btcd/script.go

807 lines
24 KiB
Go
Raw Normal View History

2013-06-12 23:35:27 +02:00
// Copyright (c) 2013 Conformal Systems LLC.
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package btcscript
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"github.com/conformal/btcwire"
"github.com/davecgh/go-spew/spew"
"time"
)
// StackErrShortScript is returned if the script has an opcode that is too long
// for the length of the script.
var StackErrShortScript = errors.New("execute past end of script")
// StackErrUnderflow is returned if an opcode requires more items on the stack
// than is present.
var StackErrUnderflow = errors.New("stack underflow")
// StackErrInvalidArgs is returned if the argument for an opcode is out of
// acceptable range.
var StackErrInvalidArgs = errors.New("invalid argument")
// StackErrOpDisabled is returned when a disabled opcode is encountered in the
// script.
var StackErrOpDisabled = errors.New("Disabled Opcode")
// StackErrVerifyFailed is returned when one of the OP_VERIFY or OP_*VERIFY
// instructions is executed and the conditions fails.
var StackErrVerifyFailed = errors.New("Verify failed")
// StackErrNumberTooBig is returned when the argument for an opcode that should
// be an offset is obviously far too large.
var StackErrNumberTooBig = errors.New("number too big")
// StackErrInvalidOpcode is returned when an opcode marked as invalid or a
// completely undefined opcode is encountered.
var StackErrInvalidOpcode = errors.New("Invalid Opcode")
// StackErrReservedOpcode is returned when an opcode marked as reserved is
// encountered.
var StackErrReservedOpcode = errors.New("Reserved Opcode")
// StackErrEarlyReturn is returned when OP_RETURN is exectured in the script.
var StackErrEarlyReturn = errors.New("Script returned early")
// StackErrNoIf is returned if an OP_ELSE or OP_ENDIF is encountered without
// first having an OP_IF or OP_NOTIF in the script.
var StackErrNoIf = errors.New("OP_ELSE or OP_ENDIF with no matching OP_IF")
// StackErrMissingEndif is returned if the end of a script is reached without
// and OP_ENDIF to correspond to a conditional expression.
var StackErrMissingEndif = fmt.Errorf("execute fail, in conditional execution")
// StackErrTooManyPubkeys is returned if an OP_CHECKMULTISIG is encountered
// with more than MaxPubKeysPerMultiSig pubkeys present.
var StackErrTooManyPubkeys = errors.New("Invalid pubkey count in OP_CHECKMULTISIG")
// StackErrTooManyOperations is returned if a script has more then
// MaxOpsPerScript opcodes that do not push data.
var StackErrTooManyOperations = errors.New("Too many operations in script")
// StackErrElementTooBig is returned if the size of an element to be pushed to
// the stack is over MaxScriptElementSize.
var StackErrElementTooBig = errors.New("Element in script too large")
// StackErrUnknownAddress is returned when ScriptToAddress does not recognise
// the pattern of the script and thus can not find the address for payment.
var StackErrUnknownAddress = errors.New("non-recognised address")
2013-06-12 23:35:27 +02:00
// StackErrScriptFailed is returned when at the end of a script the boolean
// on top of the stack is false signifying that the script has failed.
var StackErrScriptFailed = errors.New("execute fail, fail on stack")
2013-06-12 23:35:27 +02:00
// StackErrScriptUnfinished is returned when CheckErrorCondition is called
// on a script that has not finished executing.
var StackErrScriptUnfinished = errors.New("Error check when script unfinished")
// StackErrEmpyStack is returned when the stack is empty at the end of
// execution. Normal operation requires that a boolean is on top of the stack
// when the scripts have finished executing.
var StackErrEmptyStack = errors.New("Stack empty at end of execution")
// StackErrP2SHNonPushOnly is returned when a Pay-to-Script-Hash transaction
// is encountered and the ScriptSig does operations other than push data (in
// violation of bip16).
var StackErrP2SHNonPushOnly = errors.New("pay to script hash with non " +
"pushonly input")
2013-06-12 23:35:27 +02:00
// Bip16Activation is the timestamp where BIP0016 is valid to use in the
// blockchain. To be used to determine if BIP0016 should be called for or not.
// This timestamp corresponds to Sun Apr 1 00:00:00 UTC 2012.
var Bip16Activation = time.Unix(1333238400, 0)
// Hash type bits from the end of a signature.
const (
SigHashOld = 0x0
SigHashAll = 0x1
SigHashNone = 0x2
SigHashSingle = 0x3
SigHashAnyOneCanPay = 0x80
)
// These are the constants specified for maximums in individual scripts.
const (
MaxOpsPerScript = 201 // Max number of non-push operations.
MaxPubKeysPerMultiSig = 20 // Multisig can't have more sigs than this.
MaxScriptElementSize = 520 // Max bytes pushable to the stack.
)
// ScriptType is an enumeration for the list of standard types of script.
type scriptType byte
// Types of script payment known about in the blockchain.
const (
pubKeyTy scriptType = iota // Pay pubkey.
pubKeyHashTy // Pay pubkey hash.
scriptHashTy // Pay to script hash.
multiSigTy // Multi signature.
nonStandardTy // None of the above.
)
// Script is the virtual machine that executes btcscripts.
type Script struct {
scripts [][]parsedOpcode
scriptidx int
scriptoff int
lastcodesep int
dstack Stack // data stack
astack Stack // alt stack
tx btcwire.MsgTx
txidx int
pver uint32
condStack []int
numOps int
bip16 bool // treat execution as pay-to-script-hash
savedFirstStack [][]byte // stack from first script for bip16 scripts
}
// isPubkey returns true if the script passed is a pubkey transaction, false
// otherwise.
func isPubkey(pops []parsedOpcode) bool {
return len(pops) == 2 &&
pops[0].opcode.value > OP_FALSE &&
pops[0].opcode.value <= OP_DATA_75 &&
pops[1].opcode.value == OP_CHECKSIG
}
// isPubkeyHash returns true if the script passed is a pubkey hash transaction,
// false otherwise.
func isPubkeyHash(pops []parsedOpcode) bool {
return len(pops) == 5 &&
pops[0].opcode.value == OP_DUP &&
pops[1].opcode.value == OP_HASH160 &&
pops[2].opcode.value == OP_DATA_20 &&
pops[3].opcode.value == OP_EQUALVERIFY &&
pops[4].opcode.value == OP_CHECKSIG
}
// isScriptHash returns true if the script passed is a pay-to-script-hash (P2SH)
// transction, false otherwise.
func isScriptHash(pops []parsedOpcode) bool {
return len(pops) == 3 &&
pops[0].opcode.value == OP_HASH160 &&
pops[1].opcode.value == OP_DATA_20 &&
pops[2].opcode.value == OP_EQUAL
}
// isMultiSig returns true if the passed script is a multisig transaction, false
// otherwise.
func isMultiSig(pops []parsedOpcode) bool {
l := len(pops)
// absolute minimum is 1 pubkey so
// OP_1-16, pubkey, OP_1, OP_CHECK_MULTISIG
if l < 4 {
return false
}
if pops[0].opcode.value < OP_1 ||
pops[0].opcode.value > OP_16 {
return false
}
if pops[l-2].opcode.value < OP_1 ||
pops[l-2].opcode.value > OP_16 {
return false
}
if pops[l-1].opcode.value != OP_CHECK_MULTISIG {
return false
}
for _, pop := range pops[1 : l-2] {
// valid pubkeys are either 65 or 33 bytes
if len(pop.data) != 33 &&
len(pop.data) != 65 {
return false
}
}
return true
}
// isPushOnly returns true if the script only pushes data, false otherwise.
func isPushOnly(pops []parsedOpcode) bool {
// technically we cheat here, we don't look at opcodes
for _, pop := range pops {
// all opcodes up to OP_16 are data instructions.
if pop.opcode.value < OP_FALSE ||
pop.opcode.value > OP_16 {
return false
}
}
return true
}
// scriptType returns the type of the script being inspected from the known
// standard types.
func typeOfScript(pops []parsedOpcode) scriptType {
// XXX dubious optimisation: order these in order of popularity in the
// blockchain
if isPubkey(pops) {
return pubKeyTy
} else if isPubkeyHash(pops) {
return pubKeyHashTy
} else if isScriptHash(pops) {
return scriptHashTy
} else if isMultiSig(pops) {
return multiSigTy
}
return nonStandardTy
}
// parseScript preparses the script in bytes into a list of parsedOpcodes while
// applying a number of sanity checks.
func parseScript(script []byte) ([]parsedOpcode, error) {
retScript := []parsedOpcode{}
for i := 0; i < len(script); {
instr := script[i]
op, ok := opcodemap[instr]
if !ok {
return nil, StackErrInvalidOpcode
}
pop := parsedOpcode{opcode: op}
// parse data out of instruction.
switch {
case op.length == 1:
// no data, done here
i++
case op.length > 1:
if len(script[i:]) < op.length {
return nil, StackErrShortScript
}
// slice out the data.
pop.data = script[i+1 : i+op.length]
i += op.length
case op.length < 0:
var err error
var l uint
off := i + 1
switch op.length {
case -1:
l, err = scriptUInt8(script[off:])
case -2:
l, err = scriptUInt16(script[off:])
case -4:
l, err = scriptUInt32(script[off:])
default:
return nil, fmt.Errorf("invalid opcode length %d", op.length)
}
if err != nil {
return nil, err
}
off = i + 1 - op.length // beginning of data
if int(l) > len(script[off:]) {
return nil, StackErrShortScript
}
if l > MaxScriptElementSize {
return nil, StackErrElementTooBig
}
pop.data = script[off : off+int(l)]
i += 1 - op.length + int(l)
}
retScript = append(retScript, pop)
}
return retScript, nil
}
// unparseScript reversed the action of parseScript and returns the
// parsedOpcodes as a list of bytes
func unparseScript(pops []parsedOpcode) []byte {
script := []byte{}
for _, pop := range pops {
script = append(script, pop.bytes()...)
}
return script
}
// NewScript returns a new script engine for the provided tx and input idx with
// a signature script scriptSig and a pubkeyscript scriptPubKey. If bip16 is
// true then it will be treated as if the bip16 threshhold has passed and thus
// pay-to-script hash transactions will be fully validated.
func NewScript(scriptSig []byte, scriptPubKey []byte, txidx int, tx *btcwire.MsgTx, pver uint32, bip16 bool) (*Script, error) {
var m Script
scripts := [][]byte{scriptSig, scriptPubKey}
m.scripts = make([][]parsedOpcode, len(scripts))
for i, scr := range scripts {
var err error
m.scripts[i], err = parseScript(scr)
if err != nil {
return nil, err
}
// if the first scripts(s) are empty, must set the PC to the next script.
if len(scr) == 0 {
// yes this could end up setting to an invalid intial PC if all scripts were empty
m.scriptidx = i + 1
}
}
if bip16 && isScriptHash(m.scripts[1]) {
// if we are pay to scripthash then we only accept input
// scripts that push data
if !isPushOnly(m.scripts[0]) {
return nil, StackErrP2SHNonPushOnly
2013-06-12 23:35:27 +02:00
}
m.bip16 = true
}
m.tx = *tx
m.txidx = txidx
m.pver = pver
m.condStack = []int{OpCondTrue}
return &m, nil
}
// Execute will execturte all script in the script engine and return either nil
// for successful validation or an error if one occurred.
func (s *Script) Execute() (err error) {
done := false
for done != true {
log.Tracef("%v", newLogClosure(func() string {
dis, err := s.DisasmPC()
if err != nil {
return fmt.Sprintf("stepping (%v)", err)
}
return fmt.Sprintf("stepping %v", dis)
}))
done, err = s.Step()
if err != nil {
return err
}
log.Tracef("%v", newLogClosure(func() string {
var dstr, astr string
// if we're tracing, dump the stacks.
if s.dstack.Depth() != 0 {
dstr = "Stack\n" + spew.Sdump(s.dstack)
}
if s.astack.Depth() != 0 {
astr = "AltStack\n" + spew.Sdump(s.astack)
}
return dstr + astr
}))
}
return s.CheckErrorCondition()
}
// CheckErrorCondition returns nil if the running script has ended and was
// successful, leaving a a true boolean on the stack. An error otherwise,
// including if the script has not finished.
func (s *Script) CheckErrorCondition() (err error) {
// Check we are actually done. if pc is past the end of script array
// then we have run out of scripts to run.
if s.scriptidx < len(s.scripts) {
return StackErrScriptUnfinished
}
2013-06-12 23:35:27 +02:00
if s.dstack.Depth() < 1 {
return StackErrEmptyStack
2013-06-12 23:35:27 +02:00
}
v, err := s.dstack.PopBool()
if err == nil && v == false {
// log interesting data.
log.Tracef("%v", func() string {
dis0, _ := s.DisasmScript(0)
dis1, _ := s.DisasmScript(1)
return fmt.Sprintf("scripts failed: script0: %s\n"+
"script1: %s", dis0, dis1)
2013-06-12 23:35:27 +02:00
})
err = StackErrScriptFailed
}
if err == nil && len(s.condStack) != 1 {
// conditional execution stack context left active
err = StackErrMissingEndif
}
return err
}
// Step will execute the next instruction and move the program counter to the
// next opcode in the script, or the next script if the curent has ended. Step
// will return true in the case that the last opcode was successfully executed.
// if an error is returned then the result of calling Step or any other method
// is undefined.
func (m *Script) Step() (done bool, err error) {
// verify that it is pointing to a valid script address
err = m.validPC()
if err != nil {
return
}
opcode := m.scripts[m.scriptidx][m.scriptoff]
executeInstr := true
if m.condStack[0] != OpCondTrue {
// some opcodes still 'activate' if on the non-executing side
// of conditional execution
if opcode.conditional() {
executeInstr = true
} else {
executeInstr = false
}
}
if executeInstr {
err = opcode.exec(m)
if err != nil {
return
}
}
// prepare for next instruction
m.scriptoff++
if m.scriptoff >= len(m.scripts[m.scriptidx]) {
m.numOps = 0 // number of ops is per script.
2013-06-12 23:35:27 +02:00
m.scriptoff = 0
if m.scriptidx == 0 && m.bip16 {
m.scriptidx++
2013-06-12 23:35:27 +02:00
m.savedFirstStack = m.GetStack()
} else if m.scriptidx == 1 && m.bip16 {
// Put us past the end for CheckErrorCondition()
m.scriptidx++
// We check script ran ok, if so then we pull
// the script out of the first stack and executre that.
err := m.CheckErrorCondition()
2013-06-12 23:35:27 +02:00
if err != nil {
return false, err
}
2013-06-12 23:35:27 +02:00
script := m.savedFirstStack[len(m.savedFirstStack)-1]
pops, err := parseScript(script)
if err != nil {
return false, err
}
m.scripts = append(m.scripts, pops)
// Set stack to be the stack from first script
// minus the script itself
m.SetStack(m.savedFirstStack[:len(m.savedFirstStack)-1])
} else {
m.scriptidx++
2013-06-12 23:35:27 +02:00
}
// there are zero length scripts in the wild
if m.scriptidx < len(m.scripts) && m.scriptoff >= len(m.scripts[m.scriptidx]) {
m.scriptidx++
}
m.lastcodesep = 0
if m.scriptidx >= len(m.scripts) {
done = true
}
}
return
}
// curPC returns either the current script and offset, or an error if the
// position isn't valid.
func (m *Script) curPC() (script int, off int, err error) {
err = m.validPC()
if err != nil {
return 0, 0, err
}
return m.scriptidx, m.scriptoff, nil
}
// validPC returns an error if the current script position is valid for
// execution, nil otherwise.
func (m *Script) validPC() error {
if m.scriptidx >= len(m.scripts) {
return fmt.Errorf("Past input scripts %v:%v %v:xxxx", m.scriptidx, m.scriptoff, len(m.scripts))
}
if m.scriptoff >= len(m.scripts[m.scriptidx]) {
return fmt.Errorf("Past input scripts %v:%v %v:%04d", m.scriptidx, m.scriptoff, m.scriptidx, len(m.scripts[m.scriptidx]))
}
return nil
}
// DisasmScript returns the disassembly string for the script at offset
// ``idx''. Where 0 is the scriptSig and 1 is the scriptPubKey.
func (m *Script) DisasmScript(idx int) (disstr string, err error) {
if idx >= len(m.scripts) {
return "", fmt.Errorf("Invalid script index")
}
for i := range m.scripts[idx] {
disstr = disstr + m.disasm(idx, i) + "\n"
}
return disstr, nil
}
// DisasmPC returns the string for the disassembly of the opcode that will be
// next to execute when Step() is called.
func (m *Script) DisasmPC() (disstr string, err error) {
scriptidx, scriptoff, err := m.curPC()
if err != nil {
return "", err
}
return m.disasm(scriptidx, scriptoff), nil
}
// disasm is a helper member to produce the output for DisasmPC and
// DisasmScript. It produces the opcode prefixed by the program counter at the
// provided position in the script. it does no error checking and leaves that
// to the caller to provide a valid offse.
func (m *Script) disasm(scriptidx int, scriptoff int) string {
return fmt.Sprintf("%02x:%04x: %s", scriptidx, scriptoff,
m.scripts[scriptidx][scriptoff].print(false))
}
// subScript will return the script since the last OP_CODESEPARATOR
func (s *Script) subScript() []parsedOpcode {
return s.scripts[s.scriptidx][s.lastcodesep:]
}
// removeOpcode will remove any opcode matching ``opcode'' from the opcode
// stream in pkscript
func removeOpcode(pkscript []parsedOpcode, opcode byte) []parsedOpcode {
retScript := []parsedOpcode{}
for _, pop := range pkscript {
if pop.opcode.value != opcode {
retScript = append(retScript, pop)
}
}
return retScript
}
// removeOpcodeByData will return the pkscript minus any opcodes that would
// push the data in ``data'' to the stack.
func removeOpcodeByData(pkscript []parsedOpcode, data []byte) []parsedOpcode {
retScript := []parsedOpcode{}
for _, pop := range pkscript {
if !bytes.Equal(pop.data, data) {
retScript = append(retScript, pop)
}
}
return retScript
}
// DisasmString formats a disassembled script for one line printing.
func DisasmString(buf []byte) (string, error) {
disbuf := ""
opcodes, err := parseScript(buf)
if err != nil {
return "", err
}
for _, pop := range opcodes {
disbuf += pop.print(true) + " "
}
if disbuf != "" {
disbuf = disbuf[:len(disbuf)-1]
}
return disbuf, nil
}
// calcScriptHash will, given the a script and hashtype for the current
// scriptmachine, calculate the doubleSha256 hash of the transaction and
// script to be used for signature signing and verification.
func (s *Script) calcScriptHash(script []parsedOpcode, hashType byte) []byte {
// remove all instances of OP_CODESEPARATOR still left in the script
script = removeOpcode(script, OP_CODESEPARATOR)
// Make a deep copy of the transaction, zeroing out the script
// for all inputs that are not currently being processed.
txCopy := s.tx.Copy()
txidx := s.txidx
for i := range txCopy.TxIn {
var txIn btcwire.TxIn
txIn = *txCopy.TxIn[i]
txCopy.TxIn[i] = &txIn
if i == txidx {
txCopy.TxIn[txidx].SignatureScript =
unparseScript(script)
} else {
txCopy.TxIn[i].SignatureScript = []byte{}
}
}
// Default behaviour has all outputs set up.
for i := range txCopy.TxOut {
var txOut btcwire.TxOut
txOut = *txCopy.TxOut[i]
txCopy.TxOut[i] = &txOut
}
switch hashType & 31 {
case SigHashNone:
txCopy.TxOut = txCopy.TxOut[0:0] // empty slice
for i := range txCopy.TxIn {
if i != txidx {
txCopy.TxIn[i].Sequence = 0
}
}
case SigHashSingle:
// resize output array to up to and including current output
txCopy.TxOut = txCopy.TxOut[:txidx+1]
// all but current output get zeroed out
for i := 0; i < txidx; i++ {
txCopy.TxOut[i].Value = -1
txCopy.TxOut[i].PkScript = []byte{}
}
// Sequence on all other inputs is 0, too.
for i := range txCopy.TxIn {
if i != txidx {
txCopy.TxIn[i].Sequence = 0
}
}
default:
// XXX bitcoind treats undefined hashtypes like normal
// SigHashAll for purposes of hash generation.
fallthrough
case SigHashOld:
fallthrough
case SigHashAll:
// nothing special here
}
if hashType&SigHashAnyOneCanPay != 0 {
txCopy.TxIn = txCopy.TxIn[s.txidx : s.txidx+1]
txidx = 0
}
var wbuf bytes.Buffer
txCopy.BtcEncode(&wbuf, s.pver)
// Append LE 4 bytes hash type
binary.Write(&wbuf, binary.LittleEndian, uint32(hashType))
return btcwire.DoubleSha256(wbuf.Bytes())
}
// scriptUInt8 return the number stored in the first byte of a slice.
func scriptUInt8(script []byte) (uint, error) {
if len(script) <= 1 {
return 0, StackErrShortScript
}
return uint(script[0]), nil
}
// scriptUInt16 returns the number stored in the next 2 bytes of a slice.
func scriptUInt16(script []byte) (uint, error) {
if len(script) <= 2 {
return 0, StackErrShortScript
}
// Yes this is little endian
return ((uint(script[1]) << 8) | uint(script[0])), nil
}
// scriptUInt32 returns the number stored in the first 4 bytes of a slice.
func scriptUInt32(script []byte) (uint, error) {
if len(script) <= 4 {
return 0, StackErrShortScript
}
// Yes this is little endian
return ((uint(script[3]) << 24) | (uint(script[2]) << 16) |
(uint(script[1]) << 8) | uint(script[0])), nil
}
// getStack returns the contents of stack as a byte array bottom up
func getStack(stack *Stack) [][]byte {
array := make([][]byte, stack.Depth())
for i := range array {
// PeekByteArry can't fail due to overflow, already checked
array[len(array)-i-1], _ =
stack.PeekByteArray(i)
}
return array
}
// setStack sets the stack to the contents of the array where the last item in
// the array is the top item in the stack.
func setStack(stack *Stack, data [][]byte) {
// This can not error. Only errors are for invalid arguments.
_ = stack.DropN(stack.Depth())
for i := range data {
stack.PushByteArray(data[i])
}
}
// GetStack returns the contents of the primary stack as an array. where the
// last item in the array is the top of the stack.
func (s *Script) GetStack() [][]byte {
return getStack(&s.dstack)
}
// SetStack sets the contents of the primary stack to the contents of the
// provided array where the last item in the array will be the top of the stack.
func (s *Script) SetStack(data [][]byte) {
setStack(&s.dstack, data)
}
// GetAltStack returns the contents of the primary stack as an array. where the
// last item in the array is the top of the stack.
func (s *Script) GetAltStack() [][]byte {
return getStack(&s.astack)
}
// SetAltStack sets the contents of the primary stack to the contents of the
// provided array where the last item in the array will be the top of the stack.
func (s *Script) SetAltStack(data [][]byte) {
setStack(&s.astack, data)
}
// GetSigOpCount provides a quick count of the number of signature operations
// in a script. a CHECKSIG operations counts for 1, and a CHECK_MULTISIG for 20.
2013-06-21 02:33:56 +02:00
func GetSigOpCount(script []byte) (int, error) {
pops, err := parseScript(script)
if err != nil {
return 0, err
}
return getSigOpCount(pops, false), nil
}
// GetPreciseSigOpCount returns the number of signature operations in
// scriptPubKey. If bip16 is true then scriptSig may be searched for the
// Pay-To-Script-Hash script in order to find the precise number of signature
// operations in the transaction.
func GetPreciseSigOpCount(scriptSig, scriptPubKey []byte, bip16 bool) (int, error) {
pops, err := parseScript(scriptPubKey)
if err != nil {
return 0, err
}
// non P2SH transactions just treated as normal.
if !(bip16 && isScriptHash(pops)) {
return getSigOpCount(pops, true), nil
}
// Ok so this is P2SH, get the contained script and count it..
sigPops, err := parseScript(scriptSig)
if err != nil {
return 0, err
}
if !isPushOnly(sigPops) || len(sigPops) == 0 {
return 0, nil
}
2013-06-21 02:33:56 +02:00
shScript := sigPops[len(sigPops)-1].data
// Means that sigPops is jus OP_1 - OP_16, no sigops there.
if shScript == nil {
return 0, nil
}
shPops, err := parseScript(shScript)
if err != nil {
return 0, err
}
return getSigOpCount(shPops, true), nil
}
// getSigOpCount is the implementation function for counting the number of
// signature operations in the script provided by pops. If precise mode is
// requested then we attempt to count the number of operations for a multisig
// op. Otherwise we use the maximum.
func getSigOpCount(pops []parsedOpcode, precise bool) int {
nSigs := 0
for i, pop := range pops {
switch pop.opcode.value {
case OP_CHECKSIG:
2013-06-21 02:33:56 +02:00
fallthrough
case OP_CHECKSIGVERIFY:
nSigs++
case OP_CHECK_MULTISIG:
2013-06-21 02:33:56 +02:00
fallthrough
case OP_CHECKMULTISIGVERIFY:
// If we are being precise then look for familiar
// patterns for multisig, for now all we recognise is
2013-06-21 02:33:56 +02:00
// OP_1 - OP_16 to signify the number of pubkeys.
// Otherwise, we use the max of 20.
if precise && i > 0 &&
2013-06-21 02:33:56 +02:00
pops[i-1].opcode.value >= OP_1 &&
pops[i-1].opcode.value <= OP_16 {
nSigs += int(pops[i-1].opcode.value -
(OP_1 - 1))
} else {
nSigs += MaxPubKeysPerMultiSig
}
default:
// not a sigop.
}
}
return nSigs
}