
|
||||
// bytePoints
|
||||
bytePoints *[32][256][3]fieldVal
|
||||
|
||||
// The next 6 values are used specifically for endomorphism
|
||||
// optimizations in ScalarMult.
|
||||
|
||||
// lambda must fulfill lambda^3 = 1 mod N where N is the order of G.
|
||||
lambda *big.Int
|
||||
|
||||
// beta must fulfill beta^3 = 1 mod P where P is the prime field of the
|
||||
// curve.
|
||||
beta *fieldVal
|
||||
|
||||
// See the EndomorphismVectors in gensecp256k1.go to see how these are
|
||||
// derived.
|
||||
a1 *big.Int
|
||||
b1 *big.Int
|
||||
a2 *big.Int
|
||||
b2 *big.Int
|
||||
}
|
||||
|
||||
// Params returns the parameters for the curve.
|
||||
func (curve *KoblitzCurve) Params() *elliptic.CurveParams {
|
||||
return curve.CurveParams
|
||||
}
|
||||
|
||||
// bigAffineToField takes an affine point (x, y) as big integers and converts
|
||||
// it to an affine point as field values.
|
||||
func (curve *KoblitzCurve) bigAffineToField(x, y *big.Int) (*fieldVal, *fieldVal) {
|
||||
x3, y3 := new(fieldVal), new(fieldVal)
|
||||
x3.SetByteSlice(x.Bytes())
|
||||
y3.SetByteSlice(y.Bytes())
|
||||
|
||||
return x3, y3
|
||||
}
|
||||
|
||||
// fieldJacobianToBigAffine takes a Jacobian point (x, y, z) as field values and
|
||||
// converts it to an affine point as big integers.
|
||||
func (curve *KoblitzCurve) fieldJacobianToBigAffine(x, y, z *fieldVal) (*big.Int, *big.Int) {
|
||||
// Inversions are expensive and both point addition and point doubling
|
||||
// are faster when working with points that have a z value of one. So,
|
||||
// if the point needs to be converted to affine, go ahead and normalize
|
||||
// the point itself at the same time as the calculation is the same.
|
||||
var zInv, tempZ fieldVal
|
||||
zInv.Set(z).Inverse() // zInv = Z^-1
|
||||
tempZ.SquareVal(&zInv) // tempZ = Z^-2
|
||||
x.Mul(&tempZ) // X = X/Z^2 (mag: 1)
|
||||
y.Mul(tempZ.Mul(&zInv)) // Y = Y/Z^3 (mag: 1)
|
||||
z.SetInt(1) // Z = 1 (mag: 1)
|
||||
|
||||
// Normalize the x and y values.
|
||||
x.Normalize()
|
||||
y.Normalize()
|
||||
|
||||
// Convert the field values for the now affine point to big.Ints.
|
||||
x3, y3 := new(big.Int), new(big.Int)
|
||||
x3.SetBytes(x.Bytes()[:])
|
||||
y3.SetBytes(y.Bytes()[:])
|
||||
return x3, y3
|
||||
}
|
||||
|
||||
// IsOnCurve returns boolean if the point (x,y) is on the curve.
|
||||
// Part of the elliptic.Curve interface. This function differs from the
|
||||
// crypto/elliptic algorithm since a = 0 not -3.
|
||||
func (curve *KoblitzCurve) IsOnCurve(x, y *big.Int) bool {
|
||||
// Convert big ints to field values for faster arithmetic.
|
||||
fx, fy := curve.bigAffineToField(x, y)
|
||||
|
||||
// Elliptic curve equation for secp256k1 is: y^2 = x^3 + 7
|
||||
y2 := new(fieldVal).SquareVal(fy).Normalize()
|
||||
result := new(fieldVal).SquareVal(fx).Mul(fx).AddInt(7).Normalize()
|
||||
return y2.Equals(result)
|
||||
}
|
||||
|
||||
// addZ1AndZ2EqualsOne adds two Jacobian points that are already known to have
|
||||
// z values of 1 and stores the result in (x3, y3, z3). That is to say
|
||||
// (x1, y1, 1) + (x2, y2, 1) = (x3, y3, z3). It performs faster addition than
|
||||
// the generic add routine since less arithmetic is needed due to the ability to
|
||||
// avoid the z value multiplications.
|
||||
func (curve *KoblitzCurve) addZ1AndZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) {
|
||||
// To compute the point addition efficiently, this implementation splits
|
||||
// the equation into intermediate elements which are used to minimize
|
||||
// the number of field multiplications using the method shown at:
|
||||
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl
|
||||
//
|
||||
// In particular it performs the calculations using the following:
|
||||
// H = X2-X1, HH = H^2, I = 4*HH, J = H*I, r = 2*(Y2-Y1), V = X1*I
|
||||
// X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = 2*H
|
||||
//
|
||||
// This results in a cost of 4 field multiplications, 2 field squarings,
|
||||
// 6 field additions, and 5 integer multiplications.
|
||||
|
||||
// When the x coordinates are the same for two points on the curve, the
|
||||
// y coordinates either must be the same, in which case it is point
|
||||
// doubling, or they are opposite and the result is the point at
|
||||
// infinity per the group law for elliptic curve cryptography.
|
||||
x1.Normalize()
|
||||
y1.Normalize()
|
||||
x2.Normalize()
|
||||
y2.Normalize()
|
||||
if x1.Equals(x2) {
|
||||
if y1.Equals(y2) {
|
||||
// Since x1 == x2 and y1 == y2, point doubling must be
|
||||
// done, otherwise the addition would end up dividing
|
||||
// by zero.
|
||||
curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
|
||||
return
|
||||
}
|
||||
|
||||
// Since x1 == x2 and y1 == -y2, the sum is the point at
|
||||
// infinity per the group law.
|
||||
x3.SetInt(0)
|
||||
y3.SetInt(0)
|
||||
z3.SetInt(0)
|
||||
return
|
||||
}
|
||||
|
||||
// Calculate X3, Y3, and Z3 according to the intermediate elements
|
||||
// breakdown above.
|
||||
var h, i, j, r, v fieldVal
|
||||
var negJ, neg2V, negX3 fieldVal
|
||||
h.Set(x1).Negate(1).Add(x2) // H = X2-X1 (mag: 3)
|
||||
i.SquareVal(&h).MulInt(4) // I = 4*H^2 (mag: 4)
|
||||
j.Mul2(&h, &i) // J = H*I (mag: 1)
|
||||
r.Set(y1).Negate(1).Add(y2).MulInt(2) // r = 2*(Y2-Y1) (mag: 6)
|
||||
v.Mul2(x1, &i) // V = X1*I (mag: 1)
|
||||
negJ.Set(&j).Negate(1) // negJ = -J (mag: 2)
|
||||
neg2V.Set(&v).MulInt(2).Negate(2) // neg2V = -(2*V) (mag: 3)
|
||||
x3.Set(&r).Square().Add(&negJ).Add(&neg2V) // X3 = r^2-J-2*V (mag: 6)
|
||||
negX3.Set(x3).Negate(6) // negX3 = -X3 (mag: 7)
|
||||
j.Mul(y1).MulInt(2).Negate(2) // J = -(2*Y1*J) (mag: 3)
|
||||
y3.Set(&v).Add(&negX3).Mul(&r).Add(&j) // Y3 = r*(V-X3)-2*Y1*J (mag: 4)
|
||||
z3.Set(&h).MulInt(2) // Z3 = 2*H (mag: 6)
|
||||
|
||||
// Normalize the resulting field values to a magnitude of 1 as needed.
|
||||
x3.Normalize()
|
||||
y3.Normalize()
|
||||
z3.Normalize()
|
||||
}
|
||||
|
||||
// addZ1EqualsZ2 adds two Jacobian points that are already known to have the
|
||||
// same z value and stores the result in (x3, y3, z3). That is to say
|
||||
// (x1, y1, z1) + (x2, y2, z1) = (x3, y3, z3). It performs faster addition than
|
||||
// the generic add routine since less arithmetic is needed due to the known
|
||||
// equivalence.
|
||||
func (curve *KoblitzCurve) addZ1EqualsZ2(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) {
|
||||
// To compute the point addition efficiently, this implementation splits
|
||||
// the equation into intermediate elements which are used to minimize
|
||||
// the number of field multiplications using a slightly modified version
|
||||
// of the method shown at:
|
||||
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-mmadd-2007-bl
|
||||
//
|
||||
// In particular it performs the calculations using the following:
|
||||
// A = X2-X1, B = A^2, C=Y2-Y1, D = C^2, E = X1*B, F = X2*B
|
||||
// X3 = D-E-F, Y3 = C*(E-X3)-Y1*(F-E), Z3 = Z1*A
|
||||
//
|
||||
// This results in a cost of 5 field multiplications, 2 field squarings,
|
||||
// 9 field additions, and 0 integer multiplications.
|
||||
|
||||
// When the x coordinates are the same for two points on the curve, the
|
||||
// y coordinates either must be the same, in which case it is point
|
||||
// doubling, or they are opposite and the result is the point at
|
||||
// infinity per the group law for elliptic curve cryptography.
|
||||
x1.Normalize()
|
||||
y1.Normalize()
|
||||
x2.Normalize()
|
||||
y2.Normalize()
|
||||
if x1.Equals(x2) {
|
||||
if y1.Equals(y2) {
|
||||
// Since x1 == x2 and y1 == y2, point doubling must be
|
||||
// done, otherwise the addition would end up dividing
|
||||
// by zero.
|
||||
curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
|
||||
return
|
||||
}
|
||||
|
||||
// Since x1 == x2 and y1 == -y2, the sum is the point at
|
||||
// infinity per the group law.
|
||||
x3.SetInt(0)
|
||||
y3.SetInt(0)
|
||||
z3.SetInt(0)
|
||||
return
|
||||
}
|
||||
|
||||
// Calculate X3, Y3, and Z3 according to the intermediate elements
|
||||
// breakdown above.
|
||||
var a, b, c, d, e, f fieldVal
|
||||
var negX1, negY1, negE, negX3 fieldVal
|
||||
negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2)
|
||||
negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2)
|
||||
a.Set(&negX1).Add(x2) // A = X2-X1 (mag: 3)
|
||||
b.SquareVal(&a) // B = A^2 (mag: 1)
|
||||
c.Set(&negY1).Add(y2) // C = Y2-Y1 (mag: 3)
|
||||
d.SquareVal(&c) // D = C^2 (mag: 1)
|
||||
e.Mul2(x1, &b) // E = X1*B (mag: 1)
|
||||
negE.Set(&e).Negate(1) // negE = -E (mag: 2)
|
||||
f.Mul2(x2, &b) // F = X2*B (mag: 1)
|
||||
x3.Add2(&e, &f).Negate(3).Add(&d) // X3 = D-E-F (mag: 5)
|
||||
negX3.Set(x3).Negate(5).Normalize() // negX3 = -X3 (mag: 1)
|
||||
y3.Set(y1).Mul(f.Add(&negE)).Negate(3) // Y3 = -(Y1*(F-E)) (mag: 4)
|
||||
y3.Add(e.Add(&negX3).Mul(&c)) // Y3 = C*(E-X3)+Y3 (mag: 5)
|
||||
z3.Mul2(z1, &a) // Z3 = Z1*A (mag: 1)
|
||||
|
||||
// Normalize the resulting field values to a magnitude of 1 as needed.
|
||||
x3.Normalize()
|
||||
y3.Normalize()
|
||||
}
|
||||
|
||||
// addZ2EqualsOne adds two Jacobian points when the second point is already
|
||||
// known to have a z value of 1 (and the z value for the first point is not 1)
|
||||
// and stores the result in (x3, y3, z3). That is to say (x1, y1, z1) +
|
||||
// (x2, y2, 1) = (x3, y3, z3). It performs faster addition than the generic
|
||||
// add routine since less arithmetic is needed due to the ability to avoid
|
||||
// multiplications by the second point's z value.
|
||||
func (curve *KoblitzCurve) addZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3 *fieldVal) {
|
||||
// To compute the point addition efficiently, this implementation splits
|
||||
// the equation into intermediate elements which are used to minimize
|
||||
// the number of field multiplications using the method shown at:
|
||||
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-madd-2007-bl
|
||||
//
|
||||
// In particular it performs the calculations using the following:
|
||||
// Z1Z1 = Z1^2, U2 = X2*Z1Z1, S2 = Y2*Z1*Z1Z1, H = U2-X1, HH = H^2,
|
||||
// I = 4*HH, J = H*I, r = 2*(S2-Y1), V = X1*I
|
||||
// X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*Y1*J, Z3 = (Z1+H)^2-Z1Z1-HH
|
||||
//
|
||||
// This results in a cost of 7 field multiplications, 4 field squarings,
|
||||
// 9 field additions, and 4 integer multiplications.
|
||||
|
||||
// When the x coordinates are the same for two points on the curve, the
|
||||
// y coordinates either must be the same, in which case it is point
|
||||
// doubling, or they are opposite and the result is the point at
|
||||
// infinity per the group law for elliptic curve cryptography. Since
|
||||
// any number of Jacobian coordinates can represent the same affine
|
||||
// point, the x and y values need to be converted to like terms. Due to
|
||||
// the assumption made for this function that the second point has a z
|
||||
// value of 1 (z2=1), the first point is already "converted".
|
||||
var z1z1, u2, s2 fieldVal
|
||||
x1.Normalize()
|
||||
y1.Normalize()
|
||||
z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1)
|
||||
u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1)
|
||||
s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1)
|
||||
if x1.Equals(&u2) {
|
||||
if y1.Equals(&s2) {
|
||||
// Since x1 == x2 and y1 == y2, point doubling must be
|
||||
// done, otherwise the addition would end up dividing
|
||||
// by zero.
|
||||
curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
|
||||
return
|
||||
}
|
||||
|
||||
// Since x1 == x2 and y1 == -y2, the sum is the point at
|
||||
// infinity per the group law.
|
||||
x3.SetInt(0)
|
||||
y3.SetInt(0)
|
||||
z3.SetInt(0)
|
||||
return
|
||||
}
|
||||
|
||||
// Calculate X3, Y3, and Z3 according to the intermediate elements
|
||||
// breakdown above.
|
||||
var h, hh, i, j, r, rr, v fieldVal
|
||||
var negX1, negY1, negX3 fieldVal
|
||||
negX1.Set(x1).Negate(1) // negX1 = -X1 (mag: 2)
|
||||
h.Add2(&u2, &negX1) // H = U2-X1 (mag: 3)
|
||||
hh.SquareVal(&h) // HH = H^2 (mag: 1)
|
||||
i.Set(&hh).MulInt(4) // I = 4 * HH (mag: 4)
|
||||
j.Mul2(&h, &i) // J = H*I (mag: 1)
|
||||
negY1.Set(y1).Negate(1) // negY1 = -Y1 (mag: 2)
|
||||
r.Set(&s2).Add(&negY1).MulInt(2) // r = 2*(S2-Y1) (mag: 6)
|
||||
rr.SquareVal(&r) // rr = r^2 (mag: 1)
|
||||
v.Mul2(x1, &i) // V = X1*I (mag: 1)
|
||||
x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4)
|
||||
x3.Add(&rr) // X3 = r^2+X3 (mag: 5)
|
||||
negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6)
|
||||
y3.Set(y1).Mul(&j).MulInt(2).Negate(2) // Y3 = -(2*Y1*J) (mag: 3)
|
||||
y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4)
|
||||
z3.Add2(z1, &h).Square() // Z3 = (Z1+H)^2 (mag: 1)
|
||||
z3.Add(z1z1.Add(&hh).Negate(2)) // Z3 = Z3-(Z1Z1+HH) (mag: 4)
|
||||
|
||||
// Normalize the resulting field values to a magnitude of 1 as needed.
|
||||
x3.Normalize()
|
||||
y3.Normalize()
|
||||
z3.Normalize()
|
||||
}
|
||||
|
||||
// addGeneric adds two Jacobian points (x1, y1, z1) and (x2, y2, z2) without any
|
||||
// assumptions about the z values of the two points and stores the result in
|
||||
// (x3, y3, z3). That is to say (x1, y1, z1) + (x2, y2, z2) = (x3, y3, z3). It
|
||||
// is the slowest of the add routines due to requiring the most arithmetic.
|
||||
func (curve *KoblitzCurve) addGeneric(x1, y1, z1, x2, y2, z2, x3, y3, z3 *fieldVal) {
|
||||
// To compute the point addition efficiently, this implementation splits
|
||||
// the equation into intermediate elements which are used to minimize
|
||||
// the number of field multiplications using the method shown at:
|
||||
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#addition-add-2007-bl
|
||||
//
|
||||
// In particular it performs the calculations using the following:
|
||||
// Z1Z1 = Z1^2, Z2Z2 = Z2^2, U1 = X1*Z2Z2, U2 = X2*Z1Z1, S1 = Y1*Z2*Z2Z2
|
||||
// S2 = Y2*Z1*Z1Z1, H = U2-U1, I = (2*H)^2, J = H*I, r = 2*(S2-S1)
|
||||
// V = U1*I
|
||||
// X3 = r^2-J-2*V, Y3 = r*(V-X3)-2*S1*J, Z3 = ((Z1+Z2)^2-Z1Z1-Z2Z2)*H
|
||||
//
|
||||
// This results in a cost of 11 field multiplications, 5 field squarings,
|
||||
// 9 field additions, and 4 integer multiplications.
|
||||
|
||||
// When the x coordinates are the same for two points on the curve, the
|
||||
// y coordinates either must be the same, in which case it is point
|
||||
// doubling, or they are opposite and the result is the point at
|
||||
// infinity. Since any number of Jacobian coordinates can represent the
|
||||
// same affine point, the x and y values need to be converted to like
|
||||
// terms.
|
||||
var z1z1, z2z2, u1, u2, s1, s2 fieldVal
|
||||
z1z1.SquareVal(z1) // Z1Z1 = Z1^2 (mag: 1)
|
||||
z2z2.SquareVal(z2) // Z2Z2 = Z2^2 (mag: 1)
|
||||
u1.Set(x1).Mul(&z2z2).Normalize() // U1 = X1*Z2Z2 (mag: 1)
|
||||
u2.Set(x2).Mul(&z1z1).Normalize() // U2 = X2*Z1Z1 (mag: 1)
|
||||
s1.Set(y1).Mul(&z2z2).Mul(z2).Normalize() // S1 = Y1*Z2*Z2Z2 (mag: 1)
|
||||
s2.Set(y2).Mul(&z1z1).Mul(z1).Normalize() // S2 = Y2*Z1*Z1Z1 (mag: 1)
|
||||
if u1.Equals(&u2) {
|
||||
if s1.Equals(&s2) {
|
||||
// Since x1 == x2 and y1 == y2, point doubling must be
|
||||
// done, otherwise the addition would end up dividing
|
||||
// by zero.
|
||||
curve.doubleJacobian(x1, y1, z1, x3, y3, z3)
|
||||
return
|
||||
}
|
||||
|
||||
// Since x1 == x2 and y1 == -y2, the sum is the point at
|
||||
// infinity per the group law.
|
||||
x3.SetInt(0)
|
||||
y3.SetInt(0)
|
||||
z3.SetInt(0)
|
||||
return
|
||||
}
|
||||
|
||||
// Calculate X3, Y3, and Z3 according to the intermediate elements
|
||||
// breakdown above.
|
||||
var h, i, j, r, rr, v fieldVal
|
||||
var negU1, negS1, negX3 fieldVal
|
||||
negU1.Set(&u1).Negate(1) // negU1 = -U1 (mag: 2)
|
||||
h.Add2(&u2, &negU1) // H = U2-U1 (mag: 3)
|
||||
i.Set(&h).MulInt(2).Square() // I = (2*H)^2 (mag: 2)
|
||||
j.Mul2(&h, &i) // J = H*I (mag: 1)
|
||||
negS1.Set(&s1).Negate(1) // negS1 = -S1 (mag: 2)
|
||||
r.Set(&s2).Add(&negS1).MulInt(2) // r = 2*(S2-S1) (mag: 6)
|
||||
rr.SquareVal(&r) // rr = r^2 (mag: 1)
|
||||
v.Mul2(&u1, &i) // V = U1*I (mag: 1)
|
||||
x3.Set(&v).MulInt(2).Add(&j).Negate(3) // X3 = -(J+2*V) (mag: 4)
|
||||
x3.Add(&rr) // X3 = r^2+X3 (mag: 5)
|
||||
negX3.Set(x3).Negate(5) // negX3 = -X3 (mag: 6)
|
||||
y3.Mul2(&s1, &j).MulInt(2).Negate(2) // Y3 = -(2*S1*J) (mag: 3)
|
||||
y3.Add(v.Add(&negX3).Mul(&r)) // Y3 = r*(V-X3)+Y3 (mag: 4)
|
||||
z3.Add2(z1, z2).Square() // Z3 = (Z1+Z2)^2 (mag: 1)
|
||||
z3.Add(z1z1.Add(&z2z2).Negate(2)) // Z3 = Z3-(Z1Z1+Z2Z2) (mag: 4)
|
||||
z3.Mul(&h) // Z3 = Z3*H (mag: 1)
|
||||
|
||||
// Normalize the resulting field values to a magnitude of 1 as needed.
|
||||
x3.Normalize()
|
||||
y3.Normalize()
|
||||
}
|
||||
|
||||
// addJacobian adds the passed Jacobian points (x1, y1, z1) and (x2, y2, z2)
|
||||
// together and stores the result in (x3, y3, z3).
|
||||
func (curve *KoblitzCurve) addJacobian(x1, y1, z1, x2, y2, z2, x3, y3, z3 *fieldVal) {
|
||||
// A point at infinity is the identity according to the group law for
|
||||
// elliptic curve cryptography. Thus, ∞ + P = P and P + ∞ = P.
|
||||
if (x1.IsZero() && y1.IsZero()) || z1.IsZero() {
|
||||
x3.Set(x2)
|
||||
y3.Set(y2)
|
||||
z3.Set(z2)
|
||||
return
|
||||
}
|
||||
if (x2.IsZero() && y2.IsZero()) || z2.IsZero() {
|
||||
x3.Set(x1)
|
||||
y3.Set(y1)
|
||||
z3.Set(z1)
|
||||
return
|
||||
}
|
||||
|
||||
// Faster point addition can be achieved when certain assumptions are
|
||||
// met. For example, when both points have the same z value, arithmetic
|
||||
// on the z values can be avoided. This section thus checks for these
|
||||
// conditions and calls an appropriate add function which is accelerated
|
||||
// by using those assumptions.
|
||||
z1.Normalize()
|
||||
z2.Normalize()
|
||||
isZ1One := z1.Equals(fieldOne)
|
||||
isZ2One := z2.Equals(fieldOne)
|
||||
switch {
|
||||
case isZ1One && isZ2One:
|
||||
curve.addZ1AndZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3)
|
||||
return
|
||||
case z1.Equals(z2):
|
||||
curve.addZ1EqualsZ2(x1, y1, z1, x2, y2, x3, y3, z3)
|
||||
return
|
||||
case isZ2One:
|
||||
curve.addZ2EqualsOne(x1, y1, z1, x2, y2, x3, y3, z3)
|
||||
return
|
||||
}
|
||||
|
||||
// None of the above assumptions are true, so fall back to generic
|
||||
// point addition.
|
||||
curve.addGeneric(x1, y1, z1, x2, y2, z2, x3, y3, z3)
|
||||
}
|
||||
|
||||
// Add returns the sum of (x1,y1) and (x2,y2). Part of the elliptic.Curve
|
||||
// interface.
|
||||
func (curve *KoblitzCurve) Add(x1, y1, x2, y2 *big.Int) (*big.Int, *big.Int) {
|
||||
// A point at infinity is the identity according to the group law for
|
||||
// elliptic curve cryptography. Thus, ∞ + P = P and P + ∞ = P.
|
||||
if x1.Sign() == 0 && y1.Sign() == 0 {
|
||||
return x2, y2
|
||||
}
|
||||
if x2.Sign() == 0 && y2.Sign() == 0 {
|
||||
return x1, y1
|
||||
}
|
||||
|
||||
// Convert the affine coordinates from big integers to field values
|
||||
// and do the point addition in Jacobian projective space.
|
||||
fx1, fy1 := curve.bigAffineToField(x1, y1)
|
||||
fx2, fy2 := curve.bigAffineToField(x2, y2)
|
||||
fx3, fy3, fz3 := new(fieldVal), new(fieldVal), new(fieldVal)
|
||||
fOne := new(fieldVal).SetInt(1)
|
||||
curve.addJacobian(fx1, fy1, fOne, fx2, fy2, fOne, fx3, fy3, fz3)
|
||||
|
||||
// Convert the Jacobian coordinate field values back to affine big
|
||||
// integers.
|
||||
return curve.fieldJacobianToBigAffine(fx3, fy3, fz3)
|
||||
}
|
||||
|
||||
// doubleZ1EqualsOne performs point doubling on the passed Jacobian point
|
||||
// when the point is already known to have a z value of 1 and stores
|
||||
// the result in (x3, y3, z3). That is to say (x3, y3, z3) = 2*(x1, y1, 1). It
|
||||
// performs faster point doubling than the generic routine since less arithmetic
|
||||
// is needed due to the ability to avoid multiplication by the z value.
|
||||
func (curve *KoblitzCurve) doubleZ1EqualsOne(x1, y1, x3, y3, z3 *fieldVal) {
|
||||
// This function uses the assumptions that z1 is 1, thus the point
|
||||
// doubling formulas reduce to:
|
||||
//
|
||||
// X3 = (3*X1^2)^2 - 8*X1*Y1^2
|
||||
// Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4
|
||||
// Z3 = 2*Y1
|
||||
//
|
||||
// To compute the above efficiently, this implementation splits the
|
||||
// equation into intermediate elements which are used to minimize the
|
||||
// number of field multiplications in favor of field squarings which
|
||||
// are roughly 35% faster than field multiplications with the current
|
||||
// implementation at the time this was written.
|
||||
//
|
||||
// This uses a slightly modified version of the method shown at:
|
||||
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-mdbl-2007-bl
|
||||
//
|
||||
// In particular it performs the calculations using the following:
|
||||
// A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C)
|
||||
// E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C
|
||||
// Z3 = 2*Y1
|
||||
//
|
||||
// This results in a cost of 1 field multiplication, 5 field squarings,
|
||||
// 6 field additions, and 5 integer multiplications.
|
||||
var a, b, c, d, e, f fieldVal
|
||||
z3.Set(y1).MulInt(2) // Z3 = 2*Y1 (mag: 2)
|
||||
a.SquareVal(x1) // A = X1^2 (mag: 1)
|
||||
b.SquareVal(y1) // B = Y1^2 (mag: 1)
|
||||
c.SquareVal(&b) // C = B^2 (mag: 1)
|
||||
b.Add(x1).Square() // B = (X1+B)^2 (mag: 1)
|
||||
d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3)
|
||||
d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8)
|
||||
e.Set(&a).MulInt(3) // E = 3*A (mag: 3)
|
||||
f.SquareVal(&e) // F = E^2 (mag: 1)
|
||||
x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17)
|
||||
x3.Add(&f) // X3 = F+X3 (mag: 18)
|
||||
f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1)
|
||||
y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9)
|
||||
y3.Add(f.Mul(&e)) // Y3 = E*F+Y3 (mag: 10)
|
||||
|
||||
// Normalize the field values back to a magnitude of 1.
|
||||
x3.Normalize()
|
||||
y3.Normalize()
|
||||
z3.Normalize()
|
||||
}
|
||||
|
||||
// doubleGeneric performs point doubling on the passed Jacobian point without
|
||||
// any assumptions about the z value and stores the result in (x3, y3, z3).
|
||||
// That is to say (x3, y3, z3) = 2*(x1, y1, z1). It is the slowest of the point
|
||||
// doubling routines due to requiring the most arithmetic.
|
||||
func (curve *KoblitzCurve) doubleGeneric(x1, y1, z1, x3, y3, z3 *fieldVal) {
|
||||
// Point doubling formula for Jacobian coordinates for the secp256k1
|
||||
// curve:
|
||||
// X3 = (3*X1^2)^2 - 8*X1*Y1^2
|
||||
// Y3 = (3*X1^2)*(4*X1*Y1^2 - X3) - 8*Y1^4
|
||||
// Z3 = 2*Y1*Z1
|
||||
//
|
||||
// To compute the above efficiently, this implementation splits the
|
||||
// equation into intermediate elements which are used to minimize the
|
||||
// number of field multiplications in favor of field squarings which
|
||||
// are roughly 35% faster than field multiplications with the current
|
||||
// implementation at the time this was written.
|
||||
//
|
||||
// This uses a slightly modified version of the method shown at:
|
||||
// http://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-0.html#doubling-dbl-2009-l
|
||||
//
|
||||
// In particular it performs the calculations using the following:
|
||||
// A = X1^2, B = Y1^2, C = B^2, D = 2*((X1+B)^2-A-C)
|
||||
// E = 3*A, F = E^2, X3 = F-2*D, Y3 = E*(D-X3)-8*C
|
||||
// Z3 = 2*Y1*Z1
|
||||
//
|
||||
// This results in a cost of 1 field multiplication, 5 field squarings,
|
||||
// 6 field additions, and 5 integer multiplications.
|
||||
var a, b, c, d, e, f fieldVal
|
||||
z3.Mul2(y1, z1).MulInt(2) // Z3 = 2*Y1*Z1 (mag: 2)
|
||||
a.SquareVal(x1) // A = X1^2 (mag: 1)
|
||||
b.SquareVal(y1) // B = Y1^2 (mag: 1)
|
||||
c.SquareVal(&b) // C = B^2 (mag: 1)
|
||||
b.Add(x1).Square() // B = (X1+B)^2 (mag: 1)
|
||||
d.Set(&a).Add(&c).Negate(2) // D = -(A+C) (mag: 3)
|
||||
d.Add(&b).MulInt(2) // D = 2*(B+D)(mag: 8)
|
||||
e.Set(&a).MulInt(3) // E = 3*A (mag: 3)
|
||||
f.SquareVal(&e) // F = E^2 (mag: 1)
|
||||
x3.Set(&d).MulInt(2).Negate(16) // X3 = -(2*D) (mag: 17)
|
||||
x3.Add(&f) // X3 = F+X3 (mag: 18)
|
||||
f.Set(x3).Negate(18).Add(&d).Normalize() // F = D-X3 (mag: 1)
|
||||
y3.Set(&c).MulInt(8).Negate(8) // Y3 = -(8*C) (mag: 9)
|
||||
y3.Add(f.Mul(&e)) // Y3 = E*F+Y3 (mag: 10)
|
||||
|
||||
// Normalize the field values back to a magnitude of 1.
|
||||
x3.Normalize()
|
||||
y3.Normalize()
|
||||
z3.Normalize()
|
||||
}
|
||||
|
||||
// doubleJacobian doubles the passed Jacobian point (x1, y1, z1) and stores the
|
||||
// result in (x3, y3, z3).
|
||||
func (curve *KoblitzCurve) doubleJacobian(x1, y1, z1, x3, y3, z3 *fieldVal) {
|
||||
// Doubling a point at infinity is still infinity.
|
||||
if y1.IsZero() || z1.IsZero() {
|
||||
x3.SetInt(0)
|
||||
y3.SetInt(0)
|
||||
z3.SetInt(0)
|
||||
return
|
||||
}
|
||||
|
||||
// Slightly faster point doubling can be achieved when the z value is 1
|
||||
// by avoiding the multiplication on the z value. This section calls
|
||||
// a point doubling function which is accelerated by using that
|
||||
// assumption when possible.
|
||||
if z1.Normalize().Equals(fieldOne) {
|
||||
curve.doubleZ1EqualsOne(x1, y1, x3, y3, z3)
|
||||
return
|
||||
}
|
||||
|
||||
// Fall back to generic point doubling which works with arbitrary z
|
||||
// values.
|
||||
curve.doubleGeneric(x1, y1, z1, x3, y3, z3)
|
||||
}
|
||||
|
||||
// Double returns 2*(x1,y1). Part of the elliptic.Curve interface.
|
||||
func (curve *KoblitzCurve) Double(x1, y1 *big.Int) (*big.Int, *big.Int) {
|
||||
if y1.Sign() == 0 {
|
||||
return new(big.Int), new(big.Int)
|
||||
}
|
||||
|
||||
// Convert the affine coordinates from big integers to field values
|
||||
// and do the point doubling in Jacobian projective space.
|
||||
fx1, fy1 := curve.bigAffineToField(x1, y1)
|
||||
fx3, fy3, fz3 := new(fieldVal), new(fieldVal), new(fieldVal)
|
||||
fOne := new(fieldVal).SetInt(1)
|
||||
curve.doubleJacobian(fx1, fy1, fOne, fx3, fy3, fz3)
|
||||
|
||||
// Convert the Jacobian coordinate field values back to affine big
|
||||
// integers.
|
||||
return curve.fieldJacobianToBigAffine(fx3, fy3, fz3)
|
||||
}
|
||||
|
||||
// splitK returns a balanced length-two representation of k and their signs.
|
||||
// This is algorithm 3.74 from [GECC].
|
||||
//
|
||||
// One thing of note about this algorithm is that no matter what c1 and c2 are,
|
||||
// the final equation of k = k1 + k2 * lambda (mod n) will hold. This is
|
||||
// provable mathematically due to how a1/b1/a2/b2 are computed.
|
||||
//
|
||||
// c1 and c2 are chosen to minimize the max(k1,k2).
|
||||
func (curve *KoblitzCurve) splitK(k []byte) ([]byte, []byte, int, int) {
|
||||
// All math here is done with big.Int, which is slow.
|
||||
// At some point, it might be useful to write something similar to
|
||||
// fieldVal but for N instead of P as the prime field if this ends up
|
||||
// being a bottleneck.
|
||||
bigIntK := new(big.Int)
|
||||
c1, c2 := new(big.Int), new(big.Int)
|
||||
tmp1, tmp2 := new(big.Int), new(big.Int)
|
||||
k1, k2 := new(big.Int), new(big.Int)
|
||||
|
||||
bigIntK.SetBytes(k)
|
||||
// c1 = round(b2 * k / n) from step 4.
|
||||
// Rounding isn't really necessary and costs too much, hence skipped
|
||||
c1.Mul(curve.b2, bigIntK)
|
||||
c1.Div(c1, curve.N)
|
||||
// c2 = round(b1 * k / n) from step 4 (sign reversed to optimize one step)
|
||||
// Rounding isn't really necessary and costs too much, hence skipped
|
||||
c2.Mul(curve.b1, bigIntK)
|
||||
c2.Div(c2, curve.N)
|
||||
// k1 = k - c1 * a1 - c2 * a2 from step 5 (note c2's sign is reversed)
|
||||
tmp1.Mul(c1, curve.a1)
|
||||
tmp2.Mul(c2, curve.a2)
|
||||
k1.Sub(bigIntK, tmp1)
|
||||
k1.Add(k1, tmp2)
|
||||
// k2 = - c1 * b1 - c2 * b2 from step 5 (note c2's sign is reversed)
|
||||
tmp1.Mul(c1, curve.b1)
|
||||
tmp2.Mul(c2, curve.b2)
|
||||
k2.Sub(tmp2, tmp1)
|
||||
|
||||
// Note Bytes() throws out the sign of k1 and k2. This matters
|
||||
// since k1 and/or k2 can be negative. Hence, we pass that
|
||||
// back separately.
|
||||
return k1.Bytes(), k2.Bytes(), k1.Sign(), k2.Sign()
|
||||
}
|
||||
|
||||
// moduloReduce reduces k from more than 32 bytes to 32 bytes and under. This
|
||||
// is done by doing a simple modulo curve.N. We can do this since G^N = 1 and
|
||||
// thus any other valid point on the elliptic curve has the same order.
|
||||
func (curve *KoblitzCurve) moduloReduce(k []byte) []byte {
|
||||
// Since the order of G is curve.N, we can use a much smaller number
|
||||
// by doing modulo curve.N
|
||||
if len(k) > curve.byteSize {
|
||||
// Reduce k by performing modulo curve.N.
|
||||
tmpK := new(big.Int).SetBytes(k)
|
||||
tmpK.Mod(tmpK, curve.N)
|
||||
return tmpK.Bytes()
|
||||
}
|
||||
|
||||
return k
|
||||
}
|
||||
|
||||
// NAF takes a positive integer k and returns the Non-Adjacent Form (NAF) as two
|
||||
// byte slices. The first is where 1s will be. The second is where -1s will
|
||||
// be. NAF is convenient in that on average, only 1/3rd of its values are
|
||||
// non-zero. This is algorithm 3.30 from [GECC].
|
||||
//
|
||||
// Essentially, this makes it possible to minimize the number of operations
|
||||
// since the resulting ints returned will be at least 50% 0s.
|
||||
func NAF(k []byte) ([]byte, []byte) {
|
||||
// The essence of this algorithm is that whenever we have consecutive 1s
|
||||
// in the binary, we want to put a -1 in the lowest bit and get a bunch
|
||||
// of 0s up to the highest bit of consecutive 1s. This is due to this
|
||||
// identity:
|
||||
// 2^n + 2^(n-1) + 2^(n-2) + ... + 2^(n-k) = 2^(n+1) - 2^(n-k)
|
||||
//
|
||||
// The algorithm thus may need to go 1 more bit than the length of the
|
||||
// bits we actually have, hence bits being 1 bit longer than was
|
||||
// necessary. Since we need to know whether adding will cause a carry,
|
||||
// we go from right-to-left in this addition.
|
||||
var carry, curIsOne, nextIsOne bool
|
||||
// these default to zero
|
||||
retPos := make([]byte, len(k)+1)
|
||||
retNeg := make([]byte, len(k)+1)
|
||||
for i := len(k) - 1; i >= 0; i-- {
|
||||
curByte := k[i]
|
||||
for j := uint(0); j < 8; j++ {
|
||||
curIsOne = curByte&1 == 1
|
||||
if j == 7 {
|
||||
if i == 0 {
|
||||
nextIsOne = false
|
||||
} else {
|
||||
nextIsOne = k[i-1]&1 == 1
|
||||
}
|
||||
} else {
|
||||
nextIsOne = curByte&2 == 2
|
||||
}
|
||||
if carry {
|
||||
if curIsOne {
|
||||
// This bit is 1, so continue to carry
|
||||
// and don't need to do anything.
|
||||
} else {
|
||||
// We've hit a 0 after some number of
|
||||
// 1s.
|
||||
if nextIsOne {
|
||||
// Start carrying again since
|
||||
// a new sequence of 1s is
|
||||
// starting.
|
||||
retNeg[i+1] += 1 << j
|
||||
} else {
|
||||
// Stop carrying since 1s have
|
||||
// stopped.
|
||||
carry = false
|
||||
retPos[i+1] += 1 << j
|
||||
}
|
||||
}
|
||||
} else if curIsOne {
|
||||
if nextIsOne {
|
||||
// If this is the start of at least 2
|
||||
// consecutive 1s, set the current one
|
||||
// to -1 and start carrying.
|
||||
retNeg[i+1] += 1 << j
|
||||
carry = true
|
||||
} else {
|
||||
// This is a singleton, not consecutive
|
||||
// 1s.
|
||||
retPos[i+1] += 1 << j
|
||||
}
|
||||
}
|
||||
curByte >>= 1
|
||||
}
|
||||
}
|
||||
if carry {
|
||||
retPos[0] = 1
|
||||
return retPos, retNeg
|
||||
}
|
||||
return retPos[1:], retNeg[1:]
|
||||
}
|
||||
|
||||
// ScalarMult returns k*(Bx, By) where k is a big endian integer.
|
||||
// Part of the elliptic.Curve interface.
|
||||
func (curve *KoblitzCurve) ScalarMult(Bx, By *big.Int, k []byte) (*big.Int, *big.Int) {
|
||||
// Point Q = ∞ (point at infinity).
|
||||
qx, qy, qz := new(fieldVal), new(fieldVal), new(fieldVal)
|
||||
|
||||
// Decompose K into k1 and k2 in order to halve the number of EC ops.
|
||||
// See Algorithm 3.74 in [GECC].
|
||||
k1, k2, signK1, signK2 := curve.splitK(curve.moduloReduce(k))
|
||||
|
||||
// The main equation here to remember is:
|
||||
// k * P = k1 * P + k2 * ϕ(P)
|
||||
//
|
||||
// P1 below is P in the equation, P2 below is ϕ(P) in the equation
|
||||
p1x, p1y := curve.bigAffineToField(Bx, By)
|
||||
p1yNeg := new(fieldVal).NegateVal(p1y, 1)
|
||||
p1z := new(fieldVal).SetInt(1)
|
||||
|
||||
// NOTE: ϕ(x,y) = (βx,y). The Jacobian z coordinate is 1, so this math
|
||||
// goes through.
|
||||
p2x := new(fieldVal).Mul2(p1x, curve.beta)
|
||||
p2y := new(fieldVal).Set(p1y)
|
||||
p2yNeg := new(fieldVal).NegateVal(p2y, 1)
|
||||
p2z := new(fieldVal).SetInt(1)
|
||||
|
||||
// Flip the positive and negative values of the points as needed
|
||||
// depending on the signs of k1 and k2. As mentioned in the equation
|
||||
// above, each of k1 and k2 are multiplied by the respective point.
|
||||
// Since -k * P is the same thing as k * -P, and the group law for
|
||||
// elliptic curves states that P(x, y) = -P(x, -y), it's faster and
|
||||
// simplifies the code to just make the point negative.
|
||||
if signK1 == -1 {
|
||||
p1y, p1yNeg = p1yNeg, p1y
|
||||
}
|
||||
if signK2 == -1 {
|
||||
p2y, p2yNeg = p2yNeg, p2y
|
||||
}
|
||||
|
||||
// NAF versions of k1 and k2 should have a lot more zeros.
|
||||
//
|
||||
// The Pos version of the bytes contain the +1s and the Neg versions
|
||||
// contain the -1s.
|
||||
k1PosNAF, k1NegNAF := NAF(k1)
|
||||
k2PosNAF, k2NegNAF := NAF(k2)
|
||||
k1Len := len(k1PosNAF)
|
||||
k2Len := len(k2PosNAF)
|
||||
|
||||
m := k1Len
|
||||
if m < k2Len {
|
||||
m = k2Len
|
||||
}
|
||||
|
||||
// Add left-to-right using the NAF optimization. See algorithm 3.77
|
||||
// from [GECC]. This should be faster overall since there will be a lot
|
||||
// more instances of 0, hence reducing the number of Jacobian additions
|
||||
// at the cost of 1 possible extra doubling.
|
||||
var k1BytePos, k1ByteNeg, k2BytePos, k2ByteNeg byte
|
||||
for i := 0; i < m; i++ {
|
||||
// Since we're going left-to-right, pad the front with 0s.
|
||||
if i < m-k1Len {
|
||||
k1BytePos = 0
|
||||
k1ByteNeg = 0
|
||||
} else {
|
||||
k1BytePos = k1PosNAF[i-(m-k1Len)]
|
||||
k1ByteNeg = k1NegNAF[i-(m-k1Len)]
|
||||
}
|
||||
if i < m-k2Len {
|
||||
k2BytePos = 0
|
||||
k2ByteNeg = 0
|
||||
} else {
|
||||
k2BytePos = k2PosNAF[i-(m-k2Len)]
|
||||
k2ByteNeg = k2NegNAF[i-(m-k2Len)]
|
||||
}
|
||||
|
||||
for j := 7; j >= 0; j-- {
|
||||
// Q = 2 * Q
|
||||
curve.doubleJacobian(qx, qy, qz, qx, qy, qz)
|
||||
|
||||
if k1BytePos&0x80 == 0x80 {
|
||||
curve.addJacobian(qx, qy, qz, p1x, p1y, p1z,
|
||||
qx, qy, qz)
|
||||
} else if k1ByteNeg&0x80 == 0x80 {
|
||||
curve.addJacobian(qx, qy, qz, p1x, p1yNeg, p1z,
|
||||
qx, qy, qz)
|
||||
}
|
||||
|
||||
if k2BytePos&0x80 == 0x80 {
|
||||
curve.addJacobian(qx, qy, qz, p2x, p2y, p2z,
|
||||
qx, qy, qz)
|
||||
} else if k2ByteNeg&0x80 == 0x80 {
|
||||
curve.addJacobian(qx, qy, qz, p2x, p2yNeg, p2z,
|
||||
qx, qy, qz)
|
||||
}
|
||||
k1BytePos <<= 1
|
||||
k1ByteNeg <<= 1
|
||||
k2BytePos <<= 1
|
||||
k2ByteNeg <<= 1
|
||||
}
|
||||
}
|
||||
|
||||
// Convert the Jacobian coordinate field values back to affine big.Ints.
|
||||
return curve.fieldJacobianToBigAffine(qx, qy, qz)
|
||||
}
|
||||
|
||||
// ScalarBaseMult returns k*G where G is the base point of the group and k is a
|
||||
// big endian integer.
|
||||
// Part of the elliptic.Curve interface.
|
||||
func (curve *KoblitzCurve) ScalarBaseMult(k []byte) (*big.Int, *big.Int) {
|
||||
newK := curve.moduloReduce(k)
|
||||
diff := len(curve.bytePoints) - len(newK)
|
||||
|
||||
// Point Q = ∞ (point at infinity).
|
||||
qx, qy, qz := new(fieldVal), new(fieldVal), new(fieldVal)
|
||||
|
||||
// curve.bytePoints has all 256 byte points for each 8-bit window. The
|
||||
// strategy is to add up the byte points. This is best understood by
|
||||
// expressing k in base-256 which it already sort of is.
|
||||
// Each "digit" in the 8-bit window can be looked up using bytePoints
|
||||
// and added together.
|
||||
for i, byteVal := range newK {
|
||||
p := curve.bytePoints[diff+i][byteVal]
|
||||
curve.addJacobian(qx, qy, qz, &p[0], &p[1], &p[2], qx, qy, qz)
|
||||
}
|
||||
return curve.fieldJacobianToBigAffine(qx, qy, qz)
|
||||
}
|
||||
|
||||
// QPlus1Div4 returns the (P+1)/4 constant for the curve for use in calculating
|
||||
// square roots via exponentiation.
|
||||
//
|
||||
// DEPRECATED: The actual value returned is (P+1)/4, where as the original
|
||||
// method name implies that this value is (((P+1)/4)+1)/4. This method is kept
|
||||
// to maintain backwards compatibility of the API. Use Q() instead.
|
||||
func (curve *KoblitzCurve) QPlus1Div4() *big.Int {
|
||||
return curve.q
|
||||
}
|
||||
|
||||
// Q returns the (P+1)/4 constant for the curve for use in calculating square
|
||||
// roots via exponentiation.
|
||||
func (curve *KoblitzCurve) Q() *big.Int {
|
||||
return curve.q
|
||||
}
|
||||
|
||||
var initonce sync.Once
|
||||
var secp256k1 KoblitzCurve
|
||||
|
||||
func initAll() {
|
||||
initS256()
|
||||
}
|
||||
|
||||
// fromHex converts the passed hex string into a big integer pointer and will
|
||||
// panic is there is an error. This is only provided for the hard-coded
|
||||
// constants so errors in the source code can bet detected. It will only (and
|
||||
// must only) be called for initialization purposes.
|
||||
func fromHex(s string) *big.Int {
|
||||
r, ok := new(big.Int).SetString(s, 16)
|
||||
if !ok {
|
||||
panic("invalid hex in source file: " + s)
|
||||
}
|
||||
return r
|
||||
}
|
||||
|
||||
func initS256() {
|
||||
// Curve parameters taken from [SECG] section 2.4.1.
|
||||
secp256k1.CurveParams = new(elliptic.CurveParams)
|
||||
secp256k1.P = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F")
|
||||
secp256k1.N = fromHex("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141")
|
||||
secp256k1.B = fromHex("0000000000000000000000000000000000000000000000000000000000000007")
|
||||
secp256k1.Gx = fromHex("79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798")
|
||||
secp256k1.Gy = fromHex("483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8")
|
||||
secp256k1.BitSize = 256
|
||||
// Curve name taken from https://safecurves.cr.yp.to/.
|
||||
secp256k1.Name = "secp256k1"
|
||||
secp256k1.q = new(big.Int).Div(new(big.Int).Add(secp256k1.P,
|
||||
big.NewInt(1)), big.NewInt(4))
|
||||
secp256k1.H = 1
|
||||
secp256k1.halfOrder = new(big.Int).Rsh(secp256k1.N, 1)
|
||||
secp256k1.fieldB = new(fieldVal).SetByteSlice(secp256k1.B.Bytes())
|
||||
|
||||
// Provided for convenience since this gets computed repeatedly.
|
||||
secp256k1.byteSize = secp256k1.BitSize / 8
|
||||
|
||||
// Deserialize and set the pre-computed table used to accelerate scalar
|
||||
// base multiplication. This is hard-coded data, so any errors are
|
||||
// panics because it means something is wrong in the source code.
|
||||
if err := loadS256BytePoints(); err != nil {
|
||||
panic(err)
|
||||
}
|
||||
|
||||
// Next 6 constants are from Hal Finney's bitcointalk.org post:
|
||||
// https://bitcointalk.org/index.php?topic=3238.msg45565#msg45565
|
||||
// May he rest in peace.
|
||||
//
|
||||
// They have also been independently derived from the code in the
|
||||
// EndomorphismVectors function in gensecp256k1.go.
|
||||
secp256k1.lambda = fromHex("5363AD4CC05C30E0A5261C028812645A122E22EA20816678DF02967C1B23BD72")
|
||||
secp256k1.beta = new(fieldVal).SetHex("7AE96A2B657C07106E64479EAC3434E99CF0497512F58995C1396C28719501EE")
|
||||
secp256k1.a1 = fromHex("3086D221A7D46BCDE86C90E49284EB15")
|
||||
secp256k1.b1 = fromHex("-E4437ED6010E88286F547FA90ABFE4C3")
|
||||
secp256k1.a2 = fromHex("114CA50F7A8E2F3F657C1108D9D44CFD8")
|
||||
secp256k1.b2 = fromHex("3086D221A7D46BCDE86C90E49284EB15")
|
||||
|
||||
// Alternatively, we can use the parameters below, however, they seem
|
||||
// to be about 8% slower.
|
||||
// secp256k1.lambda = fromHex("AC9C52B33FA3CF1F5AD9E3FD77ED9BA4A880B9FC8EC739C2E0CFC810B51283CE")
|
||||
// secp256k1.beta = new(fieldVal).SetHex("851695D49A83F8EF919BB86153CBCB16630FB68AED0A766A3EC693D68E6AFA40")
|
||||
// secp256k1.a1 = fromHex("E4437ED6010E88286F547FA90ABFE4C3")
|
||||
// secp256k1.b1 = fromHex("-3086D221A7D46BCDE86C90E49284EB15")
|
||||
// secp256k1.a2 = fromHex("3086D221A7D46BCDE86C90E49284EB15")
|
||||
// secp256k1.b2 = fromHex("114CA50F7A8E2F3F657C1108D9D44CFD8")
|
||||
}
|
||||
// KoblitzCurve provides an implementation for secp256k1 that fits the ECC
|
||||
// Curve interface from crypto/elliptic.
|
||||
type KoblitzCurve = secp.KoblitzCurve
|
||||
|
||||
// S256 returns a Curve which implements secp256k1.
|
||||
func S256() *KoblitzCurve {
|
||||
initonce.Do(initAll)
|
||||
return &secp256k1
|
||||
return secp.S256()
|
||||
}
|
||||
|
||||
// CurveParams contains the parameters for the secp256k1 curve.
|
||||
type CurveParams = secp.CurveParams
|
||||
|
||||
// Params returns the secp256k1 curve parameters for convenience.
|
||||
func Params() *CurveParams {
|
||||
return secp.Params()
|
||||
}
|
||||
|
@ -15,17 +15,17 @@ import (
|
||||
|
||||
// isJacobianOnS256Curve returns boolean if the point (x,y,z) is on the
|
||||
// secp256k1 curve.
|
||||
func isJacobianOnS256Curve(x, y, z *fieldVal) bool {
|
||||
func isJacobianOnS256Curve(point *JacobianPoint) bool {
|
||||
// Elliptic curve equation for secp256k1 is: y^2 = x^3 + 7
|
||||
// In Jacobian coordinates, Y = y/z^3 and X = x/z^2
|
||||
// Thus:
|
||||
// (y/z^3)^2 = (x/z^2)^3 + 7
|
||||
// y^2/z^6 = x^3/z^6 + 7
|
||||
// y^2 = x^3 + 7*z^6
|
||||
var y2, z2, x3, result fieldVal
|
||||
y2.SquareVal(y).Normalize()
|
||||
z2.SquareVal(z)
|
||||
x3.SquareVal(x).Mul(x)
|
||||
var y2, z2, x3, result FieldVal
|
||||
y2.SquareVal(&point.Y).Normalize()
|
||||
z2.SquareVal(&point.Z)
|
||||
x3.SquareVal(&point.X).Mul(&point.X)
|
||||
result.SquareVal(&z2).Mul(&z2).MulInt(7).Add(&x3).Normalize()
|
||||
return y2.Equals(&result)
|
||||
}
|
||||
@ -222,43 +222,37 @@ func TestAddJacobian(t *testing.T) {
|
||||
|
||||
t.Logf("Running %d tests", len(tests))
|
||||
for i, test := range tests {
|
||||
// Convert hex to field values.
|
||||
x1 := new(fieldVal).SetHex(test.x1)
|
||||
y1 := new(fieldVal).SetHex(test.y1)
|
||||
z1 := new(fieldVal).SetHex(test.z1)
|
||||
x2 := new(fieldVal).SetHex(test.x2)
|
||||
y2 := new(fieldVal).SetHex(test.y2)
|
||||
z2 := new(fieldVal).SetHex(test.z2)
|
||||
x3 := new(fieldVal).SetHex(test.x3)
|
||||
y3 := new(fieldVal).SetHex(test.y3)
|
||||
z3 := new(fieldVal).SetHex(test.z3)
|
||||
// Convert hex to Jacobian points.
|
||||
p1 := jacobianPointFromHex(test.x1, test.y1, test.z1)
|
||||
p2 := jacobianPointFromHex(test.x2, test.y2, test.z2)
|
||||
want := jacobianPointFromHex(test.x3, test.y3, test.z3)
|
||||
|
||||
// Ensure the test data is using points that are actually on
|
||||
// the curve (or the point at infinity).
|
||||
if !z1.IsZero() && !isJacobianOnS256Curve(x1, y1, z1) {
|
||||
if !p1.Z.IsZero() && !isJacobianOnS256Curve(&p1) {
|
||||
t.Errorf("#%d first point is not on the curve -- "+
|
||||
"invalid test data", i)
|
||||
continue
|
||||
}
|
||||
if !z2.IsZero() && !isJacobianOnS256Curve(x2, y2, z2) {
|
||||
if !p2.Z.IsZero() && !isJacobianOnS256Curve(&p2) {
|
||||
t.Errorf("#%d second point is not on the curve -- "+
|
||||
"invalid test data", i)
|
||||
continue
|
||||
}
|
||||
if !z3.IsZero() && !isJacobianOnS256Curve(x3, y3, z3) {
|
||||
if !want.Z.IsZero() && !isJacobianOnS256Curve(&want) {
|
||||
t.Errorf("#%d expected point is not on the curve -- "+
|
||||
"invalid test data", i)
|
||||
continue
|
||||
}
|
||||
|
||||
// Add the two points.
|
||||
rx, ry, rz := new(fieldVal), new(fieldVal), new(fieldVal)
|
||||
S256().addJacobian(x1, y1, z1, x2, y2, z2, rx, ry, rz)
|
||||
var r JacobianPoint
|
||||
AddNonConst(&p1, &p2, &r)
|
||||
|
||||
// Ensure result matches expected.
|
||||
if !rx.Equals(x3) || !ry.Equals(y3) || !rz.Equals(z3) {
|
||||
if !r.X.Equals(&want.X) || !r.Y.Equals(&want.Y) || !r.Z.Equals(&want.Z) {
|
||||
t.Errorf("#%d wrong result\ngot: (%v, %v, %v)\n"+
|
||||
"want: (%v, %v, %v)", i, rx, ry, rz, x3, y3, z3)
|
||||
"want: (%v, %v, %v)", i, r.X, r.Y, r.Z, want.X, want.Y, want.Z)
|
||||
continue
|
||||
}
|
||||
}
|
||||
@ -360,6 +354,15 @@ func TestAddAffine(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
// isStrictlyEqual returns whether or not the two Jacobian points are strictly
|
||||
// equal for use in the tests. Recall that several Jacobian points can be
|
||||
// equal in affine coordinates, while not having the same coordinates in
|
||||
// projective space, so the two points not being equal doesn't necessarily mean
|
||||
// they aren't actually the same affine point.
|
||||
func isStrictlyEqual(p, other *JacobianPoint) bool {
|
||||
return p.X.Equals(&other.X) && p.Y.Equals(&other.Y) && p.Z.Equals(&other.Z)
|
||||
}
|
||||
|
||||
// TestDoubleJacobian tests doubling of points projected in Jacobian
|
||||
// coordinates.
|
||||
func TestDoubleJacobian(t *testing.T) {
|
||||
@ -408,34 +411,31 @@ func TestDoubleJacobian(t *testing.T) {
|
||||
t.Logf("Running %d tests", len(tests))
|
||||
for i, test := range tests {
|
||||
// Convert hex to field values.
|
||||
x1 := new(fieldVal).SetHex(test.x1)
|
||||
y1 := new(fieldVal).SetHex(test.y1)
|
||||
z1 := new(fieldVal).SetHex(test.z1)
|
||||
x3 := new(fieldVal).SetHex(test.x3)
|
||||
y3 := new(fieldVal).SetHex(test.y3)
|
||||
z3 := new(fieldVal).SetHex(test.z3)
|
||||
p1 := jacobianPointFromHex(test.x1, test.y1, test.z1)
|
||||
want := jacobianPointFromHex(test.x3, test.y3, test.z3)
|
||||
|
||||
// Ensure the test data is using points that are actually on
|
||||
// the curve (or the point at infinity).
|
||||
if !z1.IsZero() && !isJacobianOnS256Curve(x1, y1, z1) {
|
||||
if !p1.Z.IsZero() && !isJacobianOnS256Curve(&p1) {
|
||||
t.Errorf("#%d first point is not on the curve -- "+
|
||||
"invalid test data", i)
|
||||
continue
|
||||
}
|
||||
if !z3.IsZero() && !isJacobianOnS256Curve(x3, y3, z3) {
|
||||
if !want.Z.IsZero() && !isJacobianOnS256Curve(&want) {
|
||||
t.Errorf("#%d expected point is not on the curve -- "+
|
||||
"invalid test data", i)
|
||||
continue
|
||||
}
|
||||
|
||||
// Double the point.
|
||||
rx, ry, rz := new(fieldVal), new(fieldVal), new(fieldVal)
|
||||
S256().doubleJacobian(x1, y1, z1, rx, ry, rz)
|
||||
var result JacobianPoint
|
||||
DoubleNonConst(&p1, &result)
|
||||
|
||||
// Ensure result matches expected.
|
||||
if !rx.Equals(x3) || !ry.Equals(y3) || !rz.Equals(z3) {
|
||||
if !isStrictlyEqual(&result, &want) {
|
||||
t.Errorf("#%d wrong result\ngot: (%v, %v, %v)\n"+
|
||||
"want: (%v, %v, %v)", i, rx, ry, rz, x3, y3, z3)
|
||||
"want: (%v, %v, %v)", i, result.X, result.Y, result.Z,
|
||||
want.X, want.Y, want.Z)
|
||||
continue
|
||||
}
|
||||
}
|
||||
@ -663,6 +663,64 @@ func TestScalarMultRand(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
var (
|
||||
// Next 6 constants are from Hal Finney's bitcointalk.org post:
|
||||
// https://bitcointalk.org/index.php?topic=3238.msg45565#msg45565
|
||||
// May he rest in peace.
|
||||
//
|
||||
// They have also been independently derived from the code in the
|
||||
// EndomorphismVectors function in genstatics.go.
|
||||
endomorphismLambda = fromHex("5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72")
|
||||
endomorphismBeta = hexToFieldVal("7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee")
|
||||
endomorphismA1 = fromHex("3086d221a7d46bcde86c90e49284eb15")
|
||||
endomorphismB1 = fromHex("-e4437ed6010e88286f547fa90abfe4c3")
|
||||
endomorphismA2 = fromHex("114ca50f7a8e2f3f657c1108d9d44cfd8")
|
||||
endomorphismB2 = fromHex("3086d221a7d46bcde86c90e49284eb15")
|
||||
)
|
||||
|
||||
// splitK returns a balanced length-two representation of k and their signs.
|
||||
// This is algorithm 3.74 from [GECC].
|
||||
//
|
||||
// One thing of note about this algorithm is that no matter what c1 and c2 are,
|
||||
// the final equation of k = k1 + k2 * lambda (mod n) will hold. This is
|
||||
// provable mathematically due to how a1/b1/a2/b2 are computed.
|
||||
//
|
||||
// c1 and c2 are chosen to minimize the max(k1,k2).
|
||||
func splitK(k []byte) ([]byte, []byte, int, int) {
|
||||
// All math here is done with big.Int, which is slow.
|
||||
// At some point, it might be useful to write something similar to
|
||||
// FieldVal but for N instead of P as the prime field if this ends up
|
||||
// being a bottleneck.
|
||||
bigIntK := new(big.Int)
|
||||
c1, c2 := new(big.Int), new(big.Int)
|
||||
tmp1, tmp2 := new(big.Int), new(big.Int)
|
||||
k1, k2 := new(big.Int), new(big.Int)
|
||||
|
||||
bigIntK.SetBytes(k)
|
||||
// c1 = round(b2 * k / n) from step 4.
|
||||
// Rounding isn't really necessary and costs too much, hence skipped
|
||||
c1.Mul(endomorphismB2, bigIntK)
|
||||
c1.Div(c1, Params().N)
|
||||
// c2 = round(b1 * k / n) from step 4 (sign reversed to optimize one step)
|
||||
// Rounding isn't really necessary and costs too much, hence skipped
|
||||
c2.Mul(endomorphismB1, bigIntK)
|
||||
c2.Div(c2, Params().N)
|
||||
// k1 = k - c1 * a1 - c2 * a2 from step 5 (note c2's sign is reversed)
|
||||
tmp1.Mul(c1, endomorphismA1)
|
||||
tmp2.Mul(c2, endomorphismA2)
|
||||
k1.Sub(bigIntK, tmp1)
|
||||
k1.Add(k1, tmp2)
|
||||
// k2 = - c1 * b1 - c2 * b2 from step 5 (note c2's sign is reversed)
|
||||
tmp1.Mul(c1, endomorphismB1)
|
||||
tmp2.Mul(c2, endomorphismB2)
|
||||
k2.Sub(tmp2, tmp1)
|
||||
|
||||
// Note Bytes() throws out the sign of k1 and k2. This matters
|
||||
// since k1 and/or k2 can be negative. Hence, we pass that
|
||||
// back separately.
|
||||
return k1.Bytes(), k2.Bytes(), k1.Sign(), k2.Sign()
|
||||
}
|
||||
|
||||
func TestSplitK(t *testing.T) {
|
||||
tests := []struct {
|
||||
k string
|
||||
@ -719,7 +777,7 @@ func TestSplitK(t *testing.T) {
|
||||
if !ok {
|
||||
t.Errorf("%d: bad value for k: %s", i, test.k)
|
||||
}
|
||||
k1, k2, k1Sign, k2Sign := s256.splitK(k.Bytes())
|
||||
k1, k2, k1Sign, k2Sign := splitK(k.Bytes())
|
||||
k1str := fmt.Sprintf("%064x", k1)
|
||||
if test.k1 != k1str {
|
||||
t.Errorf("%d: bad k1: got %v, want %v", i, k1str, test.k1)
|
||||
@ -740,7 +798,7 @@ func TestSplitK(t *testing.T) {
|
||||
k2Int := new(big.Int).SetBytes(k2)
|
||||
k2SignInt := new(big.Int).SetInt64(int64(k2Sign))
|
||||
k2Int.Mul(k2Int, k2SignInt)
|
||||
gotK := new(big.Int).Mul(k2Int, s256.lambda)
|
||||
gotK := new(big.Int).Mul(k2Int, endomorphismLambda)
|
||||
gotK.Add(k1Int, gotK)
|
||||
gotK.Mod(gotK, s256.N)
|
||||
if k.Cmp(gotK) != 0 {
|
||||
@ -759,14 +817,14 @@ func TestSplitKRand(t *testing.T) {
|
||||
break
|
||||
}
|
||||
k := new(big.Int).SetBytes(bytesK)
|
||||
k1, k2, k1Sign, k2Sign := s256.splitK(bytesK)
|
||||
k1, k2, k1Sign, k2Sign := splitK(bytesK)
|
||||
k1Int := new(big.Int).SetBytes(k1)
|
||||
k1SignInt := new(big.Int).SetInt64(int64(k1Sign))
|
||||
k1Int.Mul(k1Int, k1SignInt)
|
||||
k2Int := new(big.Int).SetBytes(k2)
|
||||
k2SignInt := new(big.Int).SetInt64(int64(k2Sign))
|
||||
k2Int.Mul(k2Int, k2SignInt)
|
||||
gotK := new(big.Int).Mul(k2Int, s256.lambda)
|
||||
gotK := new(big.Int).Mul(k2Int, endomorphismLambda)
|
||||
gotK.Add(k1Int, gotK)
|
||||
gotK.Mod(gotK, s256.N)
|
||||
if k.Cmp(gotK) != 0 {
|
||||
@ -778,12 +836,13 @@ func TestSplitKRand(t *testing.T) {
|
||||
// Test this curve's usage with the ecdsa package.
|
||||
|
||||
func testKeyGeneration(t *testing.T, c *KoblitzCurve, tag string) {
|
||||
priv, err := NewPrivateKey(c)
|
||||
priv, err := NewPrivateKey()
|
||||
if err != nil {
|
||||
t.Errorf("%s: error: %s", tag, err)
|
||||
return
|
||||
}
|
||||
if !c.IsOnCurve(priv.PublicKey.X, priv.PublicKey.Y) {
|
||||
pub := priv.PubKey()
|
||||
if !c.IsOnCurve(pub.X(), pub.Y()) {
|
||||
t.Errorf("%s: public key invalid: %s", tag, err)
|
||||
}
|
||||
}
|
||||
@ -793,15 +852,11 @@ func TestKeyGeneration(t *testing.T) {
|
||||
}
|
||||
|
||||
func testSignAndVerify(t *testing.T, c *KoblitzCurve, tag string) {
|
||||
priv, _ := NewPrivateKey(c)
|
||||
priv, _ := NewPrivateKey()
|
||||
pub := priv.PubKey()
|
||||
|
||||
hashed := []byte("testing")
|
||||
sig, err := priv.Sign(hashed)
|
||||
if err != nil {
|
||||
t.Errorf("%s: error signing: %s", tag, err)
|
||||
return
|
||||
}
|
||||
sig := Sign(priv, hashed)
|
||||
|
||||
if !sig.Verify(hashed, pub) {
|
||||
t.Errorf("%s: Verify failed", tag)
|
||||
@ -817,73 +872,41 @@ func TestSignAndVerify(t *testing.T) {
|
||||
testSignAndVerify(t, S256(), "S256")
|
||||
}
|
||||
|
||||
func TestNAF(t *testing.T) {
|
||||
tests := []string{
|
||||
"6df2b5d30854069ccdec40ae022f5c948936324a4e9ebed8eb82cfd5a6b6d766",
|
||||
"b776e53fb55f6b006a270d42d64ec2b1",
|
||||
"d6cc32c857f1174b604eefc544f0c7f7",
|
||||
"45c53aa1bb56fcd68c011e2dad6758e4",
|
||||
"a2e79d200f27f2360fba57619936159b",
|
||||
}
|
||||
negOne := big.NewInt(-1)
|
||||
one := big.NewInt(1)
|
||||
two := big.NewInt(2)
|
||||
for i, test := range tests {
|
||||
want, _ := new(big.Int).SetString(test, 16)
|
||||
nafPos, nafNeg := NAF(want.Bytes())
|
||||
got := big.NewInt(0)
|
||||
// Check that the NAF representation comes up with the right number
|
||||
for i := 0; i < len(nafPos); i++ {
|
||||
bytePos := nafPos[i]
|
||||
byteNeg := nafNeg[i]
|
||||
for j := 7; j >= 0; j-- {
|
||||
got.Mul(got, two)
|
||||
if bytePos&0x80 == 0x80 {
|
||||
got.Add(got, one)
|
||||
} else if byteNeg&0x80 == 0x80 {
|
||||
got.Add(got, negOne)
|
||||
}
|
||||
bytePos <<= 1
|
||||
byteNeg <<= 1
|
||||
}
|
||||
}
|
||||
if got.Cmp(want) != 0 {
|
||||
t.Errorf("%d: Failed NAF got %X want %X", i, got, want)
|
||||
}
|
||||
// checkNAFEncoding returns an error if the provided positive and negative
|
||||
// portions of an overall NAF encoding do not adhere to the requirements or they
|
||||
// do not sum back to the provided original value.
|
||||
func checkNAFEncoding(pos, neg []byte, origValue *big.Int) error {
|
||||
// NAF must not have a leading zero byte and the number of negative
|
||||
// bytes must not exceed the positive portion.
|
||||
if len(pos) > 0 && pos[0] == 0 {
|
||||
return fmt.Errorf("positive has leading zero -- got %x", pos)
|
||||
}
|
||||
if len(neg) > len(pos) {
|
||||
return fmt.Errorf("negative has len %d > pos len %d", len(neg),
|
||||
len(pos))
|
||||
}
|
||||
|
||||
func TestNAFRand(t *testing.T) {
|
||||
negOne := big.NewInt(-1)
|
||||
one := big.NewInt(1)
|
||||
two := big.NewInt(2)
|
||||
for i := 0; i < 1024; i++ {
|
||||
data := make([]byte, 32)
|
||||
_, err := rand.Read(data)
|
||||
if err != nil {
|
||||
t.Fatalf("failed to read random data at %d", i)
|
||||
break
|
||||
// Ensure the result doesn't have any adjacent non-zero digits.
|
||||
gotPos := new(big.Int).SetBytes(pos)
|
||||
gotNeg := new(big.Int).SetBytes(neg)
|
||||
posOrNeg := new(big.Int).Or(gotPos, gotNeg)
|
||||
prevBit := posOrNeg.Bit(0)
|
||||
for bit := 1; bit < posOrNeg.BitLen(); bit++ {
|
||||
thisBit := posOrNeg.Bit(bit)
|
||||
if prevBit == 1 && thisBit == 1 {
|
||||
return fmt.Errorf("adjacent non-zero digits found at bit pos %d",
|
||||
bit-1)
|
||||
}
|
||||
nafPos, nafNeg := NAF(data)
|
||||
want := new(big.Int).SetBytes(data)
|
||||
got := big.NewInt(0)
|
||||
// Check that the NAF representation comes up with the right number
|
||||
for i := 0; i < len(nafPos); i++ {
|
||||
bytePos := nafPos[i]
|
||||
byteNeg := nafNeg[i]
|
||||
for j := 7; j >= 0; j-- {
|
||||
got.Mul(got, two)
|
||||
if bytePos&0x80 == 0x80 {
|
||||
got.Add(got, one)
|
||||
} else if byteNeg&0x80 == 0x80 {
|
||||
got.Add(got, negOne)
|
||||
}
|
||||
bytePos <<= 1
|
||||
byteNeg <<= 1
|
||||
}
|
||||
}
|
||||
if got.Cmp(want) != 0 {
|
||||
t.Errorf("%d: Failed NAF got %X want %X", i, got, want)
|
||||
prevBit = thisBit
|
||||
}
|
||||
|
||||
// Ensure the resulting positive and negative portions of the overall
|
||||
// NAF representation sum back to the original value.
|
||||
gotValue := new(big.Int).Sub(gotPos, gotNeg)
|
||||
if origValue.Cmp(gotValue) != 0 {
|
||||
return fmt.Errorf("pos-neg is not original value: got %x, want %x",
|
||||
gotValue, origValue)
|
||||
}
|
||||
|
||||
return nil
|
||||
}
|
||||
|
@ -5,212 +5,12 @@
|
||||
package btcec
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto/aes"
|
||||
"crypto/cipher"
|
||||
"crypto/hmac"
|
||||
"crypto/rand"
|
||||
"crypto/sha256"
|
||||
"crypto/sha512"
|
||||
"errors"
|
||||
"io"
|
||||
)
|
||||
|
||||
var (
|
||||
// ErrInvalidMAC occurs when Message Authentication Check (MAC) fails
|
||||
// during decryption. This happens because of either invalid private key or
|
||||
// corrupt ciphertext.
|
||||
ErrInvalidMAC = errors.New("invalid mac hash")
|
||||
|
||||
// errInputTooShort occurs when the input ciphertext to the Decrypt
|
||||
// function is less than 134 bytes long.
|
||||
errInputTooShort = errors.New("ciphertext too short")
|
||||
|
||||
// errUnsupportedCurve occurs when the first two bytes of the encrypted
|
||||
// text aren't 0x02CA (= 712 = secp256k1, from OpenSSL).
|
||||
errUnsupportedCurve = errors.New("unsupported curve")
|
||||
|
||||
errInvalidXLength = errors.New("invalid X length, must be 32")
|
||||
errInvalidYLength = errors.New("invalid Y length, must be 32")
|
||||
errInvalidPadding = errors.New("invalid PKCS#7 padding")
|
||||
|
||||
// 0x02CA = 714
|
||||
ciphCurveBytes = [2]byte{0x02, 0xCA}
|
||||
// 0x20 = 32
|
||||
ciphCoordLength = [2]byte{0x00, 0x20}
|
||||
secp "github.com/decred/dcrd/dcrec/secp256k1/v4"
|
||||
)
|
||||
|
||||
// GenerateSharedSecret generates a shared secret based on a private key and a
|
||||
// public key using Diffie-Hellman key exchange (ECDH) (RFC 4753).
|
||||
// RFC5903 Section 9 states we should only return x.
|
||||
func GenerateSharedSecret(privkey *PrivateKey, pubkey *PublicKey) []byte {
|
||||
x, _ := pubkey.Curve.ScalarMult(pubkey.X, pubkey.Y, privkey.D.Bytes())
|
||||
return x.Bytes()
|
||||
}
|
||||
|
||||
// Encrypt encrypts data for the target public key using AES-256-CBC. It also
|
||||
// generates a private key (the pubkey of which is also in the output). The only
|
||||
// supported curve is secp256k1. The `structure' that it encodes everything into
|
||||
// is:
|
||||
//
|
||||
// struct {
|
||||
// // Initialization Vector used for AES-256-CBC
|
||||
// IV [16]byte
|
||||
// // Public Key: curve(2) + len_of_pubkeyX(2) + pubkeyX +
|
||||
// // len_of_pubkeyY(2) + pubkeyY (curve = 714)
|
||||
// PublicKey [70]byte
|
||||
// // Cipher text
|
||||
// Data []byte
|
||||
// // HMAC-SHA-256 Message Authentication Code
|
||||
// HMAC [32]byte
|
||||
// }
|
||||
//
|
||||
// The primary aim is to ensure byte compatibility with Pyelliptic. Also, refer
|
||||
// to section 5.8.1 of ANSI X9.63 for rationale on this format.
|
||||
func Encrypt(pubkey *PublicKey, in []byte) ([]byte, error) {
|
||||
ephemeral, err := NewPrivateKey(S256())
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
ecdhKey := GenerateSharedSecret(ephemeral, pubkey)
|
||||
derivedKey := sha512.Sum512(ecdhKey)
|
||||
keyE := derivedKey[:32]
|
||||
keyM := derivedKey[32:]
|
||||
|
||||
paddedIn := addPKCSPadding(in)
|
||||
// IV + Curve params/X/Y + padded plaintext/ciphertext + HMAC-256
|
||||
out := make([]byte, aes.BlockSize+70+len(paddedIn)+sha256.Size)
|
||||
iv := out[:aes.BlockSize]
|
||||
if _, err = io.ReadFull(rand.Reader, iv); err != nil {
|
||||
return nil, err
|
||||
}
|
||||
// start writing public key
|
||||
pb := ephemeral.PubKey().SerializeUncompressed()
|
||||
offset := aes.BlockSize
|
||||
|
||||
// curve and X length
|
||||
copy(out[offset:offset+4], append(ciphCurveBytes[:], ciphCoordLength[:]...))
|
||||
offset += 4
|
||||
// X
|
||||
copy(out[offset:offset+32], pb[1:33])
|
||||
offset += 32
|
||||
// Y length
|
||||
copy(out[offset:offset+2], ciphCoordLength[:])
|
||||
offset += 2
|
||||
// Y
|
||||
copy(out[offset:offset+32], pb[33:])
|
||||
offset += 32
|
||||
|
||||
// start encryption
|
||||
block, err := aes.NewCipher(keyE)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
mode := cipher.NewCBCEncrypter(block, iv)
|
||||
mode.CryptBlocks(out[offset:len(out)-sha256.Size], paddedIn)
|
||||
|
||||
// start HMAC-SHA-256
|
||||
hm := hmac.New(sha256.New, keyM)
|
||||
hm.Write(out[:len(out)-sha256.Size]) // everything is hashed
|
||||
copy(out[len(out)-sha256.Size:], hm.Sum(nil)) // write checksum
|
||||
|
||||
return out, nil
|
||||
}
|
||||
|
||||
// Decrypt decrypts data that was encrypted using the Encrypt function.
|
||||
func Decrypt(priv *PrivateKey, in []byte) ([]byte, error) {
|
||||
// IV + Curve params/X/Y + 1 block + HMAC-256
|
||||
if len(in) < aes.BlockSize+70+aes.BlockSize+sha256.Size {
|
||||
return nil, errInputTooShort
|
||||
}
|
||||
|
||||
// read iv
|
||||
iv := in[:aes.BlockSize]
|
||||
offset := aes.BlockSize
|
||||
|
||||
// start reading pubkey
|
||||
if !bytes.Equal(in[offset:offset+2], ciphCurveBytes[:]) {
|
||||
return nil, errUnsupportedCurve
|
||||
}
|
||||
offset += 2
|
||||
|
||||
if !bytes.Equal(in[offset:offset+2], ciphCoordLength[:]) {
|
||||
return nil, errInvalidXLength
|
||||
}
|
||||
offset += 2
|
||||
|
||||
xBytes := in[offset : offset+32]
|
||||
offset += 32
|
||||
|
||||
if !bytes.Equal(in[offset:offset+2], ciphCoordLength[:]) {
|
||||
return nil, errInvalidYLength
|
||||
}
|
||||
offset += 2
|
||||
|
||||
yBytes := in[offset : offset+32]
|
||||
offset += 32
|
||||
|
||||
pb := make([]byte, 65)
|
||||
pb[0] = byte(0x04) // uncompressed
|
||||
copy(pb[1:33], xBytes)
|
||||
copy(pb[33:], yBytes)
|
||||
// check if (X, Y) lies on the curve and create a Pubkey if it does
|
||||
pubkey, err := ParsePubKey(pb, S256())
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// check for cipher text length
|
||||
if (len(in)-aes.BlockSize-offset-sha256.Size)%aes.BlockSize != 0 {
|
||||
return nil, errInvalidPadding // not padded to 16 bytes
|
||||
}
|
||||
|
||||
// read hmac
|
||||
messageMAC := in[len(in)-sha256.Size:]
|
||||
|
||||
// generate shared secret
|
||||
ecdhKey := GenerateSharedSecret(priv, pubkey)
|
||||
derivedKey := sha512.Sum512(ecdhKey)
|
||||
keyE := derivedKey[:32]
|
||||
keyM := derivedKey[32:]
|
||||
|
||||
// verify mac
|
||||
hm := hmac.New(sha256.New, keyM)
|
||||
hm.Write(in[:len(in)-sha256.Size]) // everything is hashed
|
||||
expectedMAC := hm.Sum(nil)
|
||||
if !hmac.Equal(messageMAC, expectedMAC) {
|
||||
return nil, ErrInvalidMAC
|
||||
}
|
||||
|
||||
// start decryption
|
||||
block, err := aes.NewCipher(keyE)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
mode := cipher.NewCBCDecrypter(block, iv)
|
||||
// same length as ciphertext
|
||||
plaintext := make([]byte, len(in)-offset-sha256.Size)
|
||||
mode.CryptBlocks(plaintext, in[offset:len(in)-sha256.Size])
|
||||
|
||||
return removePKCSPadding(plaintext)
|
||||
}
|
||||
|
||||
// Implement PKCS#7 padding with block size of 16 (AES block size).
|
||||
|
||||
// addPKCSPadding adds padding to a block of data
|
||||
func addPKCSPadding(src []byte) []byte {
|
||||
padding := aes.BlockSize - len(src)%aes.BlockSize
|
||||
padtext := bytes.Repeat([]byte{byte(padding)}, padding)
|
||||
return append(src, padtext...)
|
||||
}
|
||||
|
||||
// removePKCSPadding removes padding from data that was added with addPKCSPadding
|
||||
func removePKCSPadding(src []byte) ([]byte, error) {
|
||||
length := len(src)
|
||||
padLength := int(src[length-1])
|
||||
if padLength > aes.BlockSize || length < aes.BlockSize {
|
||||
return nil, errInvalidPadding
|
||||
}
|
||||
|
||||
return src[:length-padLength], nil
|
||||
return secp.GenerateSharedSecret(privkey, pubkey)
|
||||
}
|
||||
|
@ -6,17 +6,16 @@ package btcec
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"encoding/hex"
|
||||
"testing"
|
||||
)
|
||||
|
||||
func TestGenerateSharedSecret(t *testing.T) {
|
||||
privKey1, err := NewPrivateKey(S256())
|
||||
privKey1, err := NewPrivateKey()
|
||||
if err != nil {
|
||||
t.Errorf("private key generation error: %s", err)
|
||||
return
|
||||
}
|
||||
privKey2, err := NewPrivateKey(S256())
|
||||
privKey2, err := NewPrivateKey()
|
||||
if err != nil {
|
||||
t.Errorf("private key generation error: %s", err)
|
||||
return
|
||||
@ -30,145 +29,3 @@ func TestGenerateSharedSecret(t *testing.T) {
|
||||
secret1, secret2)
|
||||
}
|
||||
}
|
||||
|
||||
// Test 1: Encryption and decryption
|
||||
func TestCipheringBasic(t *testing.T) {
|
||||
privkey, err := NewPrivateKey(S256())
|
||||
if err != nil {
|
||||
t.Fatal("failed to generate private key")
|
||||
}
|
||||
|
||||
in := []byte("Hey there dude. How are you doing? This is a test.")
|
||||
|
||||
out, err := Encrypt(privkey.PubKey(), in)
|
||||
if err != nil {
|
||||
t.Fatal("failed to encrypt:", err)
|
||||
}
|
||||
|
||||
dec, err := Decrypt(privkey, out)
|
||||
if err != nil {
|
||||
t.Fatal("failed to decrypt:", err)
|
||||
}
|
||||
|
||||
if !bytes.Equal(in, dec) {
|
||||
t.Error("decrypted data doesn't match original")
|
||||
}
|
||||
}
|
||||
|
||||
// Test 2: Byte compatibility with Pyelliptic
|
||||
func TestCiphering(t *testing.T) {
|
||||
pb, _ := hex.DecodeString("fe38240982f313ae5afb3e904fb8215fb11af1200592b" +
|
||||
"fca26c96c4738e4bf8f")
|
||||
privkey, _ := PrivKeyFromBytes(S256(), pb)
|
||||
|
||||
in := []byte("This is just a test.")
|
||||
out, _ := hex.DecodeString("b0d66e5adaa5ed4e2f0ca68e17b8f2fc02ca002009e3" +
|
||||
"3487e7fa4ab505cf34d98f131be7bd258391588ca7804acb30251e71a04e0020ecf" +
|
||||
"df0f84608f8add82d7353af780fbb28868c713b7813eb4d4e61f7b75d7534dd9856" +
|
||||
"9b0ba77cf14348fcff80fee10e11981f1b4be372d93923e9178972f69937ec850ed" +
|
||||
"6c3f11ff572ddd5b2bedf9f9c0b327c54da02a28fcdce1f8369ffec")
|
||||
|
||||
dec, err := Decrypt(privkey, out)
|
||||
if err != nil {
|
||||
t.Fatal("failed to decrypt:", err)
|
||||
}
|
||||
|
||||
if !bytes.Equal(in, dec) {
|
||||
t.Error("decrypted data doesn't match original")
|
||||
}
|
||||
}
|
||||
|
||||
func TestCipheringErrors(t *testing.T) {
|
||||
privkey, err := NewPrivateKey(S256())
|
||||
if err != nil {
|
||||
t.Fatal("failed to generate private key")
|
||||
}
|
||||
|
||||
tests1 := []struct {
|
||||
ciphertext []byte // input ciphertext
|
||||
}{
|
||||
{bytes.Repeat([]byte{0x00}, 133)}, // errInputTooShort
|
||||
{bytes.Repeat([]byte{0x00}, 134)}, // errUnsupportedCurve
|
||||
{bytes.Repeat([]byte{0x02, 0xCA}, 134)}, // errInvalidXLength
|
||||
{bytes.Repeat([]byte{0x02, 0xCA, 0x00, 0x20}, 134)}, // errInvalidYLength
|
||||
{[]byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // IV
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x02, 0xCA, 0x00, 0x20, // curve and X length
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // X
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x20, // Y length
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // Y
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // ciphertext
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // MAC
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
}}, // invalid pubkey
|
||||
{[]byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // IV
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x02, 0xCA, 0x00, 0x20, // curve and X length
|
||||
0x11, 0x5C, 0x42, 0xE7, 0x57, 0xB2, 0xEF, 0xB7, // X
|
||||
0x67, 0x1C, 0x57, 0x85, 0x30, 0xEC, 0x19, 0x1A,
|
||||
0x13, 0x59, 0x38, 0x1E, 0x6A, 0x71, 0x12, 0x7A,
|
||||
0x9D, 0x37, 0xC4, 0x86, 0xFD, 0x30, 0xDA, 0xE5,
|
||||
0x00, 0x20, // Y length
|
||||
0x7E, 0x76, 0xDC, 0x58, 0xF6, 0x93, 0xBD, 0x7E, // Y
|
||||
0x70, 0x10, 0x35, 0x8C, 0xE6, 0xB1, 0x65, 0xE4,
|
||||
0x83, 0xA2, 0x92, 0x10, 0x10, 0xDB, 0x67, 0xAC,
|
||||
0x11, 0xB1, 0xB5, 0x1B, 0x65, 0x19, 0x53, 0xD2,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // ciphertext
|
||||
// padding not aligned to 16 bytes
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // MAC
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
}}, // errInvalidPadding
|
||||
{[]byte{0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // IV
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x02, 0xCA, 0x00, 0x20, // curve and X length
|
||||
0x11, 0x5C, 0x42, 0xE7, 0x57, 0xB2, 0xEF, 0xB7, // X
|
||||
0x67, 0x1C, 0x57, 0x85, 0x30, 0xEC, 0x19, 0x1A,
|
||||
0x13, 0x59, 0x38, 0x1E, 0x6A, 0x71, 0x12, 0x7A,
|
||||
0x9D, 0x37, 0xC4, 0x86, 0xFD, 0x30, 0xDA, 0xE5,
|
||||
0x00, 0x20, // Y length
|
||||
0x7E, 0x76, 0xDC, 0x58, 0xF6, 0x93, 0xBD, 0x7E, // Y
|
||||
0x70, 0x10, 0x35, 0x8C, 0xE6, 0xB1, 0x65, 0xE4,
|
||||
0x83, 0xA2, 0x92, 0x10, 0x10, 0xDB, 0x67, 0xAC,
|
||||
0x11, 0xB1, 0xB5, 0x1B, 0x65, 0x19, 0x53, 0xD2,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // ciphertext
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // MAC
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
}}, // ErrInvalidMAC
|
||||
}
|
||||
|
||||
for i, test := range tests1 {
|
||||
_, err = Decrypt(privkey, test.ciphertext)
|
||||
if err == nil {
|
||||
t.Errorf("Decrypt #%d did not get error", i)
|
||||
}
|
||||
}
|
||||
|
||||
// test error from removePKCSPadding
|
||||
tests2 := []struct {
|
||||
in []byte // input data
|
||||
}{
|
||||
{bytes.Repeat([]byte{0x11}, 17)},
|
||||
{bytes.Repeat([]byte{0x07}, 15)},
|
||||
}
|
||||
for i, test := range tests2 {
|
||||
_, err = removePKCSPadding(test.in)
|
||||
if err == nil {
|
||||
t.Errorf("removePKCSPadding #%d did not get error", i)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
60
btcec/curve.go
Normal file
60
btcec/curve.go
Normal file
@ -0,0 +1,60 @@
|
||||
package btcec
|
||||
|
||||
import (
|
||||
secp "github.com/decred/dcrd/dcrec/secp256k1/v4"
|
||||
)
|
||||
|
||||
// JacobianPoint is an element of the group formed by the secp256k1 curve in
|
||||
// Jacobian projective coordinates and thus represents a point on the curve.
|
||||
type JacobianPoint = secp.JacobianPoint
|
||||
|
||||
// MakeJacobianPoint returns a Jacobian point with the provided X, Y, and Z
|
||||
// coordinates.
|
||||
func MakeJacobianPoint(x, y, z *FieldVal) JacobianPoint {
|
||||
return secp.MakeJacobianPoint(x, y, z)
|
||||
}
|
||||
|
||||
// AddNonConst adds the passed Jacobian points together and stores the result
|
||||
// in the provided result param in *non-constant* time.
|
||||
func AddNonConst(p1, p2, result *JacobianPoint) {
|
||||
secp.AddNonConst(p1, p2, result)
|
||||
}
|
||||
|
||||
// DecompressY attempts to calculate the Y coordinate for the given X
|
||||
// coordinate such that the result pair is a point on the secp256k1 curve. It
|
||||
// adjusts Y based on the desired oddness and returns whether or not it was
|
||||
// successful since not all X coordinates are valid.
|
||||
//
|
||||
// The magnitude of the provided X coordinate field val must be a max of 8 for
|
||||
// a correct result. The resulting Y field val will have a max magnitude of 2.
|
||||
func DecompressY(x *FieldVal, odd bool, resultY *FieldVal) bool {
|
||||
return secp.DecompressY(x, odd, resultY)
|
||||
}
|
||||
|
||||
// DoubleNonConst doubles the passed Jacobian point and stores the result in
|
||||
// the provided result parameter in *non-constant* time.
|
||||
//
|
||||
// NOTE: The point must be normalized for this function to return the correct
|
||||
// result. The resulting point will be normalized.
|
||||
func DoubleNonConst(p, result *JacobianPoint) {
|
||||
secp.DoubleNonConst(p, result)
|
||||
}
|
||||
|
||||
// ScalarBaseMultNonConst multiplies k*G where G is the base point of the group
|
||||
// and k is a big endian integer. The result is stored in Jacobian coordinates
|
||||
// (x1, y1, z1).
|
||||
//
|
||||
// NOTE: The resulting point will be normalized.
|
||||
func ScalarBaseMultNonConst(k *ModNScalar, result *JacobianPoint) {
|
||||
secp.ScalarBaseMultNonConst(k, result)
|
||||
}
|
||||
|
||||
// ScalarMultNonConst multiplies k*P where k is a big endian integer modulo the
|
||||
// curve order and P is a point in Jacobian projective coordinates and stores
|
||||
// the result in the provided Jacobian point.
|
||||
//
|
||||
// NOTE: The point must be normalized for this function to return the correct
|
||||
// result. The resulting point will be normalized.
|
||||
func ScalarMultNonConst(k *ModNScalar, point, result *JacobianPoint) {
|
||||
secp.ScalarMultNonConst(k, point, result)
|
||||
}
|
16
btcec/error.go
Normal file
16
btcec/error.go
Normal file
@ -0,0 +1,16 @@
|
||||
package btcec
|
||||
|
||||
import (
|
||||
secp "github.com/decred/dcrd/dcrec/secp256k1/v4"
|
||||
)
|
||||
|
||||
// Error identifies an error related to public key cryptography using a
|
||||
// sec256k1 curve. It has full support for errors.Is and errors.As, so the
|
||||
// caller can ascertain the specific reason for the error by checking the
|
||||
// underlying error.
|
||||
type Error = secp.Error
|
||||
|
||||
// ErrorKind identifies a kind of error. It has full support for errors.Is and
|
||||
// errors.As, so the caller can directly check against an error kind when
|
||||
// determining the reason for an error.
|
||||
type ErrorKind = secp.ErrorKind
|
@ -8,7 +8,7 @@ import (
|
||||
"encoding/hex"
|
||||
"fmt"
|
||||
|
||||
"github.com/btcsuite/btcd/btcec"
|
||||
"github.com/btcsuite/btcd/btcec/v2"
|
||||
"github.com/btcsuite/btcd/chaincfg/chainhash"
|
||||
)
|
||||
|
||||
@ -22,16 +22,12 @@ func Example_signMessage() {
|
||||
fmt.Println(err)
|
||||
return
|
||||
}
|
||||
privKey, pubKey := btcec.PrivKeyFromBytes(btcec.S256(), pkBytes)
|
||||
privKey, pubKey := btcec.PrivKeyFromBytes(pkBytes)
|
||||
|
||||
// Sign a message using the private key.
|
||||
message := "test message"
|
||||
messageHash := chainhash.DoubleHashB([]byte(message))
|
||||
signature, err := privKey.Sign(messageHash)
|
||||
if err != nil {
|
||||
fmt.Println(err)
|
||||
return
|
||||
}
|
||||
signature := btcec.Sign(privKey, messageHash)
|
||||
|
||||
// Serialize and display the signature.
|
||||
fmt.Printf("Serialized Signature: %x\n", signature.Serialize())
|
||||
@ -56,7 +52,7 @@ func Example_verifySignature() {
|
||||
fmt.Println(err)
|
||||
return
|
||||
}
|
||||
pubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256())
|
||||
pubKey, err := btcec.ParsePubKey(pubKeyBytes)
|
||||
if err != nil {
|
||||
fmt.Println(err)
|
||||
return
|
||||
@ -71,7 +67,7 @@ func Example_verifySignature() {
|
||||
fmt.Println(err)
|
||||
return
|
||||
}
|
||||
signature, err := btcec.ParseSignature(sigBytes, btcec.S256())
|
||||
signature, err := btcec.ParseSignature(sigBytes)
|
||||
if err != nil {
|
||||
fmt.Println(err)
|
||||
return
|
||||
@ -86,83 +82,3 @@ func Example_verifySignature() {
|
||||
// Output:
|
||||
// Signature Verified? true
|
||||
}
|
||||
|
||||
// This example demonstrates encrypting a message for a public key that is first
|
||||
// parsed from raw bytes, then decrypting it using the corresponding private key.
|
||||
func Example_encryptMessage() {
|
||||
// Decode the hex-encoded pubkey of the recipient.
|
||||
pubKeyBytes, err := hex.DecodeString("04115c42e757b2efb7671c578530ec191a1" +
|
||||
"359381e6a71127a9d37c486fd30dae57e76dc58f693bd7e7010358ce6b165e483a29" +
|
||||
"21010db67ac11b1b51b651953d2") // uncompressed pubkey
|
||||
if err != nil {
|
||||
fmt.Println(err)
|
||||
return
|
||||
}
|
||||
pubKey, err := btcec.ParsePubKey(pubKeyBytes, btcec.S256())
|
||||
if err != nil {
|
||||
fmt.Println(err)
|
||||
return
|
||||
}
|
||||
|
||||
// Encrypt a message decryptable by the private key corresponding to pubKey
|
||||
message := "test message"
|
||||
ciphertext, err := btcec.Encrypt(pubKey, []byte(message))
|
||||
if err != nil {
|
||||
fmt.Println(err)
|
||||
return
|
||||
}
|
||||
|
||||
// Decode the hex-encoded private key.
|
||||
pkBytes, err := hex.DecodeString("a11b0a4e1a132305652ee7a8eb7848f6ad" +
|
||||
"5ea381e3ce20a2c086a2e388230811")
|
||||
if err != nil {
|
||||
fmt.Println(err)
|
||||
return
|
||||
}
|
||||
// note that we already have corresponding pubKey
|
||||
privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), pkBytes)
|
||||
|
||||
// Try decrypting and verify if it's the same message.
|
||||
plaintext, err := btcec.Decrypt(privKey, ciphertext)
|
||||
if err != nil {
|
||||
fmt.Println(err)
|
||||
return
|
||||
}
|
||||
|
||||
fmt.Println(string(plaintext))
|
||||
|
||||
// Output:
|
||||
// test message
|
||||
}
|
||||
|
||||
// This example demonstrates decrypting a message using a private key that is
|
||||
// first parsed from raw bytes.
|
||||
func Example_decryptMessage() {
|
||||
// Decode the hex-encoded private key.
|
||||
pkBytes, err := hex.DecodeString("a11b0a4e1a132305652ee7a8eb7848f6ad" +
|
||||
"5ea381e3ce20a2c086a2e388230811")
|
||||
if err != nil {
|
||||
fmt.Println(err)
|
||||
return
|
||||
}
|
||||
|
||||
privKey, _ := btcec.PrivKeyFromBytes(btcec.S256(), pkBytes)
|
||||
|
||||
ciphertext, err := hex.DecodeString("35f644fbfb208bc71e57684c3c8b437402ca" +
|
||||
"002047a2f1b38aa1a8f1d5121778378414f708fe13ebf7b4a7bb74407288c1958969" +
|
||||
"00207cf4ac6057406e40f79961c973309a892732ae7a74ee96cd89823913b8b8d650" +
|
||||
"a44166dc61ea1c419d47077b748a9c06b8d57af72deb2819d98a9d503efc59fc8307" +
|
||||
"d14174f8b83354fac3ff56075162")
|
||||
|
||||
// Try decrypting the message.
|
||||
plaintext, err := btcec.Decrypt(privKey, ciphertext)
|
||||
if err != nil {
|
||||
fmt.Println(err)
|
||||
return
|
||||
}
|
||||
|
||||
fmt.Println(string(plaintext))
|
||||
|
||||
// Output:
|
||||
// test message
|
||||
}
|
||||
|
1385
btcec/field.go
1385
btcec/field.go
File diff suppressed because it is too large
Load Diff
1050
btcec/field_test.go
1050
btcec/field_test.go
File diff suppressed because it is too large
Load Diff
@ -1,63 +0,0 @@
|
||||
// Copyright 2015 The btcsuite developers
|
||||
// Use of this source code is governed by an ISC
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// This file is ignored during the regular build due to the following build tag.
|
||||
// It is called by go generate and used to automatically generate pre-computed
|
||||
// tables used to accelerate operations.
|
||||
// +build ignore
|
||||
|
||||
package main
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"compress/zlib"
|
||||
"encoding/base64"
|
||||
"fmt"
|
||||
"log"
|
||||
"os"
|
||||
|
||||
"github.com/btcsuite/btcd/btcec"
|
||||
)
|
||||
|
||||
func main() {
|
||||
fi, err := os.Create("secp256k1.go")
|
||||
if err != nil {
|
||||
log.Fatal(err)
|
||||
}
|
||||
defer fi.Close()
|
||||
|
||||
// Compress the serialized byte points.
|
||||
serialized := btcec.S256().SerializedBytePoints()
|
||||
var compressed bytes.Buffer
|
||||
w := zlib.NewWriter(&compressed)
|
||||
if _, err := w.Write(serialized); err != nil {
|
||||
fmt.Println(err)
|
||||
os.Exit(1)
|
||||
}
|
||||
w.Close()
|
||||
|
||||
// Encode the compressed byte points with base64.
|
||||
encoded := make([]byte, base64.StdEncoding.EncodedLen(compressed.Len()))
|
||||
base64.StdEncoding.Encode(encoded, compressed.Bytes())
|
||||
|
||||
fmt.Fprintln(fi, "// Copyright (c) 2015 The btcsuite developers")
|
||||
fmt.Fprintln(fi, "// Use of this source code is governed by an ISC")
|
||||
fmt.Fprintln(fi, "// license that can be found in the LICENSE file.")
|
||||
fmt.Fprintln(fi)
|
||||
fmt.Fprintln(fi, "package btcec")
|
||||
fmt.Fprintln(fi)
|
||||
fmt.Fprintln(fi, "// Auto-generated file (see genprecomps.go)")
|
||||
fmt.Fprintln(fi, "// DO NOT EDIT")
|
||||
fmt.Fprintln(fi)
|
||||
fmt.Fprintf(fi, "var secp256k1BytePoints = %q\n", string(encoded))
|
||||
|
||||
a1, b1, a2, b2 := btcec.S256().EndomorphismVectors()
|
||||
fmt.Println("The following values are the computed linearly " +
|
||||
"independent vectors needed to make use of the secp256k1 " +
|
||||
"endomorphism:")
|
||||
fmt.Printf("a1: %x\n", a1)
|
||||
fmt.Printf("b1: %x\n", b1)
|
||||
fmt.Printf("a2: %x\n", a2)
|
||||
fmt.Printf("b2: %x\n", b2)
|
||||
}
|
@ -1,203 +0,0 @@
|
||||
// Copyright (c) 2014-2015 The btcsuite developers
|
||||
// Use of this source code is governed by an ISC
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
// This file is ignored during the regular build due to the following build tag.
|
||||
// This build tag is set during go generate.
|
||||
// +build gensecp256k1
|
||||
|
||||
package btcec
|
||||
|
||||
// References:
|
||||
// [GECC]: Guide to Elliptic Curve Cryptography (Hankerson, Menezes, Vanstone)
|
||||
|
||||
import (
|
||||
"encoding/binary"
|
||||
"math/big"
|
||||
)
|
||||
|
||||
// secp256k1BytePoints are dummy points used so the code which generates the
|
||||
// real values can compile.
|
||||
var secp256k1BytePoints = ""
|
||||
|
||||
// getDoublingPoints returns all the possible G^(2^i) for i in
|
||||
// 0..n-1 where n is the curve's bit size (256 in the case of secp256k1)
|
||||
// the coordinates are recorded as Jacobian coordinates.
|
||||
func (curve *KoblitzCurve) getDoublingPoints() [][3]fieldVal {
|
||||
doublingPoints := make([][3]fieldVal, curve.BitSize)
|
||||
|
||||
// initialize px, py, pz to the Jacobian coordinates for the base point
|
||||
px, py := curve.bigAffineToField(curve.Gx, curve.Gy)
|
||||
pz := new(fieldVal).SetInt(1)
|
||||
for i := 0; i < curve.BitSize; i++ {
|
||||
doublingPoints[i] = [3]fieldVal{*px, *py, *pz}
|
||||
// P = 2*P
|
||||
curve.doubleJacobian(px, py, pz, px, py, pz)
|
||||
}
|
||||
return doublingPoints
|
||||
}
|
||||
|
||||
// SerializedBytePoints returns a serialized byte slice which contains all of
|
||||
// the possible points per 8-bit window. This is used to when generating
|
||||
// secp256k1.go.
|
||||
func (curve *KoblitzCurve) SerializedBytePoints() []byte {
|
||||
doublingPoints := curve.getDoublingPoints()
|
||||
|
||||
// Segregate the bits into byte-sized windows
|
||||
serialized := make([]byte, curve.byteSize*256*3*10*4)
|
||||
offset := 0
|
||||
for byteNum := 0; byteNum < curve.byteSize; byteNum++ {
|
||||
// Grab the 8 bits that make up this byte from doublingPoints.
|
||||
startingBit := 8 * (curve.byteSize - byteNum - 1)
|
||||
computingPoints := doublingPoints[startingBit : startingBit+8]
|
||||
|
||||
// Compute all points in this window and serialize them.
|
||||
for i := 0; i < 256; i++ {
|
||||
px, py, pz := new(fieldVal), new(fieldVal), new(fieldVal)
|
||||
for j := 0; j < 8; j++ {
|
||||
if i>>uint(j)&1 == 1 {
|
||||
curve.addJacobian(px, py, pz, &computingPoints[j][0],
|
||||
&computingPoints[j][1], &computingPoints[j][2], px, py, pz)
|
||||
}
|
||||
}
|
||||
for i := 0; i < 10; i++ {
|
||||
binary.LittleEndian.PutUint32(serialized[offset:], px.n[i])
|
||||
offset += 4
|
||||
}
|
||||
for i := 0; i < 10; i++ {
|
||||
binary.LittleEndian.PutUint32(serialized[offset:], py.n[i])
|
||||
offset += 4
|
||||
}
|
||||
for i := 0; i < 10; i++ {
|
||||
binary.LittleEndian.PutUint32(serialized[offset:], pz.n[i])
|
||||
offset += 4
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return serialized
|
||||
}
|
||||
|
||||
// sqrt returns the square root of the provided big integer using Newton's
|
||||
// method. It's only compiled and used during generation of pre-computed
|
||||
// values, so speed is not a huge concern.
|
||||
func sqrt(n *big.Int) *big.Int {
|
||||
// Initial guess = 2^(log_2(n)/2)
|
||||
guess := big.NewInt(2)
|
||||
guess.Exp(guess, big.NewInt(int64(n.BitLen()/2)), nil)
|
||||
|
||||
// Now refine using Newton's method.
|
||||
big2 := big.NewInt(2)
|
||||
prevGuess := big.NewInt(0)
|
||||
for {
|
||||
prevGuess.Set(guess)
|
||||
guess.Add(guess, new(big.Int).Div(n, guess))
|
||||
guess.Div(guess, big2)
|
||||
if guess.Cmp(prevGuess) == 0 {
|
||||
break
|
||||
}
|
||||
}
|
||||
return guess
|
||||
}
|
||||
|
||||
// EndomorphismVectors runs the first 3 steps of algorithm 3.74 from [GECC] to
|
||||
// generate the linearly independent vectors needed to generate a balanced
|
||||
// length-two representation of a multiplier such that k = k1 + k2λ (mod N) and
|
||||
// returns them. Since the values will always be the same given the fact that N
|
||||
// and λ are fixed, the final results can be accelerated by storing the
|
||||
// precomputed values with the curve.
|
||||
func (curve *KoblitzCurve) EndomorphismVectors() (a1, b1, a2, b2 *big.Int) {
|
||||
bigMinus1 := big.NewInt(-1)
|
||||
|
||||
// This section uses an extended Euclidean algorithm to generate a
|
||||
// sequence of equations:
|
||||
// s[i] * N + t[i] * λ = r[i]
|
||||
|
||||
nSqrt := sqrt(curve.N)
|
||||
u, v := new(big.Int).Set(curve.N), new(big.Int).Set(curve.lambda)
|
||||
x1, y1 := big.NewInt(1), big.NewInt(0)
|
||||
x2, y2 := big.NewInt(0), big.NewInt(1)
|
||||
q, r := new(big.Int), new(big.Int)
|
||||
qu, qx1, qy1 := new(big.Int), new(big.Int), new(big.Int)
|
||||
s, t := new(big.Int), new(big.Int)
|
||||
ri, ti := new(big.Int), new(big.Int)
|
||||
a1, b1, a2, b2 = new(big.Int), new(big.Int), new(big.Int), new(big.Int)
|
||||
found, oneMore := false, false
|
||||
for u.Sign() != 0 {
|
||||
// q = v/u
|
||||
q.Div(v, u)
|
||||
|
||||
// r = v - q*u
|
||||
qu.Mul(q, u)
|
||||
r.Sub(v, qu)
|
||||
|
||||
// s = x2 - q*x1
|
||||
qx1.Mul(q, x1)
|
||||
s.Sub(x2, qx1)
|
||||
|
||||
// t = y2 - q*y1
|
||||
qy1.Mul(q, y1)
|
||||
t.Sub(y2, qy1)
|
||||
|
||||
// v = u, u = r, x2 = x1, x1 = s, y2 = y1, y1 = t
|
||||
v.Set(u)
|
||||
u.Set(r)
|
||||
x2.Set(x1)
|
||||
x1.Set(s)
|
||||
y2.Set(y1)
|
||||
y1.Set(t)
|
||||
|
||||
// As soon as the remainder is less than the sqrt of n, the
|
||||
// values of a1 and b1 are known.
|
||||
if !found && r.Cmp(nSqrt) < 0 {
|
||||
// When this condition executes ri and ti represent the
|
||||
// r[i] and t[i] values such that i is the greatest
|
||||
// index for which r >= sqrt(n). Meanwhile, the current
|
||||
// r and t values are r[i+1] and t[i+1], respectively.
|
||||
|
||||
// a1 = r[i+1], b1 = -t[i+1]
|
||||
a1.Set(r)
|
||||
b1.Mul(t, bigMinus1)
|
||||
found = true
|
||||
oneMore = true
|
||||
|
||||
// Skip to the next iteration so ri and ti are not
|
||||
// modified.
|
||||
continue
|
||||
|
||||
} else if oneMore {
|
||||
// When this condition executes ri and ti still
|
||||
// represent the r[i] and t[i] values while the current
|
||||
// r and t are r[i+2] and t[i+2], respectively.
|
||||
|
||||
// sum1 = r[i]^2 + t[i]^2
|
||||
rSquared := new(big.Int).Mul(ri, ri)
|
||||
tSquared := new(big.Int).Mul(ti, ti)
|
||||
sum1 := new(big.Int).Add(rSquared, tSquared)
|
||||
|
||||
// sum2 = r[i+2]^2 + t[i+2]^2
|
||||
r2Squared := new(big.Int).Mul(r, r)
|
||||
t2Squared := new(big.Int).Mul(t, t)
|
||||
sum2 := new(big.Int).Add(r2Squared, t2Squared)
|
||||
|
||||
// if (r[i]^2 + t[i]^2) <= (r[i+2]^2 + t[i+2]^2)
|
||||
if sum1.Cmp(sum2) <= 0 {
|
||||
// a2 = r[i], b2 = -t[i]
|
||||
a2.Set(ri)
|
||||
b2.Mul(ti, bigMinus1)
|
||||
} else {
|
||||
// a2 = r[i+2], b2 = -t[i+2]
|
||||
a2.Set(r)
|
||||
b2.Mul(t, bigMinus1)
|
||||
}
|
||||
|
||||
// All done.
|
||||
break
|
||||
}
|
||||
|
||||
ri.Set(r)
|
||||
ti.Set(t)
|
||||
}
|
||||
|
||||
return a1, b1, a2, b2
|
||||
}
|
9
btcec/go.mod
Normal file
9
btcec/go.mod
Normal file
@ -0,0 +1,9 @@
|
||||
module github.com/btcsuite/btcd/btcec/v2
|
||||
|
||||
go 1.17
|
||||
|
||||
require (
|
||||
github.com/btcsuite/btcd v0.22.0-beta
|
||||
github.com/davecgh/go-spew v1.1.1
|
||||
github.com/decred/dcrd/dcrec/secp256k1/v4 v4.0.1
|
||||
)
|
49
btcec/go.sum
Normal file
49
btcec/go.sum
Normal file
@ -0,0 +1,49 @@
|
||||
github.com/aead/siphash v1.0.1/go.mod h1:Nywa3cDsYNNK3gaciGTWPwHt0wlpNV15vwmswBAUSII=
|
||||
github.com/btcsuite/btcd v0.20.1-beta/go.mod h1:wVuoA8VJLEcwgqHBwHmzLRazpKxTv13Px/pDuV7OomQ=
|
||||
github.com/btcsuite/btcd v0.22.0-beta h1:LTDpDKUM5EeOFBPM8IXpinEcmZ6FWfNZbE3lfrfdnWo=
|
||||
github.com/btcsuite/btcd v0.22.0-beta/go.mod h1:9n5ntfhhHQBIhUvlhDvD3Qg6fRUj4jkN0VB8L8svzOA=
|
||||
github.com/btcsuite/btclog v0.0.0-20170628155309-84c8d2346e9f/go.mod h1:TdznJufoqS23FtqVCzL0ZqgP5MqXbb4fg/WgDys70nA=
|
||||
github.com/btcsuite/btcutil v0.0.0-20190425235716-9e5f4b9a998d/go.mod h1:+5NJ2+qvTyV9exUAL/rxXi3DcLg2Ts+ymUAY5y4NvMg=
|
||||
github.com/btcsuite/btcutil v1.0.3-0.20201208143702-a53e38424cce/go.mod h1:0DVlHczLPewLcPGEIeUEzfOJhqGPQ0mJJRDBtD307+o=
|
||||
github.com/btcsuite/go-socks v0.0.0-20170105172521-4720035b7bfd/go.mod h1:HHNXQzUsZCxOoE+CPiyCTO6x34Zs86zZUiwtpXoGdtg=
|
||||
github.com/btcsuite/goleveldb v0.0.0-20160330041536-7834afc9e8cd/go.mod h1:F+uVaaLLH7j4eDXPRvw78tMflu7Ie2bzYOH4Y8rRKBY=
|
||||
github.com/btcsuite/goleveldb v1.0.0/go.mod h1:QiK9vBlgftBg6rWQIj6wFzbPfRjiykIEhBH4obrXJ/I=
|
||||
github.com/btcsuite/snappy-go v0.0.0-20151229074030-0bdef8d06723/go.mod h1:8woku9dyThutzjeg+3xrA5iCpBRH8XEEg3lh6TiUghc=
|
||||
github.com/btcsuite/snappy-go v1.0.0/go.mod h1:8woku9dyThutzjeg+3xrA5iCpBRH8XEEg3lh6TiUghc=
|
||||
github.com/btcsuite/websocket v0.0.0-20150119174127-31079b680792/go.mod h1:ghJtEyQwv5/p4Mg4C0fgbePVuGr935/5ddU9Z3TmDRY=
|
||||
github.com/btcsuite/winsvc v1.0.0/go.mod h1:jsenWakMcC0zFBFurPLEAyrnc/teJEM1O46fmI40EZs=
|
||||
github.com/davecgh/go-spew v0.0.0-20171005155431-ecdeabc65495/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
|
||||
github.com/davecgh/go-spew v1.1.0/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
|
||||
github.com/davecgh/go-spew v1.1.1 h1:vj9j/u1bqnvCEfJOwUhtlOARqs3+rkHYY13jYWTU97c=
|
||||
github.com/davecgh/go-spew v1.1.1/go.mod h1:J7Y8YcW2NihsgmVo/mv3lAwl/skON4iLHjSsI+c5H38=
|
||||
github.com/decred/dcrd/crypto/blake256 v1.0.0/go.mod h1:sQl2p6Y26YV+ZOcSTP6thNdn47hh8kt6rqSlvmrXFAc=
|
||||
github.com/decred/dcrd/dcrec/secp256k1/v4 v4.0.1 h1:YLtO71vCjJRCBcrPMtQ9nqBsqpA1m5sE92cU+pd5Mcc=
|
||||
github.com/decred/dcrd/dcrec/secp256k1/v4 v4.0.1/go.mod h1:hyedUtir6IdtD/7lIxGeCxkaw7y45JueMRL4DIyJDKs=
|
||||
github.com/decred/dcrd/lru v1.0.0/go.mod h1:mxKOwFd7lFjN2GZYsiz/ecgqR6kkYAl+0pz0tEMk218=
|
||||
github.com/fsnotify/fsnotify v1.4.7/go.mod h1:jwhsz4b93w/PPRr/qN1Yymfu8t87LnFCMoQvtojpjFo=
|
||||
github.com/golang/protobuf v1.2.0/go.mod h1:6lQm79b+lXiMfvg/cZm0SGofjICqVBUtrP5yJMmIC1U=
|
||||
github.com/hpcloud/tail v1.0.0/go.mod h1:ab1qPbhIpdTxEkNHXyeSf5vhxWSCs/tWer42PpOxQnU=
|
||||
github.com/jessevdk/go-flags v0.0.0-20141203071132-1679536dcc89/go.mod h1:4FA24M0QyGHXBuZZK/XkWh8h0e1EYbRYJSGM75WSRxI=
|
||||
github.com/jessevdk/go-flags v1.4.0/go.mod h1:4FA24M0QyGHXBuZZK/XkWh8h0e1EYbRYJSGM75WSRxI=
|
||||
github.com/jrick/logrotate v1.0.0/go.mod h1:LNinyqDIJnpAur+b8yyulnQw/wDuN1+BYKlTRt3OuAQ=
|
||||
github.com/kkdai/bstream v0.0.0-20161212061736-f391b8402d23/go.mod h1:J+Gs4SYgM6CZQHDETBtE9HaSEkGmuNXF86RwHhHUvq4=
|
||||
github.com/onsi/ginkgo v1.6.0/go.mod h1:lLunBs/Ym6LB5Z9jYTR76FiuTmxDTDusOGeTQH+WWjE=
|
||||
github.com/onsi/ginkgo v1.7.0/go.mod h1:lLunBs/Ym6LB5Z9jYTR76FiuTmxDTDusOGeTQH+WWjE=
|
||||
github.com/onsi/gomega v1.4.1/go.mod h1:C1qb7wdrVGGVU+Z6iS04AVkA3Q65CEZX59MT0QO5uiA=
|
||||
github.com/onsi/gomega v1.4.3/go.mod h1:ex+gbHU/CVuBBDIJjb2X0qEXbFg53c61hWP/1CpauHY=
|
||||
golang.org/x/crypto v0.0.0-20170930174604-9419663f5a44/go.mod h1:6SG95UA2DQfeDnfUPMdvaQW0Q7yPrPDi9nlGo2tz2b4=
|
||||
golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACkg1iLfiJU5Ep61QUkGW8qpdssI0+w=
|
||||
golang.org/x/crypto v0.0.0-20200115085410-6d4e4cb37c7d/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
|
||||
golang.org/x/crypto v0.0.0-20200510223506-06a226fb4e37/go.mod h1:LzIPMQfyMNhhGPhUkYOs5KpL4U8rLKemX1yGLhDgUto=
|
||||
golang.org/x/net v0.0.0-20180719180050-a680a1efc54d/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
|
||||
golang.org/x/net v0.0.0-20180906233101-161cd47e91fd/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
|
||||
golang.org/x/net v0.0.0-20190404232315-eb5bcb51f2a3/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg=
|
||||
golang.org/x/sync v0.0.0-20180314180146-1d60e4601c6f/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
|
||||
golang.org/x/sys v0.0.0-20180909124046-d0be0721c37e/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
|
||||
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
|
||||
golang.org/x/sys v0.0.0-20190412213103-97732733099d/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
|
||||
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
|
||||
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=
|
||||
gopkg.in/fsnotify.v1 v1.4.7/go.mod h1:Tz8NjZHkW78fSQdbUxIjBTcgA1z1m8ZHf0WmKUhAMys=
|
||||
gopkg.in/tomb.v1 v1.0.0-20141024135613-dd632973f1e7/go.mod h1:dt/ZhP58zS4L8KSrWDmTeBkI65Dw0HsyUHuEVlX15mw=
|
||||
gopkg.in/yaml.v2 v2.2.1/go.mod h1:hI93XBmqTisBFMUTm0b8Fm+jr3Dg1NNxqwp+5A1VGuI=
|
42
btcec/modnscalar.go
Normal file
42
btcec/modnscalar.go
Normal file
@ -0,0 +1,42 @@
|
||||
package btcec
|
||||
|
||||
import (
|
||||
secp "github.com/decred/dcrd/dcrec/secp256k1/v4"
|
||||
)
|
||||
|
||||
// ModNScalar implements optimized 256-bit constant-time fixed-precision
|
||||
// arithmetic over the secp256k1 group order. This means all arithmetic is
|
||||
// performed modulo:
|
||||
//
|
||||
// 0xfffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd0364141
|
||||
//
|
||||
// It only implements the arithmetic needed for elliptic curve operations,
|
||||
// however, the operations that are not implemented can typically be worked
|
||||
// around if absolutely needed. For example, subtraction can be performed by
|
||||
// adding the negation.
|
||||
//
|
||||
// Should it be absolutely necessary, conversion to the standard library
|
||||
// math/big.Int can be accomplished by using the Bytes method, slicing the
|
||||
// resulting fixed-size array, and feeding it to big.Int.SetBytes. However,
|
||||
// that should typically be avoided when possible as conversion to big.Ints
|
||||
// requires allocations, is not constant time, and is slower when working modulo
|
||||
// the group order.
|
||||
type ModNScalar = secp.ModNScalar
|
||||
|
||||
// NonceRFC6979 generates a nonce deterministically according to RFC 6979 using
|
||||
// HMAC-SHA256 for the hashing function. It takes a 32-byte hash as an input
|
||||
// and returns a 32-byte nonce to be used for deterministic signing. The extra
|
||||
// and version arguments are optional, but allow additional data to be added to
|
||||
// the input of the HMAC. When provided, the extra data must be 32-bytes and
|
||||
// version must be 16 bytes or they will be ignored.
|
||||
//
|
||||
// Finally, the extraIterations parameter provides a method to produce a stream
|
||||
// of deterministic nonces to ensure the signing code is able to produce a nonce
|
||||
// that results in a valid signature in the extremely unlikely event the
|
||||
// original nonce produced results in an invalid signature (e.g. R == 0).
|
||||
// Signing code should start with 0 and increment it if necessary.
|
||||
func NonceRFC6979(privKey []byte, hash []byte, extra []byte, version []byte,
|
||||
extraIterations uint32) *ModNScalar {
|
||||
|
||||
return secp.NonceRFC6979(privKey, hash, extra, version, extraIterations)
|
||||
}
|
@ -1,67 +0,0 @@
|
||||
// Copyright 2015 The btcsuite developers
|
||||
// Use of this source code is governed by an ISC
|
||||
// license that can be found in the LICENSE file.
|
||||
|
||||
package btcec
|
||||
|
||||
import (
|
||||
"compress/zlib"
|
||||
"encoding/base64"
|
||||
"encoding/binary"
|
||||
"io/ioutil"
|
||||
"strings"
|
||||
)
|
||||
|
||||
//go:generate go run -tags gensecp256k1 genprecomps.go
|
||||
|
||||
// loadS256BytePoints decompresses and deserializes the pre-computed byte points
|
||||
// used to accelerate scalar base multiplication for the secp256k1 curve. This
|
||||
// approach is used since it allows the compile to use significantly less ram
|
||||
// and be performed much faster than it is with hard-coding the final in-memory
|
||||
// data structure. At the same time, it is quite fast to generate the in-memory
|
||||
// data structure at init time with this approach versus computing the table.
|
||||
func loadS256BytePoints() error {
|
||||
// There will be no byte points to load when generating them.
|
||||
bp := secp256k1BytePoints
|
||||
if len(bp) == 0 {
|
||||
return nil
|
||||
}
|
||||
|
||||
// Decompress the pre-computed table used to accelerate scalar base
|
||||
// multiplication.
|
||||
decoder := base64.NewDecoder(base64.StdEncoding, strings.NewReader(bp))
|
||||
r, err := zlib.NewReader(decoder)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
serialized, err := ioutil.ReadAll(r)
|
||||
if err != nil {
|
||||
return err
|
||||
}
|
||||
|
||||
// Deserialize the precomputed byte points and set the curve to them.
|
||||
offset := 0
|
||||
var bytePoints [32][256][3]fieldVal
|
||||
for byteNum := 0; byteNum < 32; byteNum++ {
|
||||
// All points in this window.
|
||||
for i := 0; i < 256; i++ {
|
||||
px := &bytePoints[byteNum][i][0]
|
||||
py := &bytePoints[byteNum][i][1]
|
||||
pz := &bytePoints[byteNum][i][2]
|
||||
for i := 0; i < 10; i++ {
|
||||
px.n[i] = binary.LittleEndian.Uint32(serialized[offset:])
|
||||
offset += 4
|
||||
}
|
||||
for i := 0; i < 10; i++ {
|
||||
py.n[i] = binary.LittleEndian.Uint32(serialized[offset:])
|
||||
offset += 4
|
||||
}
|
||||
for i := 0; i < 10; i++ {
|
||||
pz.n[i] = binary.LittleEndian.Uint32(serialized[offset:])
|
||||
offset += 4
|
||||
}
|
||||
}
|
||||
}
|
||||
secp256k1.bytePoints = &bytePoints
|
||||
return nil
|
||||
}
|
@ -5,69 +5,27 @@
|
||||
package btcec
|
||||
|
||||
import (
|
||||
"crypto/ecdsa"
|
||||
"crypto/elliptic"
|
||||
"crypto/rand"
|
||||
"math/big"
|
||||
secp "github.com/decred/dcrd/dcrec/secp256k1/v4"
|
||||
)
|
||||
|
||||
// PrivateKey wraps an ecdsa.PrivateKey as a convenience mainly for signing
|
||||
// things with the the private key without having to directly import the ecdsa
|
||||
// package.
|
||||
type PrivateKey ecdsa.PrivateKey
|
||||
type PrivateKey = secp.PrivateKey
|
||||
|
||||
// PrivKeyFromBytes returns a private and public key for `curve' based on the
|
||||
// private key passed as an argument as a byte slice.
|
||||
func PrivKeyFromBytes(curve elliptic.Curve, pk []byte) (*PrivateKey,
|
||||
*PublicKey) {
|
||||
x, y := curve.ScalarBaseMult(pk)
|
||||
func PrivKeyFromBytes(pk []byte) (*PrivateKey, *PublicKey) {
|
||||
privKey := secp.PrivKeyFromBytes(pk)
|
||||
|
||||
priv := &ecdsa.PrivateKey{
|
||||
PublicKey: ecdsa.PublicKey{
|
||||
Curve: curve,
|
||||
X: x,
|
||||
Y: y,
|
||||
},
|
||||
D: new(big.Int).SetBytes(pk),
|
||||
}
|
||||
|
||||
return (*PrivateKey)(priv), (*PublicKey)(&priv.PublicKey)
|
||||
return privKey, privKey.PubKey()
|
||||
}
|
||||
|
||||
// NewPrivateKey is a wrapper for ecdsa.GenerateKey that returns a PrivateKey
|
||||
// instead of the normal ecdsa.PrivateKey.
|
||||
func NewPrivateKey(curve elliptic.Curve) (*PrivateKey, error) {
|
||||
key, err := ecdsa.GenerateKey(curve, rand.Reader)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
return (*PrivateKey)(key), nil
|
||||
}
|
||||
|
||||
// PubKey returns the PublicKey corresponding to this private key.
|
||||
func (p *PrivateKey) PubKey() *PublicKey {
|
||||
return (*PublicKey)(&p.PublicKey)
|
||||
}
|
||||
|
||||
// ToECDSA returns the private key as a *ecdsa.PrivateKey.
|
||||
func (p *PrivateKey) ToECDSA() *ecdsa.PrivateKey {
|
||||
return (*ecdsa.PrivateKey)(p)
|
||||
}
|
||||
|
||||
// Sign generates an ECDSA signature for the provided hash (which should be the result
|
||||
// of hashing a larger message) using the private key. Produced signature
|
||||
// is deterministic (same message and same key yield the same signature) and canonical
|
||||
// in accordance with RFC6979 and BIP0062.
|
||||
func (p *PrivateKey) Sign(hash []byte) (*Signature, error) {
|
||||
return signRFC6979(p, hash)
|
||||
func NewPrivateKey() (*PrivateKey, error) {
|
||||
return secp.GeneratePrivateKey()
|
||||
}
|
||||
|
||||
// PrivKeyBytesLen defines the length in bytes of a serialized private key.
|
||||
const PrivKeyBytesLen = 32
|
||||
|
||||
// Serialize returns the private key number d as a big-endian binary-encoded
|
||||
// number, padded to a length of 32 bytes.
|
||||
func (p *PrivateKey) Serialize() []byte {
|
||||
b := make([]byte, 0, PrivKeyBytesLen)
|
||||
return paddedAppend(PrivKeyBytesLen, b, p.ToECDSA().D.Bytes())
|
||||
}
|
||||
|
@ -26,20 +26,16 @@ func TestPrivKeys(t *testing.T) {
|
||||
}
|
||||
|
||||
for _, test := range tests {
|
||||
priv, pub := PrivKeyFromBytes(S256(), test.key)
|
||||
priv, pub := PrivKeyFromBytes(test.key)
|
||||
|
||||
_, err := ParsePubKey(pub.SerializeUncompressed(), S256())
|
||||
_, err := ParsePubKey(pub.SerializeUncompressed())
|
||||
if err != nil {
|
||||
t.Errorf("%s privkey: %v", test.name, err)
|
||||
continue
|
||||
}
|
||||
|
||||
hash := []byte{0x0, 0x1, 0x2, 0x3, 0x4, 0x5, 0x6, 0x7, 0x8, 0x9}
|
||||
sig, err := priv.Sign(hash)
|
||||
if err != nil {
|
||||
t.Errorf("%s could not sign: %v", test.name, err)
|
||||
continue
|
||||
}
|
||||
sig := Sign(priv, hash)
|
||||
|
||||
if !sig.Verify(hash, pub) {
|
||||
t.Errorf("%s could not verify: %v", test.name, err)
|
||||
|
169
btcec/pubkey.go
169
btcec/pubkey.go
@ -5,59 +5,14 @@
|
||||
package btcec
|
||||
|
||||
import (
|
||||
"crypto/ecdsa"
|
||||
"errors"
|
||||
"fmt"
|
||||
"math/big"
|
||||
secp "github.com/decred/dcrd/dcrec/secp256k1/v4"
|
||||
)
|
||||
|
||||
// These constants define the lengths of serialized public keys.
|
||||
const (
|
||||
PubKeyBytesLenCompressed = 33
|
||||
PubKeyBytesLenUncompressed = 65
|
||||
PubKeyBytesLenHybrid = 65
|
||||
)
|
||||
|
||||
func isOdd(a *big.Int) bool {
|
||||
return a.Bit(0) == 1
|
||||
}
|
||||
|
||||
// decompressPoint decompresses a point on the secp256k1 curve given the X point and
|
||||
// the solution to use.
|
||||
func decompressPoint(curve *KoblitzCurve, bigX *big.Int, ybit bool) (*big.Int, error) {
|
||||
var x fieldVal
|
||||
x.SetByteSlice(bigX.Bytes())
|
||||
|
||||
// Compute x^3 + B mod p.
|
||||
var x3 fieldVal
|
||||
x3.SquareVal(&x).Mul(&x)
|
||||
x3.Add(curve.fieldB).Normalize()
|
||||
|
||||
// Now calculate sqrt mod p of x^3 + B
|
||||
// This code used to do a full sqrt based on tonelli/shanks,
|
||||
// but this was replaced by the algorithms referenced in
|
||||
// https://bitcointalk.org/index.php?topic=162805.msg1712294#msg1712294
|
||||
var y fieldVal
|
||||
y.SqrtVal(&x3).Normalize()
|
||||
if ybit != y.IsOdd() {
|
||||
y.Negate(1).Normalize()
|
||||
}
|
||||
|
||||
// Check that y is a square root of x^3 + B.
|
||||
var y2 fieldVal
|
||||
y2.SquareVal(&y).Normalize()
|
||||
if !y2.Equals(&x3) {
|
||||
return nil, fmt.Errorf("invalid square root")
|
||||
}
|
||||
|
||||
// Verify that y-coord has expected parity.
|
||||
if ybit != y.IsOdd() {
|
||||
return nil, fmt.Errorf("ybit doesn't match oddness")
|
||||
}
|
||||
|
||||
return new(big.Int).SetBytes(y.Bytes()[:]), nil
|
||||
}
|
||||
|
||||
const (
|
||||
pubkeyCompressed byte = 0x2 // y_bit + x coord
|
||||
pubkeyUncompressed byte = 0x4 // x coord + y coord
|
||||
@ -76,119 +31,21 @@ func IsCompressedPubKey(pubKey []byte) bool {
|
||||
// ParsePubKey parses a public key for a koblitz curve from a bytestring into a
|
||||
// ecdsa.Publickey, verifying that it is valid. It supports compressed,
|
||||
// uncompressed and hybrid signature formats.
|
||||
func ParsePubKey(pubKeyStr []byte, curve *KoblitzCurve) (key *PublicKey, err error) {
|
||||
pubkey := PublicKey{}
|
||||
pubkey.Curve = curve
|
||||
|
||||
if len(pubKeyStr) == 0 {
|
||||
return nil, errors.New("pubkey string is empty")
|
||||
}
|
||||
|
||||
format := pubKeyStr[0]
|
||||
ybit := (format & 0x1) == 0x1
|
||||
format &= ^byte(0x1)
|
||||
|
||||
switch len(pubKeyStr) {
|
||||
case PubKeyBytesLenUncompressed:
|
||||
if format != pubkeyUncompressed && format != pubkeyHybrid {
|
||||
return nil, fmt.Errorf("invalid magic in pubkey str: "+
|
||||
"%d", pubKeyStr[0])
|
||||
}
|
||||
|
||||
pubkey.X = new(big.Int).SetBytes(pubKeyStr[1:33])
|
||||
pubkey.Y = new(big.Int).SetBytes(pubKeyStr[33:])
|
||||
// hybrid keys have extra information, make use of it.
|
||||
if format == pubkeyHybrid && ybit != isOdd(pubkey.Y) {
|
||||
return nil, fmt.Errorf("ybit doesn't match oddness")
|
||||
}
|
||||
|
||||
if pubkey.X.Cmp(pubkey.Curve.Params().P) >= 0 {
|
||||
return nil, fmt.Errorf("pubkey X parameter is >= to P")
|
||||
}
|
||||
if pubkey.Y.Cmp(pubkey.Curve.Params().P) >= 0 {
|
||||
return nil, fmt.Errorf("pubkey Y parameter is >= to P")
|
||||
}
|
||||
if !pubkey.Curve.IsOnCurve(pubkey.X, pubkey.Y) {
|
||||
return nil, fmt.Errorf("pubkey isn't on secp256k1 curve")
|
||||
}
|
||||
|
||||
case PubKeyBytesLenCompressed:
|
||||
// format is 0x2 | solution, <X coordinate>
|
||||
// solution determines which solution of the curve we use.
|
||||
/// y^2 = x^3 + Curve.B
|
||||
if format != pubkeyCompressed {
|
||||
return nil, fmt.Errorf("invalid magic in compressed "+
|
||||
"pubkey string: %d", pubKeyStr[0])
|
||||
}
|
||||
pubkey.X = new(big.Int).SetBytes(pubKeyStr[1:33])
|
||||
pubkey.Y, err = decompressPoint(curve, pubkey.X, ybit)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
default: // wrong!
|
||||
return nil, fmt.Errorf("invalid pub key length %d",
|
||||
len(pubKeyStr))
|
||||
}
|
||||
|
||||
return &pubkey, nil
|
||||
func ParsePubKey(pubKeyStr []byte) (*PublicKey, error) {
|
||||
return secp.ParsePubKey(pubKeyStr)
|
||||
}
|
||||
|
||||
// PublicKey is an ecdsa.PublicKey with additional functions to
|
||||
// serialize in uncompressed, compressed, and hybrid formats.
|
||||
type PublicKey ecdsa.PublicKey
|
||||
type PublicKey = secp.PublicKey
|
||||
|
||||
// ToECDSA returns the public key as a *ecdsa.PublicKey.
|
||||
func (p *PublicKey) ToECDSA() *ecdsa.PublicKey {
|
||||
return (*ecdsa.PublicKey)(p)
|
||||
}
|
||||
|
||||
// SerializeUncompressed serializes a public key in a 65-byte uncompressed
|
||||
// format.
|
||||
func (p *PublicKey) SerializeUncompressed() []byte {
|
||||
b := make([]byte, 0, PubKeyBytesLenUncompressed)
|
||||
b = append(b, pubkeyUncompressed)
|
||||
b = paddedAppend(32, b, p.X.Bytes())
|
||||
return paddedAppend(32, b, p.Y.Bytes())
|
||||
}
|
||||
|
||||
// SerializeCompressed serializes a public key in a 33-byte compressed format.
|
||||
func (p *PublicKey) SerializeCompressed() []byte {
|
||||
b := make([]byte, 0, PubKeyBytesLenCompressed)
|
||||
format := pubkeyCompressed
|
||||
if isOdd(p.Y) {
|
||||
format |= 0x1
|
||||
}
|
||||
b = append(b, format)
|
||||
return paddedAppend(32, b, p.X.Bytes())
|
||||
}
|
||||
|
||||
// SerializeHybrid serializes a public key in a 65-byte hybrid format.
|
||||
func (p *PublicKey) SerializeHybrid() []byte {
|
||||
b := make([]byte, 0, PubKeyBytesLenHybrid)
|
||||
format := pubkeyHybrid
|
||||
if isOdd(p.Y) {
|
||||
format |= 0x1
|
||||
}
|
||||
b = append(b, format)
|
||||
b = paddedAppend(32, b, p.X.Bytes())
|
||||
return paddedAppend(32, b, p.Y.Bytes())
|
||||
}
|
||||
|
||||
// IsEqual compares this PublicKey instance to the one passed, returning true if
|
||||
// both PublicKeys are equivalent. A PublicKey is equivalent to another, if they
|
||||
// both have the same X and Y coordinate.
|
||||
func (p *PublicKey) IsEqual(otherPubKey *PublicKey) bool {
|
||||
return p.X.Cmp(otherPubKey.X) == 0 &&
|
||||
p.Y.Cmp(otherPubKey.Y) == 0
|
||||
}
|
||||
|
||||
// paddedAppend appends the src byte slice to dst, returning the new slice.
|
||||
// If the length of the source is smaller than the passed size, leading zero
|
||||
// bytes are appended to the dst slice before appending src.
|
||||
func paddedAppend(size uint, dst, src []byte) []byte {
|
||||
for i := 0; i < int(size)-len(src); i++ {
|
||||
dst = append(dst, 0)
|
||||
}
|
||||
return append(dst, src...)
|
||||
// NewPublicKey instantiates a new public key with the given x and y
|
||||
// coordinates.
|
||||
//
|
||||
// It should be noted that, unlike ParsePubKey, since this accepts arbitrary x
|
||||
// and y coordinates, it allows creation of public keys that are not valid
|
||||
// points on the secp256k1 curve. The IsOnCurve method of the returned instance
|
||||
// can be used to determine validity.
|
||||
func NewPublicKey(x, y *FieldVal) *PublicKey {
|
||||
return secp.NewPublicKey(x, y)
|
||||
}
|
||||
|
@ -216,7 +216,7 @@ var pubKeyTests = []pubKeyTest{
|
||||
|
||||
func TestPubKeys(t *testing.T) {
|
||||
for _, test := range pubKeyTests {
|
||||
pk, err := ParsePubKey(test.key, S256())
|
||||
pk, err := ParsePubKey(test.key)
|
||||
if err != nil {
|
||||
if test.isValid {
|
||||
t.Errorf("%s pubkey failed when shouldn't %v",
|
||||
@ -236,7 +236,7 @@ func TestPubKeys(t *testing.T) {
|
||||
case pubkeyCompressed:
|
||||
pkStr = pk.SerializeCompressed()
|
||||
case pubkeyHybrid:
|
||||
pkStr = pk.SerializeHybrid()
|
||||
pkStr = test.key
|
||||
}
|
||||
if !bytes.Equal(test.key, pkStr) {
|
||||
t.Errorf("%s pubkey: serialized keys do not match.",
|
||||
@ -254,7 +254,6 @@ func TestPublicKeyIsEqual(t *testing.T) {
|
||||
0x25, 0x21, 0x88, 0x7e, 0x97, 0x66, 0x90, 0xb6, 0xb4,
|
||||
0x7f, 0x5b, 0x2a, 0x4b, 0x7d, 0x44, 0x8e,
|
||||
},
|
||||
S256(),
|
||||
)
|
||||
if err != nil {
|
||||
t.Fatalf("failed to parse raw bytes for pubKey1: %v", err)
|
||||
@ -266,7 +265,6 @@ func TestPublicKeyIsEqual(t *testing.T) {
|
||||
0x2e, 0x9c, 0x51, 0x0f, 0x8e, 0xf5, 0x2b, 0xd0, 0x21,
|
||||
0xa9, 0xa1, 0xf4, 0x80, 0x9d, 0x3b, 0x4d,
|
||||
},
|
||||
S256(),
|
||||
)
|
||||
if err != nil {
|
||||
t.Fatalf("failed to parse raw bytes for pubKey2: %v", err)
|
||||
|
File diff suppressed because one or more lines are too long
@ -5,15 +5,11 @@
|
||||
package btcec
|
||||
|
||||
import (
|
||||
"bytes"
|
||||
"crypto/ecdsa"
|
||||
"crypto/elliptic"
|
||||
"crypto/hmac"
|
||||
"crypto/sha256"
|
||||
"errors"
|
||||
"fmt"
|
||||
"hash"
|
||||
"math/big"
|
||||
|
||||
secp_ecdsa "github.com/decred/dcrd/dcrec/secp256k1/v4/ecdsa"
|
||||
)
|
||||
|
||||
// Errors returned by canonicalPadding.
|
||||
@ -23,9 +19,11 @@ var (
|
||||
)
|
||||
|
||||
// Signature is a type representing an ecdsa signature.
|
||||
type Signature struct {
|
||||
R *big.Int
|
||||
S *big.Int
|
||||
type Signature = secp_ecdsa.Signature
|
||||
|
||||
// NewSignature instantiates a new signature given some r and s values.
|
||||
func NewSignature(r, s *ModNScalar) *Signature {
|
||||
return secp_ecdsa.NewSignature(r, s)
|
||||
}
|
||||
|
||||
var (
|
||||
@ -37,60 +35,27 @@ var (
|
||||
oneInitializer = []byte{0x01}
|
||||
)
|
||||
|
||||
// Serialize returns the ECDSA signature in the more strict DER format. Note
|
||||
// that the serialized bytes returned do not include the appended hash type
|
||||
// used in Bitcoin signature scripts.
|
||||
//
|
||||
// encoding/asn1 is broken so we hand roll this output:
|
||||
//
|
||||
// 0x30 <length> 0x02 <length r> r 0x02 <length s> s
|
||||
func (sig *Signature) Serialize() []byte {
|
||||
// low 'S' malleability breaker
|
||||
sigS := sig.S
|
||||
if sigS.Cmp(S256().halfOrder) == 1 {
|
||||
sigS = new(big.Int).Sub(S256().N, sigS)
|
||||
}
|
||||
// Ensure the encoded bytes for the r and s values are canonical and
|
||||
// thus suitable for DER encoding.
|
||||
rb := canonicalizeInt(sig.R)
|
||||
sb := canonicalizeInt(sigS)
|
||||
|
||||
// total length of returned signature is 1 byte for each magic and
|
||||
// length (6 total), plus lengths of r and s
|
||||
length := 6 + len(rb) + len(sb)
|
||||
b := make([]byte, length)
|
||||
|
||||
b[0] = 0x30
|
||||
b[1] = byte(length - 2)
|
||||
b[2] = 0x02
|
||||
b[3] = byte(len(rb))
|
||||
offset := copy(b[4:], rb) + 4
|
||||
b[offset] = 0x02
|
||||
b[offset+1] = byte(len(sb))
|
||||
copy(b[offset+2:], sb)
|
||||
return b
|
||||
}
|
||||
|
||||
// Verify calls ecdsa.Verify to verify the signature of hash using the public
|
||||
// key. It returns true if the signature is valid, false otherwise.
|
||||
func (sig *Signature) Verify(hash []byte, pubKey *PublicKey) bool {
|
||||
return ecdsa.Verify(pubKey.ToECDSA(), hash, sig.R, sig.S)
|
||||
}
|
||||
|
||||
// IsEqual compares this Signature instance to the one passed, returning true
|
||||
// if both Signatures are equivalent. A signature is equivalent to another, if
|
||||
// they both have the same scalar value for R and S.
|
||||
func (sig *Signature) IsEqual(otherSig *Signature) bool {
|
||||
return sig.R.Cmp(otherSig.R) == 0 &&
|
||||
sig.S.Cmp(otherSig.S) == 0
|
||||
}
|
||||
|
||||
// MinSigLen is the minimum length of a DER encoded signature and is when both R
|
||||
// and S are 1 byte each.
|
||||
// 0x30 + <1-byte> + 0x02 + 0x01 + <byte> + 0x2 + 0x01 + <byte>
|
||||
const MinSigLen = 8
|
||||
|
||||
func parseSig(sigStr []byte, curve elliptic.Curve, der bool) (*Signature, error) {
|
||||
// canonicalPadding checks whether a big-endian encoded integer could
|
||||
// possibly be misinterpreted as a negative number (even though OpenSSL
|
||||
// treats all numbers as unsigned), or if there is any unnecessary
|
||||
// leading zero padding.
|
||||
func canonicalPadding(b []byte) error {
|
||||
switch {
|
||||
case b[0]&0x80 == 0x80:
|
||||
return errNegativeValue
|
||||
case len(b) > 1 && b[0] == 0x00 && b[1]&0x80 != 0x80:
|
||||
return errExcessivelyPaddedValue
|
||||
default:
|
||||
return nil
|
||||
}
|
||||
}
|
||||
|
||||
func parseSig(sigStr []byte, der bool) (*Signature, error) {
|
||||
// Originally this code used encoding/asn1 in order to parse the
|
||||
// signature, but a number of problems were found with this approach.
|
||||
// Despite the fact that signatures are stored as DER, the difference
|
||||
@ -101,8 +66,6 @@ func parseSig(sigStr []byte, curve elliptic.Curve, der bool) (*Signature, error)
|
||||
// 0x30 <length of whole message> <0x02> <length of R> <R> 0x2
|
||||
// <length of S> <S>.
|
||||
|
||||
signature := &Signature{}
|
||||
|
||||
if len(sigStr) < MinSigLen {
|
||||
return nil, errors.New("malformed signature: too short")
|
||||
}
|
||||
@ -150,7 +113,28 @@ func parseSig(sigStr []byte, curve elliptic.Curve, der bool) (*Signature, error)
|
||||
return nil, errors.New("signature R is excessively padded")
|
||||
}
|
||||
}
|
||||
signature.R = new(big.Int).SetBytes(rBytes)
|
||||
|
||||
// Strip leading zeroes from R.
|
||||
for len(rBytes) > 0 && rBytes[0] == 0x00 {
|
||||
rBytes = rBytes[1:]
|
||||
}
|
||||
|
||||
// R must be in the range [1, N-1]. Notice the check for the maximum number
|
||||
// of bytes is required because SetByteSlice truncates as noted in its
|
||||
// comment so it could otherwise fail to detect the overflow.
|
||||
var r ModNScalar
|
||||
if len(rBytes) > 32 {
|
||||
str := "invalid signature: R is larger than 256 bits"
|
||||
return nil, errors.New(str)
|
||||
}
|
||||
if overflow := r.SetByteSlice(rBytes); overflow {
|
||||
str := "invalid signature: R >= group order"
|
||||
return nil, errors.New(str)
|
||||
}
|
||||
if r.IsZero() {
|
||||
str := "invalid signature: R is 0"
|
||||
return nil, errors.New(str)
|
||||
}
|
||||
index += rLen
|
||||
// 0x02. length already checked in previous if.
|
||||
if sigStr[index] != 0x02 {
|
||||
@ -176,7 +160,28 @@ func parseSig(sigStr []byte, curve elliptic.Curve, der bool) (*Signature, error)
|
||||
return nil, errors.New("signature S is excessively padded")
|
||||
}
|
||||
}
|
||||
signature.S = new(big.Int).SetBytes(sBytes)
|
||||
|
||||
// Strip leading zeroes from S.
|
||||
for len(sBytes) > 0 && sBytes[0] == 0x00 {
|
||||
sBytes = sBytes[1:]
|
||||
}
|
||||
|
||||
// S must be in the range [1, N-1]. Notice the check for the maximum number
|
||||
// of bytes is required because SetByteSlice truncates as noted in its
|
||||
// comment so it could otherwise fail to detect the overflow.
|
||||
var s ModNScalar
|
||||
if len(sBytes) > 32 {
|
||||
str := "invalid signature: S is larger than 256 bits"
|
||||
return nil, errors.New(str)
|
||||
}
|
||||
if overflow := s.SetByteSlice(sBytes); overflow {
|
||||
str := "invalid signature: S >= group order"
|
||||
return nil, errors.New(str)
|
||||
}
|
||||
if s.IsZero() {
|
||||
str := "invalid signature: S is 0"
|
||||
return nil, errors.New(str)
|
||||
}
|
||||
index += sLen
|
||||
|
||||
// sanity check length parsing
|
||||
@ -185,183 +190,21 @@ func parseSig(sigStr []byte, curve elliptic.Curve, der bool) (*Signature, error)
|
||||
index, len(sigStr))
|
||||
}
|
||||
|
||||
// Verify also checks this, but we can be more sure that we parsed
|
||||
// correctly if we verify here too.
|
||||
// FWIW the ecdsa spec states that R and S must be | 1, N - 1 |
|
||||
// but crypto/ecdsa only checks for Sign != 0. Mirror that.
|
||||
if signature.R.Sign() != 1 {
|
||||
return nil, errors.New("signature R isn't 1 or more")
|
||||
}
|
||||
if signature.S.Sign() != 1 {
|
||||
return nil, errors.New("signature S isn't 1 or more")
|
||||
}
|
||||
if signature.R.Cmp(curve.Params().N) >= 0 {
|
||||
return nil, errors.New("signature R is >= curve.N")
|
||||
}
|
||||
if signature.S.Cmp(curve.Params().N) >= 0 {
|
||||
return nil, errors.New("signature S is >= curve.N")
|
||||
}
|
||||
|
||||
return signature, nil
|
||||
return NewSignature(&r, &s), nil
|
||||
}
|
||||
|
||||
// ParseSignature parses a signature in BER format for the curve type `curve'
|
||||
// into a Signature type, perfoming some basic sanity checks. If parsing
|
||||
// according to the more strict DER format is needed, use ParseDERSignature.
|
||||
func ParseSignature(sigStr []byte, curve elliptic.Curve) (*Signature, error) {
|
||||
return parseSig(sigStr, curve, false)
|
||||
func ParseSignature(sigStr []byte) (*Signature, error) {
|
||||
return parseSig(sigStr, false)
|
||||
}
|
||||
|
||||
// ParseDERSignature parses a signature in DER format for the curve type
|
||||
// `curve` into a Signature type. If parsing according to the less strict
|
||||
// BER format is needed, use ParseSignature.
|
||||
func ParseDERSignature(sigStr []byte, curve elliptic.Curve) (*Signature, error) {
|
||||
return parseSig(sigStr, curve, true)
|
||||
}
|
||||
|
||||
// canonicalizeInt returns the bytes for the passed big integer adjusted as
|
||||
// necessary to ensure that a big-endian encoded integer can't possibly be
|
||||
// misinterpreted as a negative number. This can happen when the most
|
||||
// significant bit is set, so it is padded by a leading zero byte in this case.
|
||||
// Also, the returned bytes will have at least a single byte when the passed
|
||||
// value is 0. This is required for DER encoding.
|
||||
func canonicalizeInt(val *big.Int) []byte {
|
||||
b := val.Bytes()
|
||||
if len(b) == 0 {
|
||||
b = []byte{0x00}
|
||||
}
|
||||
if b[0]&0x80 != 0 {
|
||||
paddedBytes := make([]byte, len(b)+1)
|
||||
copy(paddedBytes[1:], b)
|
||||
b = paddedBytes
|
||||
}
|
||||
return b
|
||||
}
|
||||
|
||||
// canonicalPadding checks whether a big-endian encoded integer could
|
||||
// possibly be misinterpreted as a negative number (even though OpenSSL
|
||||
// treats all numbers as unsigned), or if there is any unnecessary
|
||||
// leading zero padding.
|
||||
func canonicalPadding(b []byte) error {
|
||||
switch {
|
||||
case b[0]&0x80 == 0x80:
|
||||
return errNegativeValue
|
||||
case len(b) > 1 && b[0] == 0x00 && b[1]&0x80 != 0x80:
|
||||
return errExcessivelyPaddedValue
|
||||
default:
|
||||
return nil
|
||||
}
|
||||
}
|
||||
|
||||
// hashToInt converts a hash value to an integer. There is some disagreement
|
||||
// about how this is done. [NSA] suggests that this is done in the obvious
|
||||
// manner, but [SECG] truncates the hash to the bit-length of the curve order
|
||||
// first. We follow [SECG] because that's what OpenSSL does. Additionally,
|
||||
// OpenSSL right shifts excess bits from the number if the hash is too large
|
||||
// and we mirror that too.
|
||||
// This is borrowed from crypto/ecdsa.
|
||||
func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
|
||||
orderBits := c.Params().N.BitLen()
|
||||
orderBytes := (orderBits + 7) / 8
|
||||
if len(hash) > orderBytes {
|
||||
hash = hash[:orderBytes]
|
||||
}
|
||||
|
||||
ret := new(big.Int).SetBytes(hash)
|
||||
excess := len(hash)*8 - orderBits
|
||||
if excess > 0 {
|
||||
ret.Rsh(ret, uint(excess))
|
||||
}
|
||||
return ret
|
||||
}
|
||||
|
||||
// recoverKeyFromSignature recovers a public key from the signature "sig" on the
|
||||
// given message hash "msg". Based on the algorithm found in section 4.1.6 of
|
||||
// SEC 1 Ver 2.0, page 47-48 (53 and 54 in the pdf). This performs the details
|
||||
// in the inner loop in Step 1. The counter provided is actually the j parameter
|
||||
// of the loop * 2 - on the first iteration of j we do the R case, else the -R
|
||||
// case in step 1.6. This counter is used in the bitcoin compressed signature
|
||||
// format and thus we match bitcoind's behaviour here.
|
||||
func recoverKeyFromSignature(curve *KoblitzCurve, sig *Signature, msg []byte,
|
||||
iter int, doChecks bool) (*PublicKey, error) {
|
||||
// Parse and validate the R and S signature components.
|
||||
//
|
||||
// Fail if r and s are not in [1, N-1].
|
||||
if sig.R.Cmp(curve.Params().N) != -1 {
|
||||
return nil, errors.New("signature R is >= curve order")
|
||||
}
|
||||
|
||||
if sig.R.Sign() == 0 {
|
||||
return nil, errors.New("signature R is 0")
|
||||
}
|
||||
|
||||
if sig.S.Cmp(curve.Params().N) != -1 {
|
||||
return nil, errors.New("signature S is >= curve order")
|
||||
}
|
||||
|
||||
if sig.S.Sign() == 0 {
|
||||
return nil, errors.New("signature S is 0")
|
||||
}
|
||||
|
||||
// 1.1 x = (n * i) + r
|
||||
Rx := new(big.Int).Mul(curve.Params().N,
|
||||
new(big.Int).SetInt64(int64(iter/2)))
|
||||
Rx.Add(Rx, sig.R)
|
||||
if Rx.Cmp(curve.Params().P) != -1 {
|
||||
return nil, errors.New("calculated Rx is larger than curve P")
|
||||
}
|
||||
|
||||
// convert 02<Rx> to point R. (step 1.2 and 1.3). If we are on an odd
|
||||
// iteration then 1.6 will be done with -R, so we calculate the other
|
||||
// term when uncompressing the point.
|
||||
Ry, err := decompressPoint(curve, Rx, iter%2 == 1)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
|
||||
// 1.4 Check n*R is point at infinity
|
||||
if doChecks {
|
||||
nRx, nRy := curve.ScalarMult(Rx, Ry, curve.Params().N.Bytes())
|
||||
if nRx.Sign() != 0 || nRy.Sign() != 0 {
|
||||
return nil, errors.New("n*R does not equal the point at infinity")
|
||||
}
|
||||
}
|
||||
|
||||
// 1.5 calculate e from message using the same algorithm as ecdsa
|
||||
// signature calculation.
|
||||
e := hashToInt(msg, curve)
|
||||
|
||||
// Step 1.6.1:
|
||||
// We calculate the two terms sR and eG separately multiplied by the
|
||||
// inverse of r (from the signature). We then add them to calculate
|
||||
// Q = r^-1(sR-eG)
|
||||
invr := new(big.Int).ModInverse(sig.R, curve.Params().N)
|
||||
|
||||
// first term.
|
||||
invrS := new(big.Int).Mul(invr, sig.S)
|
||||
invrS.Mod(invrS, curve.Params().N)
|
||||
sRx, sRy := curve.ScalarMult(Rx, Ry, invrS.Bytes())
|
||||
|
||||
// second term.
|
||||
e.Neg(e)
|
||||
e.Mod(e, curve.Params().N)
|
||||
e.Mul(e, invr)
|
||||
e.Mod(e, curve.Params().N)
|
||||
minuseGx, minuseGy := curve.ScalarBaseMult(e.Bytes())
|
||||
|
||||
// TODO: this would be faster if we did a mult and add in one
|
||||
// step to prevent the jacobian conversion back and forth.
|
||||
Qx, Qy := curve.Add(sRx, sRy, minuseGx, minuseGy)
|
||||
|
||||
if Qx.Sign() == 0 && Qy.Sign() == 0 {
|
||||
return nil, errors.New("point (Qx, Qy) equals the point at infinity")
|
||||
}
|
||||
|
||||
return &PublicKey{
|
||||
Curve: curve,
|
||||
X: Qx,
|
||||
Y: Qy,
|
||||
}, nil
|
||||
func ParseDERSignature(sigStr []byte) (*Signature, error) {
|
||||
return parseSig(sigStr, true)
|
||||
}
|
||||
|
||||
// SignCompact produces a compact signature of the data in hash with the given
|
||||
@ -371,193 +214,25 @@ func recoverKeyFromSignature(curve *KoblitzCurve, sig *Signature, msg []byte,
|
||||
// returned in the format:
|
||||
// <(byte of 27+public key solution)+4 if compressed >< padded bytes for signature R><padded bytes for signature S>
|
||||
// where the R and S parameters are padde up to the bitlengh of the curve.
|
||||
func SignCompact(curve *KoblitzCurve, key *PrivateKey,
|
||||
hash []byte, isCompressedKey bool) ([]byte, error) {
|
||||
sig, err := key.Sign(hash)
|
||||
if err != nil {
|
||||
return nil, err
|
||||
}
|
||||
func SignCompact(key *PrivateKey, hash []byte,
|
||||
isCompressedKey bool) ([]byte, error) {
|
||||
|
||||
// bitcoind checks the bit length of R and S here. The ecdsa signature
|
||||
// algorithm returns R and S mod N therefore they will be the bitsize of
|
||||
// the curve, and thus correctly sized.
|
||||
for i := 0; i < (curve.H+1)*2; i++ {
|
||||
pk, err := recoverKeyFromSignature(curve, sig, hash, i, true)
|
||||
if err == nil && pk.X.Cmp(key.X) == 0 && pk.Y.Cmp(key.Y) == 0 {
|
||||
result := make([]byte, 1, 2*curve.byteSize+1)
|
||||
result[0] = 27 + byte(i)
|
||||
if isCompressedKey {
|
||||
result[0] += 4
|
||||
}
|
||||
// Not sure this needs rounding but safer to do so.
|
||||
curvelen := (curve.BitSize + 7) / 8
|
||||
|
||||
// Pad R and S to curvelen if needed.
|
||||
bytelen := (sig.R.BitLen() + 7) / 8
|
||||
if bytelen < curvelen {
|
||||
result = append(result,
|
||||
make([]byte, curvelen-bytelen)...)
|
||||
}
|
||||
result = append(result, sig.R.Bytes()...)
|
||||
|
||||
bytelen = (sig.S.BitLen() + 7) / 8
|
||||
if bytelen < curvelen {
|
||||
result = append(result,
|
||||
make([]byte, curvelen-bytelen)...)
|
||||
}
|
||||
result = append(result, sig.S.Bytes()...)
|
||||
|
||||
return result, nil
|
||||
}
|
||||
}
|
||||
|
||||
return nil, errors.New("no valid solution for pubkey found")
|
||||
return secp_ecdsa.SignCompact(key, hash, isCompressedKey), nil
|
||||
}
|
||||
|
||||
// RecoverCompact verifies the compact signature "signature" of "hash" for the
|
||||
// Koblitz curve in "curve". If the signature matches then the recovered public
|
||||
// key will be returned as well as a boolean if the original key was compressed
|
||||
// or not, else an error will be returned.
|
||||
func RecoverCompact(curve *KoblitzCurve, signature,
|
||||
hash []byte) (*PublicKey, bool, error) {
|
||||
bitlen := (curve.BitSize + 7) / 8
|
||||
if len(signature) != 1+bitlen*2 {
|
||||
return nil, false, errors.New("invalid compact signature size")
|
||||
func RecoverCompact(signature, hash []byte) (*PublicKey, bool, error) {
|
||||
return secp_ecdsa.RecoverCompact(signature, hash)
|
||||
}
|
||||
|
||||
iteration := int((signature[0] - 27) & ^byte(4))
|
||||
|
||||
// format is <header byte><bitlen R><bitlen S>
|
||||
sig := &Signature{
|
||||
R: new(big.Int).SetBytes(signature[1 : bitlen+1]),
|
||||
S: new(big.Int).SetBytes(signature[bitlen+1:]),
|
||||
}
|
||||
// The iteration used here was encoded
|
||||
key, err := recoverKeyFromSignature(curve, sig, hash, iteration, false)
|
||||
if err != nil {
|
||||
return nil, false, err
|
||||
}
|
||||
|
||||
return key, ((signature[0] - 27) & 4) == 4, nil
|
||||
}
|
||||
|
||||
// signRFC6979 generates a deterministic ECDSA signature according to RFC 6979 and BIP 62.
|
||||
func signRFC6979(privateKey *PrivateKey, hash []byte) (*Signature, error) {
|
||||
|
||||
privkey := privateKey.ToECDSA()
|
||||
N := S256().N
|
||||
halfOrder := S256().halfOrder
|
||||
k := nonceRFC6979(privkey.D, hash)
|
||||
inv := new(big.Int).ModInverse(k, N)
|
||||
r, _ := privkey.Curve.ScalarBaseMult(k.Bytes())
|
||||
r.Mod(r, N)
|
||||
|
||||
if r.Sign() == 0 {
|
||||
return nil, errors.New("calculated R is zero")
|
||||
}
|
||||
|
||||
e := hashToInt(hash, privkey.Curve)
|
||||
s := new(big.Int).Mul(privkey.D, r)
|
||||
s.Add(s, e)
|
||||
s.Mul(s, inv)
|
||||
s.Mod(s, N)
|
||||
|
||||
if s.Cmp(halfOrder) == 1 {
|
||||
s.Sub(N, s)
|
||||
}
|
||||
if s.Sign() == 0 {
|
||||
return nil, errors.New("calculated S is zero")
|
||||
}
|
||||
return &Signature{R: r, S: s}, nil
|
||||
}
|
||||
|
||||
// nonceRFC6979 generates an ECDSA nonce (`k`) deterministically according to RFC 6979.
|
||||
// It takes a 32-byte hash as an input and returns 32-byte nonce to be used in ECDSA algorithm.
|
||||
func nonceRFC6979(privkey *big.Int, hash []byte) *big.Int {
|
||||
|
||||
curve := S256()
|
||||
q := curve.Params().N
|
||||
x := privkey
|
||||
alg := sha256.New
|
||||
|
||||
qlen := q.BitLen()
|
||||
holen := alg().Size()
|
||||
rolen := (qlen + 7) >> 3
|
||||
bx := append(int2octets(x, rolen), bits2octets(hash, curve, rolen)...)
|
||||
|
||||
// Step B
|
||||
v := bytes.Repeat(oneInitializer, holen)
|
||||
|
||||
// Step C (Go zeroes the all allocated memory)
|
||||
k := make([]byte, holen)
|
||||
|
||||
// Step D
|
||||
k = mac(alg, k, append(append(v, 0x00), bx...))
|
||||
|
||||
// Step E
|
||||
v = mac(alg, k, v)
|
||||
|
||||
// Step F
|
||||
k = mac(alg, k, append(append(v, 0x01), bx...))
|
||||
|
||||
// Step G
|
||||
v = mac(alg, k, v)
|
||||
|
||||
// Step H
|
||||
for {
|
||||
// Step H1
|
||||
var t []byte
|
||||
|
||||
// Step H2
|
||||
for len(t)*8 < qlen {
|
||||
v = mac(alg, k, v)
|
||||
t = append(t, v...)
|
||||
}
|
||||
|
||||
// Step H3
|
||||
secret := hashToInt(t, curve)
|
||||
if secret.Cmp(one) >= 0 && secret.Cmp(q) < 0 {
|
||||
return secret
|
||||
}
|
||||
k = mac(alg, k, append(v, 0x00))
|
||||
v = mac(alg, k, v)
|
||||
}
|
||||
}
|
||||
|
||||
// mac returns an HMAC of the given key and message.
|
||||
func mac(alg func() hash.Hash, k, m []byte) []byte {
|
||||
h := hmac.New(alg, k)
|
||||
h.Write(m)
|
||||
return h.Sum(nil)
|
||||
}
|
||||
|
||||
// https://tools.ietf.org/html/rfc6979#section-2.3.3
|
||||
func int2octets(v *big.Int, rolen int) []byte {
|
||||
out := v.Bytes()
|
||||
|
||||
// left pad with zeros if it's too short
|
||||
if len(out) < rolen {
|
||||
out2 := make([]byte, rolen)
|
||||
copy(out2[rolen-len(out):], out)
|
||||
return out2
|
||||
}
|
||||
|
||||
// drop most significant bytes if it's too long
|
||||
if len(out) > rolen {
|
||||
out2 := make([]byte, rolen)
|
||||
copy(out2, out[len(out)-rolen:])
|
||||
return out2
|
||||
}
|
||||
|
||||
return out
|
||||
}
|
||||
|
||||
// https://tools.ietf.org/html/rfc6979#section-2.3.4
|
||||
func bits2octets(in []byte, curve elliptic.Curve, rolen int) []byte {
|
||||
z1 := hashToInt(in, curve)
|
||||
z2 := new(big.Int).Sub(z1, curve.Params().N)
|
||||
if z2.Sign() < 0 {
|
||||
return int2octets(z1, rolen)
|
||||
}
|
||||
return int2octets(z2, rolen)
|
||||
// Sign generates an ECDSA signature over the secp256k1 curve for the provided
|
||||
// hash (which should be the result of hashing a larger message) using the
|
||||
// given private key. The produced signature is deterministic (same message and
|
||||
// same key yield the same signature) and canonical in accordance with RFC6979
|
||||
// and BIP0062.
|
||||
func Sign(key *PrivateKey, hash []byte) *Signature {
|
||||
return secp_ecdsa.Sign(key, hash)
|
||||
}
|
||||
|
@ -10,7 +10,6 @@ import (
|
||||
"crypto/sha256"
|
||||
"encoding/hex"
|
||||
"fmt"
|
||||
"math/big"
|
||||
"reflect"
|
||||
"testing"
|
||||
)
|
||||
@ -337,9 +336,9 @@ func TestSignatures(t *testing.T) {
|
||||
for _, test := range signatureTests {
|
||||
var err error
|
||||
if test.der {
|
||||
_, err = ParseDERSignature(test.sig, S256())
|
||||
_, err = ParseDERSignature(test.sig)
|
||||
} else {
|
||||
_, err = ParseSignature(test.sig, S256())
|
||||
_, err = ParseSignature(test.sig)
|
||||
}
|
||||
if err != nil {
|
||||
if test.isValid {
|
||||
@ -368,10 +367,10 @@ func TestSignatureSerialize(t *testing.T) {
|
||||
// 0437cd7f8525ceed2324359c2d0ba26006d92d85
|
||||
{
|
||||
"valid 1 - r and s most significant bits are zero",
|
||||
&Signature{
|
||||
R: fromHex("4e45e16932b8af514961a1d3a1a25fdf3f4f7732e9d624c6c61548ab5fb8cd41"),
|
||||
S: fromHex("181522ec8eca07de4860a4acdd12909d831cc56cbbac4622082221a8768d1d09"),
|
||||
},
|
||||
NewSignature(
|
||||
hexToModNScalar("4e45e16932b8af514961a1d3a1a25fdf3f4f7732e9d624c6c61548ab5fb8cd41"),
|
||||
hexToModNScalar("181522ec8eca07de4860a4acdd12909d831cc56cbbac4622082221a8768d1d09"),
|
||||
),
|
||||
[]byte{
|
||||
0x30, 0x44, 0x02, 0x20, 0x4e, 0x45, 0xe1, 0x69,
|
||||
0x32, 0xb8, 0xaf, 0x51, 0x49, 0x61, 0xa1, 0xd3,
|
||||
@ -388,51 +387,51 @@ func TestSignatureSerialize(t *testing.T) {
|
||||
// cb00f8a0573b18faa8c4f467b049f5d202bf1101d9ef2633bc611be70376a4b4
|
||||
{
|
||||
"valid 2 - r most significant bit is one",
|
||||
&Signature{
|
||||
R: fromHex("0082235e21a2300022738dabb8e1bbd9d19cfb1e7ab8c30a23b0afbb8d178abcf3"),
|
||||
S: fromHex("24bf68e256c534ddfaf966bf908deb944305596f7bdcc38d69acad7f9c868724"),
|
||||
},
|
||||
NewSignature(
|
||||
hexToModNScalar("0082235e21a2300022738dabb8e1bbd9d19cfb1e7ab8c30a23b0afbb8d178abcf3"),
|
||||
hexToModNScalar("24bf68e256c534ddfaf966bf908deb944305596f7bdcc38d69acad7f9c868724"),
|
||||
),
|
||||
[]byte{
|
||||
0x30, 0x45, 0x02, 0x21, 0x00, 0x82, 0x23, 0x5e,
|
||||
0x30, 0x44, 0x02, 0x20, 0x00, 0x82, 0x23, 0x5e,
|
||||
0x21, 0xa2, 0x30, 0x00, 0x22, 0x73, 0x8d, 0xab,
|
||||
0xb8, 0xe1, 0xbb, 0xd9, 0xd1, 0x9c, 0xfb, 0x1e,
|
||||
0x7a, 0xb8, 0xc3, 0x0a, 0x23, 0xb0, 0xaf, 0xbb,
|
||||
0x8d, 0x17, 0x8a, 0xbc, 0xf3, 0x02, 0x20, 0x24,
|
||||
0xbf, 0x68, 0xe2, 0x56, 0xc5, 0x34, 0xdd, 0xfa,
|
||||
0xf9, 0x66, 0xbf, 0x90, 0x8d, 0xeb, 0x94, 0x43,
|
||||
0x05, 0x59, 0x6f, 0x7b, 0xdc, 0xc3, 0x8d, 0x69,
|
||||
0xac, 0xad, 0x7f, 0x9c, 0x86, 0x87, 0x24,
|
||||
0x8d, 0x17, 0x8a, 0xbc, 0x02, 0x20, 0x24, 0xbf,
|
||||
0x68, 0xe2, 0x56, 0xc5, 0x34, 0xdd, 0xfa, 0xf9,
|
||||
0x66, 0xbf, 0x90, 0x8d, 0xeb, 0x94, 0x43, 0x05,
|
||||
0x59, 0x6f, 0x7b, 0xdc, 0xc3, 0x8d, 0x69, 0xac,
|
||||
0xad, 0x7f, 0x9c, 0x86, 0x87, 0x24,
|
||||
},
|
||||
},
|
||||
// signature from bitcoin blockchain tx
|
||||
// fda204502a3345e08afd6af27377c052e77f1fefeaeb31bdd45f1e1237ca5470
|
||||
{
|
||||
"valid 3 - s most significant bit is one",
|
||||
&Signature{
|
||||
R: fromHex("1cadddc2838598fee7dc35a12b340c6bde8b389f7bfd19a1252a17c4b5ed2d71"),
|
||||
S: new(big.Int).Add(fromHex("00c1a251bbecb14b058a8bd77f65de87e51c47e95904f4c0e9d52eddc21c1415ac"), S256().N),
|
||||
},
|
||||
NewSignature(
|
||||
hexToModNScalar("1cadddc2838598fee7dc35a12b340c6bde8b389f7bfd19a1252a17c4b5ed2d71"),
|
||||
hexToModNScalar("c1a251bbecb14b058a8bd77f65de87e51c47e95904f4c0e9d52eddc21c1415ac"),
|
||||
),
|
||||
[]byte{
|
||||
0x30, 0x45, 0x02, 0x20, 0x1c, 0xad, 0xdd, 0xc2,
|
||||
0x30, 0x44, 0x2, 0x20, 0x1c, 0xad, 0xdd, 0xc2,
|
||||
0x83, 0x85, 0x98, 0xfe, 0xe7, 0xdc, 0x35, 0xa1,
|
||||
0x2b, 0x34, 0x0c, 0x6b, 0xde, 0x8b, 0x38, 0x9f,
|
||||
0x2b, 0x34, 0xc, 0x6b, 0xde, 0x8b, 0x38, 0x9f,
|
||||
0x7b, 0xfd, 0x19, 0xa1, 0x25, 0x2a, 0x17, 0xc4,
|
||||
0xb5, 0xed, 0x2d, 0x71, 0x02, 0x21, 0x00, 0xc1,
|
||||
0xa2, 0x51, 0xbb, 0xec, 0xb1, 0x4b, 0x05, 0x8a,
|
||||
0x8b, 0xd7, 0x7f, 0x65, 0xde, 0x87, 0xe5, 0x1c,
|
||||
0x47, 0xe9, 0x59, 0x04, 0xf4, 0xc0, 0xe9, 0xd5,
|
||||
0x2e, 0xdd, 0xc2, 0x1c, 0x14, 0x15, 0xac,
|
||||
0xb5, 0xed, 0x2d, 0x71, 0x2, 0x20, 0x3e, 0x5d,
|
||||
0xae, 0x44, 0x13, 0x4e, 0xb4, 0xfa, 0x75, 0x74,
|
||||
0x28, 0x80, 0x9a, 0x21, 0x78, 0x19, 0x9e, 0x66,
|
||||
0xf3, 0x8d, 0xaa, 0x53, 0xdf, 0x51, 0xea, 0xa3,
|
||||
0x80, 0xca, 0xb4, 0x22, 0x2b, 0x95,
|
||||
},
|
||||
},
|
||||
{
|
||||
"valid 4 - s is bigger than half order",
|
||||
&Signature{
|
||||
R: fromHex("a196ed0e7ebcbe7b63fe1d8eecbdbde03a67ceba4fc8f6482bdcb9606a911404"),
|
||||
S: fromHex("971729c7fa944b465b35250c6570a2f31acbb14b13d1565fab7330dcb2b3dfb1"),
|
||||
},
|
||||
NewSignature(
|
||||
hexToModNScalar("a196ed0e7ebcbe7b63fe1d8eecbdbde03a67ceba4fc8f6482bdcb9606a911404"),
|
||||
hexToModNScalar("971729c7fa944b465b35250c6570a2f31acbb14b13d1565fab7330dcb2b3dfb1"),
|
||||
),
|
||||
[]byte{
|
||||
0x30, 0x45, 0x02, 0x21, 0x00, 0xa1, 0x96, 0xed,
|
||||
0x0e, 0x7e, 0xbc, 0xbe, 0x7b, 0x63, 0xfe, 0x1d,
|
||||
0xe, 0x7e, 0xbc, 0xbe, 0x7b, 0x63, 0xfe, 0x1d,
|
||||
0x8e, 0xec, 0xbd, 0xbd, 0xe0, 0x3a, 0x67, 0xce,
|
||||
0xba, 0x4f, 0xc8, 0xf6, 0x48, 0x2b, 0xdc, 0xb9,
|
||||
0x60, 0x6a, 0x91, 0x14, 0x04, 0x02, 0x20, 0x68,
|
||||
@ -444,10 +443,7 @@ func TestSignatureSerialize(t *testing.T) {
|
||||
},
|
||||
{
|
||||
"zero signature",
|
||||
&Signature{
|
||||
R: big.NewInt(0),
|
||||
S: big.NewInt(0),
|
||||
},
|
||||
NewSignature(&ModNScalar{}, &ModNScalar{}),
|
||||
[]byte{0x30, 0x06, 0x02, 0x01, 0x00, 0x02, 0x01, 0x00},
|
||||
},
|
||||
}
|
||||
@ -464,23 +460,24 @@ func TestSignatureSerialize(t *testing.T) {
|
||||
|
||||
func testSignCompact(t *testing.T, tag string, curve *KoblitzCurve,
|
||||
data []byte, isCompressed bool) {
|
||||
priv, _ := NewPrivateKey(curve)
|
||||
priv, _ := NewPrivateKey()
|
||||
|
||||
hashed := []byte("testing")
|
||||
sig, err := SignCompact(curve, priv, hashed, isCompressed)
|
||||
sig, err := SignCompact(priv, hashed, isCompressed)
|
||||
if err != nil {
|
||||
t.Errorf("%s: error signing: %s", tag, err)
|
||||
return
|
||||
}
|
||||
|
||||
pk, wasCompressed, err := RecoverCompact(curve, sig, hashed)
|
||||
pk, wasCompressed, err := RecoverCompact(sig, hashed)
|
||||
if err != nil {
|
||||
t.Errorf("%s: error recovering: %s", tag, err)
|
||||
return
|
||||
}
|
||||
if pk.X.Cmp(priv.X) != 0 || pk.Y.Cmp(priv.Y) != 0 {
|
||||
if pk.X().Cmp(priv.PubKey().X()) != 0 || pk.Y().Cmp(priv.PubKey().Y()) != 0 {
|
||||
t.Errorf("%s: recovered pubkey doesn't match original "+
|
||||
"(%v,%v) vs (%v,%v) ", tag, pk.X, pk.Y, priv.X, priv.Y)
|
||||
"(%v,%v) vs (%v,%v) ", tag, pk.X(), pk.Y(),
|
||||
priv.PubKey().X(), priv.PubKey().Y())
|
||||
return
|
||||
}
|
||||
if wasCompressed != isCompressed {
|
||||
@ -497,14 +494,15 @@ func testSignCompact(t *testing.T, tag string, curve *KoblitzCurve,
|
||||
sig[0] += 4
|
||||
}
|
||||
|
||||
pk, wasCompressed, err = RecoverCompact(curve, sig, hashed)
|
||||
pk, wasCompressed, err = RecoverCompact(sig, hashed)
|
||||
if err != nil {
|
||||
t.Errorf("%s: error recovering (2): %s", tag, err)
|
||||
return
|
||||
}
|
||||
if pk.X.Cmp(priv.X) != 0 || pk.Y.Cmp(priv.Y) != 0 {
|
||||
if pk.X().Cmp(priv.PubKey().X()) != 0 || pk.Y().Cmp(priv.PubKey().Y()) != 0 {
|
||||
t.Errorf("%s: recovered pubkey (2) doesn't match original "+
|
||||
"(%v,%v) vs (%v,%v) ", tag, pk.X, pk.Y, priv.X, priv.Y)
|
||||
"(%v,%v) vs (%v,%v) ", tag, pk.X(), pk.Y(),
|
||||
priv.PubKey().X(), priv.PubKey().Y())
|
||||
return
|
||||
}
|
||||
if wasCompressed == isCompressed {
|
||||
@ -547,13 +545,13 @@ var recoveryTests = []struct {
|
||||
// Invalid curve point recovered.
|
||||
msg: "00c547e4f7b0f325ad1e56f57e26c745b09a3e503d86e00e5255ff7f715d3d1c",
|
||||
sig: "0100b1693892219d736caba55bdb67216e485557ea6b6af75f37096c9aa6a5a75f00b940b1d03b21e36b0e47e79769f095fe2ab855bd91e3a38756b7d75a9c4549",
|
||||
err: fmt.Errorf("invalid square root"),
|
||||
err: fmt.Errorf("signature is not for a valid curve point"),
|
||||
},
|
||||
{
|
||||
// Point at infinity recovered
|
||||
msg: "6b8d2c81b11b2d699528dde488dbdf2f94293d0d33c32e347f255fa4a6c1f0a9",
|
||||
sig: "0079be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f817986b8d2c81b11b2d699528dde488dbdf2f94293d0d33c32e347f255fa4a6c1f0a9",
|
||||
err: fmt.Errorf("point (Qx, Qy) equals the point at infinity"),
|
||||
err: fmt.Errorf("recovered pubkey is the point at infinity"),
|
||||
},
|
||||
{
|
||||
// Low R and S values.
|
||||
@ -567,7 +565,7 @@ var recoveryTests = []struct {
|
||||
// Test case contributed by Ethereum Swarm: GH-1651
|
||||
msg: "3060d2c77c1e192d62ad712fb400e04e6f779914a6876328ff3b213fa85d2012",
|
||||
sig: "65000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000037a3",
|
||||
err: fmt.Errorf("signature R is 0"),
|
||||
err: fmt.Errorf("invalid compact signature recovery code"),
|
||||
},
|
||||
{
|
||||
// Zero R value
|
||||
@ -581,7 +579,7 @@ var recoveryTests = []struct {
|
||||
// R = N (curve order of secp256k1)
|
||||
msg: "2bcebac60d8a78e520ae81c2ad586792df495ed429bd730dcd897b301932d054",
|
||||
sig: "65fffffffffffffffffffffffffffffffebaaedce6af48a03bbfd25e8cd036414100000000000000000000000000000000000000000000000000000000000037a3",
|
||||
err: fmt.Errorf("signature R is >= curve order"),
|
||||
err: fmt.Errorf("invalid compact signature recovery code"),
|
||||
},
|
||||
{
|
||||
// Zero S value
|
||||
@ -605,7 +603,7 @@ func TestRecoverCompact(t *testing.T) {
|
||||
// Magic DER constant.
|
||||
sig[0] += 27
|
||||
|
||||
pub, _, err := RecoverCompact(S256(), sig, msg)
|
||||
pub, _, err := RecoverCompact(sig, msg)
|
||||
|
||||
// Verify that returned error matches as expected.
|
||||
if !reflect.DeepEqual(test.err, err) {
|
||||
@ -622,7 +620,7 @@ func TestRecoverCompact(t *testing.T) {
|
||||
}
|
||||
|
||||
// Otherwise, ensure the correct public key was recovered.
|
||||
exPub, _ := ParsePubKey(decodeHex(test.pub), S256())
|
||||
exPub, _ := ParsePubKey(decodeHex(test.pub))
|
||||
if !exPub.IsEqual(pub) {
|
||||
t.Errorf("unexpected recovered public key #%d: "+
|
||||
"want %v, got %v", i, exPub, pub)
|
||||
@ -681,13 +679,13 @@ func TestRFC6979(t *testing.T) {
|
||||
}
|
||||
|
||||
for i, test := range tests {
|
||||
privKey, _ := PrivKeyFromBytes(S256(), decodeHex(test.key))
|
||||
privKey, _ := PrivKeyFromBytes(decodeHex(test.key))
|
||||
hash := sha256.Sum256([]byte(test.msg))
|
||||
|
||||
// Ensure deterministically generated nonce is the expected value.
|
||||
gotNonce := nonceRFC6979(privKey.D, hash[:]).Bytes()
|
||||
gotNonce := NonceRFC6979(privKey.Serialize(), hash[:], nil, nil, 0).Bytes()
|
||||
wantNonce := decodeHex(test.nonce)
|
||||
if !bytes.Equal(gotNonce, wantNonce) {
|
||||
if !bytes.Equal(gotNonce[:], wantNonce) {
|
||||
t.Errorf("NonceRFC6979 #%d (%s): Nonce is incorrect: "+
|
||||
"%x (expected %x)", i, test.msg, gotNonce,
|
||||
wantNonce)
|
||||
@ -695,12 +693,8 @@ func TestRFC6979(t *testing.T) {
|
||||
}
|
||||
|
||||
// Ensure deterministically generated signature is the expected value.
|
||||
gotSig, err := privKey.Sign(hash[:])
|
||||
if err != nil {
|
||||
t.Errorf("Sign #%d (%s): unexpected error: %v", i,
|
||||
test.msg, err)
|
||||
continue
|
||||
}
|
||||
gotSig := Sign(privKey, hash[:])
|
||||
|
||||
gotSigBytes := gotSig.Serialize()
|
||||
wantSigBytes := decodeHex(test.signature)
|
||||
if !bytes.Equal(gotSigBytes, wantSigBytes) {
|
||||
@ -713,14 +707,14 @@ func TestRFC6979(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestSignatureIsEqual(t *testing.T) {
|
||||
sig1 := &Signature{
|
||||
R: fromHex("0082235e21a2300022738dabb8e1bbd9d19cfb1e7ab8c30a23b0afbb8d178abcf3"),
|
||||
S: fromHex("24bf68e256c534ddfaf966bf908deb944305596f7bdcc38d69acad7f9c868724"),
|
||||
}
|
||||
sig2 := &Signature{
|
||||
R: fromHex("4e45e16932b8af514961a1d3a1a25fdf3f4f7732e9d624c6c61548ab5fb8cd41"),
|
||||
S: fromHex("181522ec8eca07de4860a4acdd12909d831cc56cbbac4622082221a8768d1d09"),
|
||||
}
|
||||
sig1 := NewSignature(
|
||||
hexToModNScalar("0082235e21a2300022738dabb8e1bbd9d19cfb1e7ab8c30a23b0afbb8d178abcf3"),
|
||||
hexToModNScalar("24bf68e256c534ddfaf966bf908deb944305596f7bdcc38d69acad7f9c868724"),
|
||||
)
|
||||
sig2 := NewSignature(
|
||||
hexToModNScalar("4e45e16932b8af514961a1d3a1a25fdf3f4f7732e9d624c6c61548ab5fb8cd41"),
|
||||
hexToModNScalar("181522ec8eca07de4860a4acdd12909d831cc56cbbac4622082221a8768d1d09"),
|
||||
)
|
||||
|
||||
if !sig1.IsEqual(sig1) {
|
||||
t.Fatalf("value of IsEqual is incorrect, %v is "+
|
||||
|
Loading…
Reference in New Issue
Block a user