mempool: Add basic test harness infrastructure.

This adds a basic test harness infrastructure for the mempool package
which aims to make writing tests for it much easier.

The harness provides functionality for creating and signing transactions
as well as a fake chain that provides utxos for use in generating valid
transactions and allows an arbitrary chain height to be set.  In order
to simplify transaction creation, a single signing key and payment
address is used throughout and a convenience type for spendable outputs
is provided.

The harness is initialized with a spendable coinbase output by default
and the fake chain height set to the maturity height needed to ensure
the provided output is in fact spendable as well as a policy that is
suitable for testing.

Since tests are in the same package and each harness provides a unique
pool and fake chain instance, the tests can safely reach into the pool
policy, or any other state, and change it for a given harness without
affecting the others.

In order to be able to make use of the existing blockchain.Viewpoint
type, a Clone method has been to the UtxoEntry type which allows the
fake chain instance to keep a single view with the actual available
unspent utxos while the mempool ends up fetching a subset of the view
with the specifically requested entries cloned.

To demo the harness, this also contains a couple of tests which make use
of it:

- TestSimpleOrphanChain -- Ensures an entire chain of orphans is
  properly accepted and connects up when the missing parent transaction
  is added
- TestOrphanRejects -- Ensure orphans are actually rejected when the
  flag on ProcessTransactions is set to reject them
This commit is contained in:
Dave Collins 2016-08-22 22:53:22 -05:00
parent a109bea3f1
commit 15bace88dc
No known key found for this signature in database
GPG Key ID: B8904D9D9C93D1F2
2 changed files with 486 additions and 0 deletions

View File

@ -153,6 +153,29 @@ func (entry *UtxoEntry) PkScriptByIndex(outputIndex uint32) []byte {
return output.pkScript return output.pkScript
} }
// Clone returns a deep copy of the utxo entry.
func (entry *UtxoEntry) Clone() *UtxoEntry {
if entry == nil {
return nil
}
newEntry := &UtxoEntry{
version: entry.version,
isCoinBase: entry.isCoinBase,
blockHeight: entry.blockHeight,
sparseOutputs: make(map[uint32]*utxoOutput),
}
for outputIndex, output := range entry.sparseOutputs {
newEntry.sparseOutputs[outputIndex] = &utxoOutput{
spent: output.spent,
compressed: output.compressed,
amount: output.amount,
pkScript: output.pkScript,
}
}
return newEntry
}
// newUtxoEntry returns a new unspent transaction output entry with the provided // newUtxoEntry returns a new unspent transaction output entry with the provided
// coinbase flag and block height ready to have unspent outputs added. // coinbase flag and block height ready to have unspent outputs added.
func newUtxoEntry(version int32, isCoinBase bool, blockHeight int32) *UtxoEntry { func newUtxoEntry(version int32, isCoinBase bool, blockHeight int32) *UtxoEntry {

463
mempool/mempool_test.go Normal file
View File

@ -0,0 +1,463 @@
// Copyright (c) 2016 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package mempool
import (
"encoding/hex"
"reflect"
"sync"
"testing"
"github.com/btcsuite/btcd/blockchain"
"github.com/btcsuite/btcd/btcec"
"github.com/btcsuite/btcd/chaincfg"
"github.com/btcsuite/btcd/chaincfg/chainhash"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
)
// fakeChain is used by the pool harness to provide generated test utxos and
// a current faked chain height to the pool callbacks. This, in turn, allows
// transations to be appear as though they are spending completely valid utxos.
type fakeChain struct {
sync.RWMutex
utxos *blockchain.UtxoViewpoint
currentHeight int32
}
// FetchUtxoView loads utxo details about the input transactions referenced by
// the passed transaction from the point of view of the fake chain.
// It also attempts to fetch the utxo details for the transaction itself so the
// returned view can be examined for duplicate unspent transaction outputs.
//
// This function is safe for concurrent access however the returned view is NOT.
func (s *fakeChain) FetchUtxoView(tx *btcutil.Tx) (*blockchain.UtxoViewpoint, error) {
s.RLock()
defer s.RUnlock()
// All entries are cloned to ensure modifications to the returned view
// do not affect the fake chain's view.
// Add an entry for the tx itself to the new view.
viewpoint := blockchain.NewUtxoViewpoint()
entry := s.utxos.LookupEntry(tx.Hash())
viewpoint.Entries()[*tx.Hash()] = entry.Clone()
// Add entries for all of the inputs to the tx to the new view.
for _, txIn := range tx.MsgTx().TxIn {
originHash := &txIn.PreviousOutPoint.Hash
entry := s.utxos.LookupEntry(originHash)
viewpoint.Entries()[*originHash] = entry.Clone()
}
return viewpoint, nil
}
// BestHeight returns the current height associated with the fake chain
// instance.
func (s *fakeChain) BestHeight() int32 {
s.RLock()
height := s.currentHeight
s.RUnlock()
return height
}
// SetHeight sets the current height associated with the fake chain instance.
func (s *fakeChain) SetHeight(height int32) {
s.Lock()
s.currentHeight = height
s.Unlock()
}
// spendableOutput is a convenience type that houses a particular utxo and the
// amount associated with it.
type spendableOutput struct {
outPoint wire.OutPoint
amount btcutil.Amount
}
// txOutToSpendableOut returns a spendable output given a transaction and index
// of the output to use. This is useful as a convenience when creating test
// transactions.
func txOutToSpendableOut(tx *btcutil.Tx, outputNum uint32) spendableOutput {
return spendableOutput{
outPoint: wire.OutPoint{Hash: *tx.Hash(), Index: outputNum},
amount: btcutil.Amount(tx.MsgTx().TxOut[outputNum].Value),
}
}
// poolHarness provides a harness that includes functionality for creating and
// signing transactions as well as a fake chain that provides utxos for use in
// generating valid transactions.
type poolHarness struct {
// signKey is the signing key used for creating transactions throughout
// the tests.
//
// payAddr is the p2sh address for the signing key and is used for the
// payment address throughout the tests.
signKey *btcec.PrivateKey
payAddr btcutil.Address
payScript []byte
chainParams *chaincfg.Params
chain *fakeChain
txPool *TxPool
}
// CreateCoinbaseTx returns a coinbase transaction with the requested number of
// outputs paying an appropriate subsidy based on the passed block height to the
// address associated with the harness. It automatically uses a standard
// signature script that starts with the block height that is required by
// version 2 blocks.
func (p *poolHarness) CreateCoinbaseTx(blockHeight int32, numOutputs uint32) (*btcutil.Tx, error) {
// Create standard coinbase script.
extraNonce := int64(0)
coinbaseScript, err := txscript.NewScriptBuilder().
AddInt64(int64(blockHeight)).AddInt64(extraNonce).Script()
if err != nil {
return nil, err
}
tx := wire.NewMsgTx()
tx.AddTxIn(&wire.TxIn{
// Coinbase transactions have no inputs, so previous outpoint is
// zero hash and max index.
PreviousOutPoint: *wire.NewOutPoint(&chainhash.Hash{},
wire.MaxPrevOutIndex),
SignatureScript: coinbaseScript,
Sequence: wire.MaxTxInSequenceNum,
})
totalInput := blockchain.CalcBlockSubsidy(blockHeight, p.chainParams)
amountPerOutput := totalInput / int64(numOutputs)
remainder := totalInput - amountPerOutput*int64(numOutputs)
for i := uint32(0); i < numOutputs; i++ {
// Ensure the final output accounts for any remainder that might
// be left from splitting the input amount.
amount := amountPerOutput
if i == numOutputs-1 {
amount = amountPerOutput + remainder
}
tx.AddTxOut(&wire.TxOut{
PkScript: p.payScript,
Value: amount,
})
}
return btcutil.NewTx(tx), nil
}
// CreateSignedTx creates a new signed transaction that consumes the provided
// inputs and generates the provided number of outputs by evenly splitting the
// total input amount. All outputs will be to the payment script associated
// with the harness and all inputs are assumed to do the same.
func (p *poolHarness) CreateSignedTx(inputs []spendableOutput, numOutputs uint32) (*btcutil.Tx, error) {
// Calculate the total input amount and split it amongst the requested
// number of outputs.
var totalInput btcutil.Amount
for _, input := range inputs {
totalInput += input.amount
}
amountPerOutput := int64(totalInput) / int64(numOutputs)
remainder := int64(totalInput) - amountPerOutput*int64(numOutputs)
tx := wire.NewMsgTx()
for _, input := range inputs {
tx.AddTxIn(&wire.TxIn{
PreviousOutPoint: input.outPoint,
SignatureScript: nil,
Sequence: wire.MaxTxInSequenceNum,
})
}
for i := uint32(0); i < numOutputs; i++ {
// Ensure the final output accounts for any remainder that might
// be left from splitting the input amount.
amount := amountPerOutput
if i == numOutputs-1 {
amount = amountPerOutput + remainder
}
tx.AddTxOut(&wire.TxOut{
PkScript: p.payScript,
Value: amount,
})
}
// Sign the new transaction.
for i := range tx.TxIn {
sigScript, err := txscript.SignatureScript(tx, i, p.payScript,
txscript.SigHashAll, p.signKey, true)
if err != nil {
return nil, err
}
tx.TxIn[i].SignatureScript = sigScript
}
return btcutil.NewTx(tx), nil
}
// CreateTxChain creates a chain of zero-fee transactions (each subsequent
// transaction spends the entire amount from the previous one) with the first
// one spending the provided outpoint. Each transaction spends the entire
// amount of the previous one and as such does not include any fees.
func (p *poolHarness) CreateTxChain(firstOutput spendableOutput, numTxns uint32) ([]*btcutil.Tx, error) {
txChain := make([]*btcutil.Tx, 0, numTxns)
prevOutPoint := firstOutput.outPoint
spendableAmount := firstOutput.amount
for i := uint32(0); i < numTxns; i++ {
// Create the transaction using the previous transaction output
// and paying the full amount to the payment address associated
// with the harness.
tx := wire.NewMsgTx()
tx.AddTxIn(&wire.TxIn{
PreviousOutPoint: prevOutPoint,
SignatureScript: nil,
Sequence: wire.MaxTxInSequenceNum,
})
tx.AddTxOut(&wire.TxOut{
PkScript: p.payScript,
Value: int64(spendableAmount),
})
// Sign the new transaction.
sigScript, err := txscript.SignatureScript(tx, 0, p.payScript,
txscript.SigHashAll, p.signKey, true)
if err != nil {
return nil, err
}
tx.TxIn[0].SignatureScript = sigScript
txChain = append(txChain, btcutil.NewTx(tx))
// Next transaction uses outputs from this one.
prevOutPoint = wire.OutPoint{Hash: tx.TxHash(), Index: 0}
}
return txChain, nil
}
// newPoolHarness returns a new instance of a pool harness initialized with a
// fake chain and a TxPool bound to it that is configured with a policy suitable
// for testing. Also, the fake chain is populated with the returned spendable
// outputs so the caller can easily create new valid transactions which build
// off of it.
func newPoolHarness(chainParams *chaincfg.Params) (*poolHarness, []spendableOutput, error) {
// Use a hard coded key pair for deterministic results.
keyBytes, err := hex.DecodeString("700868df1838811ffbdf918fb482c1f7e" +
"ad62db4b97bd7012c23e726485e577d")
if err != nil {
return nil, nil, err
}
signKey, signPub := btcec.PrivKeyFromBytes(btcec.S256(), keyBytes)
// Generate associated pay-to-script-hash address and resulting payment
// script.
pubKeyBytes := signPub.SerializeCompressed()
payPubKeyAddr, err := btcutil.NewAddressPubKey(pubKeyBytes, chainParams)
if err != nil {
return nil, nil, err
}
payAddr := payPubKeyAddr.AddressPubKeyHash()
pkScript, err := txscript.PayToAddrScript(payAddr)
if err != nil {
return nil, nil, err
}
// Create a new fake chain and harness bound to it.
chain := &fakeChain{utxos: blockchain.NewUtxoViewpoint()}
harness := poolHarness{
signKey: signKey,
payAddr: payAddr,
payScript: pkScript,
chainParams: chainParams,
chain: chain,
txPool: New(&Config{
Policy: Policy{
DisableRelayPriority: true,
FreeTxRelayLimit: 15.0,
MaxOrphanTxs: 5,
MaxOrphanTxSize: 1000,
MaxSigOpsPerTx: blockchain.MaxSigOpsPerBlock / 5,
MinRelayTxFee: 1000, // 1 Satoshi per byte
},
ChainParams: chainParams,
FetchUtxoView: chain.FetchUtxoView,
BestHeight: chain.BestHeight,
SigCache: nil,
TimeSource: blockchain.NewMedianTime(),
AddrIndex: nil,
}),
}
// Create a single coinbase transaction and add it to the harness
// chain's utxo set and set the harness chain height such that the
// coinbase will mature in the next block. This ensures the txpool
// accepts transactions which spend immature coinbases that will become
// mature in the next block.
numOutputs := uint32(1)
outputs := make([]spendableOutput, 0, numOutputs)
curHeight := harness.chain.BestHeight()
coinbase, err := harness.CreateCoinbaseTx(curHeight+1, numOutputs)
if err != nil {
return nil, nil, err
}
harness.chain.utxos.AddTxOuts(coinbase, curHeight+1)
for i := uint32(0); i < numOutputs; i++ {
outputs = append(outputs, txOutToSpendableOut(coinbase, i))
}
harness.chain.SetHeight(int32(chainParams.CoinbaseMaturity) + curHeight)
return &harness, outputs, nil
}
// TestSimpleOrphanChain ensures that a simple chain of orphans is handled
// properly. In particular, it generates a chain of single input, single output
// transactions and inserts them while skipping the first linking transaction so
// they are all orphans. Finally, it adds the linking transaction and ensures
// the entire orphan chain is moved to the transaction pool.
func TestSimpleOrphanChain(t *testing.T) {
t.Parallel()
harness, spendableOuts, err := newPoolHarness(&chaincfg.MainNetParams)
if err != nil {
t.Fatalf("unable to create test pool: %v", err)
}
// Create a chain of transactions rooted with the first spendable output
// provided by the harness.
maxOrphans := uint32(harness.txPool.cfg.Policy.MaxOrphanTxs)
chainedTxns, err := harness.CreateTxChain(spendableOuts[0], maxOrphans+1)
if err != nil {
t.Fatalf("unable to create transaction chain: %v", err)
}
// Ensure the orphans are accepted (only up to the maximum allowed so
// none are evicted).
for _, tx := range chainedTxns[1 : maxOrphans+1] {
acceptedTxns, err := harness.txPool.ProcessTransaction(tx, true,
false)
if err != nil {
t.Fatalf("ProcessTransaction: failed to accept valid "+
"orphan %v", err)
}
// Ensure no transactions were reported as accepted.
if len(acceptedTxns) != 0 {
t.Fatalf("ProcessTransaction: reported %d accepted "+
"transactions from what should be an orphan",
len(acceptedTxns))
}
// Ensure the transaction is in the orphan pool.
if !harness.txPool.IsOrphanInPool(tx.Hash()) {
t.Fatal("IsOrphanInPool: false for accepted orphan")
}
// Ensure the transaction is not in the transaction pool.
if harness.txPool.IsTransactionInPool(tx.Hash()) {
t.Fatal("IsTransactionInPool: true for accepted orphan")
}
// Ensure the transaction is reported as available.
if !harness.txPool.HaveTransaction(tx.Hash()) {
t.Fatal("HaveTransaction: false for accepted orphan")
}
}
// Add the transaction which completes the orphan chain and ensure they
// all get accepted. Notice the accept orphans flag is also false here
// to ensure it has no bearing on whether or not already existing
// orphans in the pool are linked.
acceptedTxns, err := harness.txPool.ProcessTransaction(chainedTxns[0],
false, false)
if err != nil {
t.Fatalf("ProcessTransaction: failed to accept valid "+
"orphan %v", err)
}
if len(acceptedTxns) != len(chainedTxns) {
t.Fatalf("ProcessTransaction: reported accepted transactions "+
"length does not match expected -- got %d, want %d",
len(acceptedTxns), len(chainedTxns))
}
for _, tx := range acceptedTxns {
// Ensure none of the transactions are still in the orphan pool.
if harness.txPool.IsOrphanInPool(tx.Hash()) {
t.Fatalf("IsOrphanInPool: true for accepted tx %v",
tx.Hash())
}
// Ensure all of the transactions are now in the transaction
// pool.
if !harness.txPool.IsTransactionInPool(tx.Hash()) {
t.Fatalf("IsTransactionInPool: false for accepted tx %v",
tx.Hash())
}
}
}
// TestOrphanReject ensures that orphans are properly rejected when the allow
// orphans flag is not set on ProcessTransaction.
func TestOrphanReject(t *testing.T) {
t.Parallel()
harness, outputs, err := newPoolHarness(&chaincfg.MainNetParams)
if err != nil {
t.Fatalf("unable to create test pool: %v", err)
}
// Create a chain of transactions rooted with the first spendable output
// provided by the harness.
maxOrphans := uint32(harness.txPool.cfg.Policy.MaxOrphanTxs)
chainedTxns, err := harness.CreateTxChain(outputs[0], maxOrphans+1)
if err != nil {
t.Fatalf("unable to create transaction chain: %v", err)
}
// Ensure orphans are rejected when the allow orphans flag is not set.
for _, tx := range chainedTxns[1:] {
acceptedTxns, err := harness.txPool.ProcessTransaction(tx, false,
false)
if err == nil {
t.Fatalf("ProcessTransaction: did not fail on orphan "+
"%v when allow orphans flag is false", tx.Hash())
}
expectedErr := RuleError{}
if reflect.TypeOf(err) != reflect.TypeOf(expectedErr) {
t.Fatalf("ProcessTransaction: wrong error got: <%T> %v, "+
"want: <%T>", err, err, expectedErr)
}
code, extracted := extractRejectCode(err)
if !extracted {
t.Fatalf("ProcessTransaction: failed to extract reject "+
"code from error %q", err)
}
if code != wire.RejectDuplicate {
t.Fatalf("ProcessTransaction: unexpected reject code "+
"-- got %v, want %v", code, wire.RejectDuplicate)
}
// Ensure no transactions were reported as accepted.
if len(acceptedTxns) != 0 {
t.Fatal("ProcessTransaction: reported %d accepted "+
"transactions from failed orphan attempt",
len(acceptedTxns))
}
// Ensure the transaction is not in the orphan pool.
if harness.txPool.IsOrphanInPool(tx.Hash()) {
t.Fatal("IsOrphanInPool: true for rejected orphan")
}
// Ensure the transaction is not in the transaction pool.
if harness.txPool.IsTransactionInPool(tx.Hash()) {
t.Fatal("IsTransactionInPool: true for rejected orphan")
}
// Ensure the transaction is not reported as available.
if harness.txPool.HaveTransaction(tx.Hash()) {
t.Fatal("HaveTransaction: true for rejected orphan")
}
}
}