btcd/mempool.go

1506 lines
53 KiB
Go
Raw Normal View History

// Copyright (c) 2013-2014 The btcsuite developers
// Use of this source code is governed by an ISC
// license that can be found in the LICENSE file.
package main
import (
"container/list"
"crypto/rand"
"fmt"
2014-07-02 15:50:08 +02:00
"math"
"math/big"
"sync"
"time"
"github.com/btcsuite/btcd/blockchain"
"github.com/btcsuite/btcd/database"
"github.com/btcsuite/btcd/txscript"
"github.com/btcsuite/btcd/wire"
"github.com/btcsuite/btcutil"
)
const (
// mempoolHeight is the height used for the "block" height field of the
// contextual transaction information provided in a transaction store.
mempoolHeight = 0x7fffffff
// maxOrphanTransactions is the maximum number of orphan transactions
// that can be queued.
maxOrphanTransactions = 1000
// maxOrphanTxSize is the maximum size allowed for orphan transactions.
// This helps prevent memory exhaustion attacks from sending a lot of
// of big orphans.
maxOrphanTxSize = 5000
// maxSigOpsPerTx is the maximum number of signature operations
// in a single transaction we will relay or mine. It is a fraction
// of the max signature operations for a block.
maxSigOpsPerTx = blockchain.MaxSigOpsPerBlock / 5
// maxStandardTxSize is the maximum size allowed for transactions that
// are considered standard and will therefore be relayed and considered
// for mining.
maxStandardTxSize = 100000
// maxStandardSigScriptSize is the maximum size allowed for a
// transaction input signature script to be considered standard. This
// value allows for a 15-of-15 CHECKMULTISIG pay-to-script-hash with
// compressed keys.
//
// The form of the overall script is: OP_0 <15 signatures> OP_PUSHDATA2
// <2 bytes len> [OP_15 <15 pubkeys> OP_15 OP_CHECKMULTISIG]
//
// For the p2sh script portion, each of the 15 compressed pubkeys are
// 33 bytes (plus one for the OP_DATA_33 opcode), and the thus it totals
// to (15*34)+3 = 513 bytes. Next, each of the 15 signatures is a max
// of 73 bytes (plus one for the OP_DATA_73 opcode). Also, there is one
// extra byte for the initial extra OP_0 push and 3 bytes for the
// OP_PUSHDATA2 needed to specify the 513 bytes for the script push.
// That brings the total to 1+(15*74)+3+513 = 1627. This value also
// adds a few extra bytes to provide a little buffer.
// (1 + 15*74 + 3) + (15*34 + 3) + 23 = 1650
maxStandardSigScriptSize = 1650
// maxStandardMultiSigKeys is the maximum number of public keys allowed
// in a multi-signature transaction output script for it to be
// considered standard.
maxStandardMultiSigKeys = 3
// minTxRelayFee is the minimum fee in satoshi that is required for a
// transaction to be treated as free for relay and mining purposes. It
// is also used to help determine if a transaction is considered dust
// and as a base for calculating minimum required fees for larger
// transactions. This value is in Satoshi/1000 bytes.
minTxRelayFee = 1000
)
// TxDesc is a descriptor containing a transaction in the mempool and the
// metadata we store about it.
type TxDesc struct {
Tx *btcutil.Tx // Transaction.
Added time.Time // Time when added to pool.
Height int32 // Blockheight when added to pool.
Fee int64 // Transaction fees.
startingPriority float64 // Priority when added to the pool.
}
// txMemPool is used as a source of transactions that need to be mined into
// blocks and relayed to other peers. It is safe for concurrent access from
// multiple peers.
type txMemPool struct {
sync.RWMutex
server *server
pool map[wire.ShaHash]*TxDesc
orphans map[wire.ShaHash]*btcutil.Tx
orphansByPrev map[wire.ShaHash]*list.List
addrindex map[string]map[wire.ShaHash]struct{} // maps address to txs
outpoints map[wire.OutPoint]*btcutil.Tx
lastUpdated time.Time // last time pool was updated
pennyTotal float64 // exponentially decaying total for penny spends.
lastPennyUnix int64 // unix time of last ``penny spend''
}
// isDust returns whether or not the passed transaction output amount is
// considered dust or not. Dust is defined in terms of the minimum transaction
// relay fee. In particular, if the cost to the network to spend coins is more
// than 1/3 of the minimum transaction relay fee, it is considered dust.
func isDust(txOut *wire.TxOut) bool {
// Unspendable outputs are considered dust.
if txscript.IsUnspendable(txOut.PkScript) {
return true
}
// The total serialized size consists of the output and the associated
// input script to redeem it. Since there is no input script
// to redeem it yet, use the minimum size of a typical input script.
//
// Pay-to-pubkey-hash bytes breakdown:
//
// Output to hash (34 bytes):
// 8 value, 1 script len, 25 script [1 OP_DUP, 1 OP_HASH_160,
// 1 OP_DATA_20, 20 hash, 1 OP_EQUALVERIFY, 1 OP_CHECKSIG]
//
// Input with compressed pubkey (148 bytes):
// 36 prev outpoint, 1 script len, 107 script [1 OP_DATA_72, 72 sig,
// 1 OP_DATA_33, 33 compressed pubkey], 4 sequence
//
// Input with uncompressed pubkey (180 bytes):
// 36 prev outpoint, 1 script len, 139 script [1 OP_DATA_72, 72 sig,
// 1 OP_DATA_65, 65 compressed pubkey], 4 sequence
//
// Pay-to-pubkey bytes breakdown:
//
// Output to compressed pubkey (44 bytes):
// 8 value, 1 script len, 35 script [1 OP_DATA_33,
// 33 compressed pubkey, 1 OP_CHECKSIG]
//
// Output to uncompressed pubkey (76 bytes):
// 8 value, 1 script len, 67 script [1 OP_DATA_65, 65 pubkey,
// 1 OP_CHECKSIG]
//
// Input (114 bytes):
// 36 prev outpoint, 1 script len, 73 script [1 OP_DATA_72,
// 72 sig], 4 sequence
//
// Theoretically this could examine the script type of the output script
// and use a different size for the typical input script size for
// pay-to-pubkey vs pay-to-pubkey-hash inputs per the above breakdowns,
// but the only combinination which is less than the value chosen is
// a pay-to-pubkey script with a compressed pubkey, which is not very
// common.
//
// The most common scripts are pay-to-pubkey-hash, and as per the above
// breakdown, the minimum size of a p2pkh input script is 148 bytes. So
// that figure is used.
totalSize := txOut.SerializeSize() + 148
// The output is considered dust if the cost to the network to spend the
// coins is more than 1/3 of the minimum free transaction relay fee.
// minFreeTxRelayFee is in Satoshi/KB, so multiply by 1000 to
// convert to bytes.
//
// Using the typical values for a pay-to-pubkey-hash transaction from
// the breakdown above and the default minimum free transaction relay
// fee of 1000, this equates to values less than 546 satoshi being
// considered dust.
//
// The following is equivalent to (value/totalSize) * (1/3) * 1000
// without needing to do floating point math.
return txOut.Value*1000/(3*int64(totalSize)) < minTxRelayFee
}
// checkPkScriptStandard performs a series of checks on a transaction ouput
// script (public key script) to ensure it is a "standard" public key script.
// A standard public key script is one that is a recognized form, and for
// multi-signature scripts, only contains from 1 to maxStandardMultiSigKeys
// public keys.
func checkPkScriptStandard(pkScript []byte, scriptClass txscript.ScriptClass) error {
switch scriptClass {
case txscript.MultiSigTy:
numPubKeys, numSigs, err := txscript.CalcMultiSigStats(pkScript)
if err != nil {
str := fmt.Sprintf("multi-signature script parse "+
"failure: %v", err)
return txRuleError(wire.RejectNonstandard, str)
}
// A standard multi-signature public key script must contain
// from 1 to maxStandardMultiSigKeys public keys.
if numPubKeys < 1 {
str := "multi-signature script with no pubkeys"
return txRuleError(wire.RejectNonstandard, str)
}
if numPubKeys > maxStandardMultiSigKeys {
str := fmt.Sprintf("multi-signature script with %d "+
"public keys which is more than the allowed "+
"max of %d", numPubKeys, maxStandardMultiSigKeys)
return txRuleError(wire.RejectNonstandard, str)
}
// A standard multi-signature public key script must have at
// least 1 signature and no more signatures than available
// public keys.
if numSigs < 1 {
return txRuleError(wire.RejectNonstandard,
"multi-signature script with no signatures")
}
if numSigs > numPubKeys {
str := fmt.Sprintf("multi-signature script with %d "+
"signatures which is more than the available "+
"%d public keys", numSigs, numPubKeys)
return txRuleError(wire.RejectNonstandard, str)
}
case txscript.NonStandardTy:
return txRuleError(wire.RejectNonstandard,
"non-standard script form")
}
return nil
}
// checkTransactionStandard performs a series of checks on a transaction to
// ensure it is a "standard" transaction. A standard transaction is one that
// conforms to several additional limiting cases over what is considered a
// "sane" transaction such as having a version in the supported range, being
// finalized, conforming to more stringent size constraints, having scripts
// of recognized forms, and not containing "dust" outputs (those that are
// so small it costs more to process them than they are worth).
func (mp *txMemPool) checkTransactionStandard(tx *btcutil.Tx, height int32) error {
msgTx := tx.MsgTx()
// The transaction must be a currently supported version.
if msgTx.Version > wire.TxVersion || msgTx.Version < 1 {
str := fmt.Sprintf("transaction version %d is not in the "+
"valid range of %d-%d", msgTx.Version, 1,
wire.TxVersion)
return txRuleError(wire.RejectNonstandard, str)
}
// The transaction must be finalized to be standard and therefore
// considered for inclusion in a block.
adjustedTime := mp.server.timeSource.AdjustedTime()
if !blockchain.IsFinalizedTransaction(tx, height, adjustedTime) {
return txRuleError(wire.RejectNonstandard,
"transaction is not finalized")
}
// Since extremely large transactions with a lot of inputs can cost
// almost as much to process as the sender fees, limit the maximum
// size of a transaction. This also helps mitigate CPU exhaustion
// attacks.
serializedLen := msgTx.SerializeSize()
if serializedLen > maxStandardTxSize {
str := fmt.Sprintf("transaction size of %v is larger than max "+
"allowed size of %v", serializedLen, maxStandardTxSize)
return txRuleError(wire.RejectNonstandard, str)
}
for i, txIn := range msgTx.TxIn {
// Each transaction input signature script must not exceed the
// maximum size allowed for a standard transaction. See
// the comment on maxStandardSigScriptSize for more details.
sigScriptLen := len(txIn.SignatureScript)
if sigScriptLen > maxStandardSigScriptSize {
str := fmt.Sprintf("transaction input %d: signature "+
"script size of %d bytes is large than max "+
"allowed size of %d bytes", i, sigScriptLen,
maxStandardSigScriptSize)
return txRuleError(wire.RejectNonstandard, str)
}
// Each transaction input signature script must only contain
// opcodes which push data onto the stack.
if !txscript.IsPushOnlyScript(txIn.SignatureScript) {
str := fmt.Sprintf("transaction input %d: signature "+
"script is not push only", i)
return txRuleError(wire.RejectNonstandard, str)
}
}
// None of the output public key scripts can be a non-standard script or
// be "dust" (except when the script is a null data script).
numNullDataOutputs := 0
for i, txOut := range msgTx.TxOut {
scriptClass := txscript.GetScriptClass(txOut.PkScript)
err := checkPkScriptStandard(txOut.PkScript, scriptClass)
if err != nil {
// Attempt to extract a reject code from the error so
// it can be retained. When not possible, fall back to
// a non standard error.
rejectCode, found := extractRejectCode(err)
if !found {
rejectCode = wire.RejectNonstandard
}
str := fmt.Sprintf("transaction output %d: %v", i, err)
return txRuleError(rejectCode, str)
}
// Accumulate the number of outputs which only carry data. For
// all other script types, ensure the output value is not
// "dust".
if scriptClass == txscript.NullDataTy {
numNullDataOutputs++
} else if isDust(txOut) {
str := fmt.Sprintf("transaction output %d: payment "+
"of %d is dust", i, txOut.Value)
return txRuleError(wire.RejectDust, str)
}
}
// A standard transaction must not have more than one output script that
// only carries data.
if numNullDataOutputs > 1 {
str := "more than one transaction output in a nulldata script"
return txRuleError(wire.RejectNonstandard, str)
}
return nil
}
// checkInputsStandard performs a series of checks on a transaction's inputs
// to ensure they are "standard". A standard transaction input is one that
// that consumes the expected number of elements from the stack and that number
// is the same as the output script pushes. This help prevent resource
// exhaustion attacks by "creative" use of scripts that are super expensive to
// process like OP_DUP OP_CHECKSIG OP_DROP repeated a large number of times
// followed by a final OP_TRUE.
func checkInputsStandard(tx *btcutil.Tx, txStore blockchain.TxStore) error {
// NOTE: The reference implementation also does a coinbase check here,
// but coinbases have already been rejected prior to calling this
// function so no need to recheck.
for i, txIn := range tx.MsgTx().TxIn {
// It is safe to elide existence and index checks here since
// they have already been checked prior to calling this
// function.
prevOut := txIn.PreviousOutPoint
originTx := txStore[prevOut.Hash].Tx.MsgTx()
originPkScript := originTx.TxOut[prevOut.Index].PkScript
// Calculate stats for the script pair.
scriptInfo, err := txscript.CalcScriptInfo(txIn.SignatureScript,
originPkScript, true)
if err != nil {
str := fmt.Sprintf("transaction input #%d script parse "+
"failure: %v", i, err)
return txRuleError(wire.RejectNonstandard, str)
}
// A negative value for expected inputs indicates the script is
// non-standard in some way.
if scriptInfo.ExpectedInputs < 0 {
str := fmt.Sprintf("transaction input #%d expects %d "+
"inputs", i, scriptInfo.ExpectedInputs)
return txRuleError(wire.RejectNonstandard, str)
}
// The script pair is non-standard if the number of available
// inputs does not match the number of expected inputs.
if scriptInfo.NumInputs != scriptInfo.ExpectedInputs {
str := fmt.Sprintf("transaction input #%d expects %d "+
"inputs, but referenced output script provides "+
"%d", i, scriptInfo.ExpectedInputs,
scriptInfo.NumInputs)
return txRuleError(wire.RejectNonstandard, str)
}
}
return nil
}
// calcMinRequiredTxRelayFee returns the minimum transaction fee required for a
// transaction with the passed serialized size to be accepted into the memory
// pool and relayed.
func calcMinRequiredTxRelayFee(serializedSize int64) int64 {
// Calculate the minimum fee for a transaction to be allowed into the
// mempool and relayed by scaling the base fee (which is the minimum
// free transaction relay fee). minTxRelayFee is in Satoshi/KB, so
// divide the transaction size by 1000 to convert to kilobytes. Also,
// integer division is used so fees only increase on full kilobyte
// boundaries.
minFee := (1 + serializedSize/1000) * minTxRelayFee
// Set the minimum fee to the maximum possible value if the calculated
// fee is not in the valid range for monetary amounts.
if minFee < 0 || minFee > btcutil.MaxSatoshi {
minFee = btcutil.MaxSatoshi
}
return minFee
}
// removeOrphan is the internal function which implements the public
// RemoveOrphan. See the comment for RemoveOrphan for more details.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *txMemPool) removeOrphan(txHash *wire.ShaHash) {
// Nothing to do if passed tx is not an orphan.
tx, exists := mp.orphans[*txHash]
if !exists {
return
}
// Remove the reference from the previous orphan index.
for _, txIn := range tx.MsgTx().TxIn {
originTxHash := txIn.PreviousOutPoint.Hash
if orphans, exists := mp.orphansByPrev[originTxHash]; exists {
for e := orphans.Front(); e != nil; e = e.Next() {
if e.Value.(*btcutil.Tx) == tx {
orphans.Remove(e)
break
}
}
// Remove the map entry altogether if there are no
// longer any orphans which depend on it.
if orphans.Len() == 0 {
delete(mp.orphansByPrev, originTxHash)
}
}
}
// Remove the transaction from the orphan pool.
delete(mp.orphans, *txHash)
}
// RemoveOrphan removes the passed orphan transaction from the orphan pool and
// previous orphan index.
//
// This function is safe for concurrent access.
func (mp *txMemPool) RemoveOrphan(txHash *wire.ShaHash) {
mp.Lock()
mp.removeOrphan(txHash)
mp.Unlock()
}
// limitNumOrphans limits the number of orphan transactions by evicting a random
// orphan if adding a new one would cause it to overflow the max allowed.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *txMemPool) limitNumOrphans() error {
if len(mp.orphans)+1 > cfg.MaxOrphanTxs && cfg.MaxOrphanTxs > 0 {
// Generate a cryptographically random hash.
randHashBytes := make([]byte, wire.HashSize)
_, err := rand.Read(randHashBytes)
if err != nil {
return err
}
randHashNum := new(big.Int).SetBytes(randHashBytes)
// Try to find the first entry that is greater than the random
// hash. Use the first entry (which is already pseudorandom due
// to Go's range statement over maps) as a fallback if none of
// the hashes in the orphan pool are larger than the random
// hash.
var foundHash *wire.ShaHash
for txHash := range mp.orphans {
if foundHash == nil {
foundHash = &txHash
}
txHashNum := blockchain.ShaHashToBig(&txHash)
if txHashNum.Cmp(randHashNum) > 0 {
foundHash = &txHash
break
}
}
mp.removeOrphan(foundHash)
}
return nil
}
// addOrphan adds an orphan transaction to the orphan pool.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *txMemPool) addOrphan(tx *btcutil.Tx) {
// Limit the number orphan transactions to prevent memory exhaustion. A
// random orphan is evicted to make room if needed.
mp.limitNumOrphans()
mp.orphans[*tx.Sha()] = tx
for _, txIn := range tx.MsgTx().TxIn {
originTxHash := txIn.PreviousOutPoint.Hash
if mp.orphansByPrev[originTxHash] == nil {
mp.orphansByPrev[originTxHash] = list.New()
}
mp.orphansByPrev[originTxHash].PushBack(tx)
}
txmpLog.Debugf("Stored orphan transaction %v (total: %d)", tx.Sha(),
len(mp.orphans))
}
// maybeAddOrphan potentially adds an orphan to the orphan pool.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *txMemPool) maybeAddOrphan(tx *btcutil.Tx) error {
// Ignore orphan transactions that are too large. This helps avoid
// a memory exhaustion attack based on sending a lot of really large
// orphans. In the case there is a valid transaction larger than this,
// it will ultimtely be rebroadcast after the parent transactions
// have been mined or otherwise received.
//
// Note that the number of orphan transactions in the orphan pool is
// also limited, so this equates to a maximum memory used of
// maxOrphanTxSize * cfg.MaxOrphanTxs (which is ~5MB using the default
// values at the time this comment was written).
serializedLen := tx.MsgTx().SerializeSize()
if serializedLen > maxOrphanTxSize {
str := fmt.Sprintf("orphan transaction size of %d bytes is "+
"larger than max allowed size of %d bytes",
serializedLen, maxOrphanTxSize)
return txRuleError(wire.RejectNonstandard, str)
}
// Add the orphan if the none of the above disqualified it.
mp.addOrphan(tx)
return nil
}
// isTransactionInPool returns whether or not the passed transaction already
// exists in the main pool.
//
// This function MUST be called with the mempool lock held (for reads).
func (mp *txMemPool) isTransactionInPool(hash *wire.ShaHash) bool {
if _, exists := mp.pool[*hash]; exists {
return true
}
return false
}
// IsTransactionInPool returns whether or not the passed transaction already
// exists in the main pool.
//
// This function is safe for concurrent access.
func (mp *txMemPool) IsTransactionInPool(hash *wire.ShaHash) bool {
// Protect concurrent access.
mp.RLock()
defer mp.RUnlock()
return mp.isTransactionInPool(hash)
}
// isOrphanInPool returns whether or not the passed transaction already exists
// in the orphan pool.
//
// This function MUST be called with the mempool lock held (for reads).
func (mp *txMemPool) isOrphanInPool(hash *wire.ShaHash) bool {
if _, exists := mp.orphans[*hash]; exists {
return true
}
return false
}
// IsOrphanInPool returns whether or not the passed transaction already exists
// in the orphan pool.
//
// This function is safe for concurrent access.
func (mp *txMemPool) IsOrphanInPool(hash *wire.ShaHash) bool {
// Protect concurrent access.
mp.RLock()
defer mp.RUnlock()
return mp.isOrphanInPool(hash)
}
// haveTransaction returns whether or not the passed transaction already exists
// in the main pool or in the orphan pool.
//
// This function MUST be called with the mempool lock held (for reads).
func (mp *txMemPool) haveTransaction(hash *wire.ShaHash) bool {
return mp.isTransactionInPool(hash) || mp.isOrphanInPool(hash)
}
// HaveTransaction returns whether or not the passed transaction already exists
// in the main pool or in the orphan pool.
//
// This function is safe for concurrent access.
func (mp *txMemPool) HaveTransaction(hash *wire.ShaHash) bool {
// Protect concurrent access.
mp.RLock()
defer mp.RUnlock()
return mp.haveTransaction(hash)
}
// removeTransaction is the internal function which implements the public
// RemoveTransaction. See the comment for RemoveTransaction for more details.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *txMemPool) removeTransaction(tx *btcutil.Tx) {
// Remove any transactions which rely on this one.
txHash := tx.Sha()
for i := uint32(0); i < uint32(len(tx.MsgTx().TxOut)); i++ {
outpoint := wire.NewOutPoint(txHash, i)
if txRedeemer, exists := mp.outpoints[*outpoint]; exists {
mp.removeTransaction(txRedeemer)
}
}
// Remove the transaction and mark the referenced outpoints as unspent
// by the pool.
if txDesc, exists := mp.pool[*txHash]; exists {
if cfg.AddrIndex {
mp.removeTransactionFromAddrIndex(tx)
}
for _, txIn := range txDesc.Tx.MsgTx().TxIn {
delete(mp.outpoints, txIn.PreviousOutPoint)
}
delete(mp.pool, *txHash)
mp.lastUpdated = time.Now()
}
}
// removeTransactionFromAddrIndex removes the passed transaction from our
// address based index.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *txMemPool) removeTransactionFromAddrIndex(tx *btcutil.Tx) error {
previousOutputScripts, err := mp.fetchReferencedOutputScripts(tx)
if err != nil {
txmpLog.Errorf("Unable to obtain referenced output scripts for "+
"the passed tx (addrindex): %v", err)
return err
}
for _, pkScript := range previousOutputScripts {
mp.removeScriptFromAddrIndex(pkScript, tx)
}
for _, txOut := range tx.MsgTx().TxOut {
mp.removeScriptFromAddrIndex(txOut.PkScript, tx)
}
return nil
}
// removeScriptFromAddrIndex dissociates the address encoded by the
// passed pkScript from the passed tx in our address based tx index.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *txMemPool) removeScriptFromAddrIndex(pkScript []byte, tx *btcutil.Tx) error {
_, addresses, _, err := txscript.ExtractPkScriptAddrs(pkScript,
activeNetParams.Params)
if err != nil {
txmpLog.Errorf("Unable to extract encoded addresses from script "+
"for addrindex (addrindex): %v", err)
return err
}
for _, addr := range addresses {
delete(mp.addrindex[addr.EncodeAddress()], *tx.Sha())
}
return nil
}
// RemoveTransaction removes the passed transaction and any transactions which
// depend on it from the memory pool.
//
// This function is safe for concurrent access.
func (mp *txMemPool) RemoveTransaction(tx *btcutil.Tx) {
// Protect concurrent access.
mp.Lock()
defer mp.Unlock()
mp.removeTransaction(tx)
}
// RemoveDoubleSpends removes all transactions which spend outputs spent by the
// passed transaction from the memory pool. Removing those transactions then
// leads to removing all transactions which rely on them, recursively. This is
// necessary when a block is connected to the main chain because the block may
// contain transactions which were previously unknown to the memory pool
//
// This function is safe for concurrent access.
func (mp *txMemPool) RemoveDoubleSpends(tx *btcutil.Tx) {
// Protect concurrent access.
mp.Lock()
defer mp.Unlock()
for _, txIn := range tx.MsgTx().TxIn {
if txRedeemer, ok := mp.outpoints[txIn.PreviousOutPoint]; ok {
if !txRedeemer.Sha().IsEqual(tx.Sha()) {
mp.removeTransaction(txRedeemer)
}
}
}
}
// addTransaction adds the passed transaction to the memory pool. It should
// not be called directly as it doesn't perform any validation. This is a
// helper for maybeAcceptTransaction.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *txMemPool) addTransaction(tx *btcutil.Tx, height int32, fee int64) {
// Add the transaction to the pool and mark the referenced outpoints
// as spent by the pool.
mp.pool[*tx.Sha()] = &TxDesc{
2013-12-17 15:02:35 +01:00
Tx: tx,
Added: time.Now(),
Height: height,
2013-12-17 15:02:35 +01:00
Fee: fee,
}
for _, txIn := range tx.MsgTx().TxIn {
mp.outpoints[txIn.PreviousOutPoint] = tx
}
mp.lastUpdated = time.Now()
if cfg.AddrIndex {
mp.addTransactionToAddrIndex(tx)
}
}
// addTransactionToAddrIndex adds all addresses related to the transaction to
// our in-memory address index. Note that this address is only populated when
// we're running with the optional address index activated.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *txMemPool) addTransactionToAddrIndex(tx *btcutil.Tx) error {
previousOutScripts, err := mp.fetchReferencedOutputScripts(tx)
if err != nil {
txmpLog.Errorf("Unable to obtain referenced output scripts for "+
"the passed tx (addrindex): %v", err)
return err
}
// Index addresses of all referenced previous output tx's.
for _, pkScript := range previousOutScripts {
mp.indexScriptAddressToTx(pkScript, tx)
}
// Index addresses of all created outputs.
for _, txOut := range tx.MsgTx().TxOut {
mp.indexScriptAddressToTx(txOut.PkScript, tx)
}
return nil
}
// fetchReferencedOutputScripts looks up and returns all the scriptPubKeys
// referenced by inputs of the passed transaction.
//
// This function MUST be called with the mempool lock held (for reads).
func (mp *txMemPool) fetchReferencedOutputScripts(tx *btcutil.Tx) ([][]byte, error) {
txStore, err := mp.fetchInputTransactions(tx, false)
if err != nil || len(txStore) == 0 {
return nil, err
}
previousOutScripts := make([][]byte, 0, len(tx.MsgTx().TxIn))
for _, txIn := range tx.MsgTx().TxIn {
outPoint := txIn.PreviousOutPoint
if txStore[outPoint.Hash].Err == nil {
referencedOutPoint := txStore[outPoint.Hash].Tx.MsgTx().TxOut[outPoint.Index]
previousOutScripts = append(previousOutScripts, referencedOutPoint.PkScript)
}
}
return previousOutScripts, nil
}
// indexScriptByAddress alters our address index by indexing the payment address
// encoded by the passed scriptPubKey to the passed transaction.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *txMemPool) indexScriptAddressToTx(pkScript []byte, tx *btcutil.Tx) error {
_, addresses, _, err := txscript.ExtractPkScriptAddrs(pkScript,
activeNetParams.Params)
if err != nil {
txmpLog.Errorf("Unable to extract encoded addresses from script "+
"for addrindex: %v", err)
return err
}
for _, addr := range addresses {
if mp.addrindex[addr.EncodeAddress()] == nil {
mp.addrindex[addr.EncodeAddress()] = make(map[wire.ShaHash]struct{})
}
mp.addrindex[addr.EncodeAddress()][*tx.Sha()] = struct{}{}
}
return nil
}
// calcInputValueAge is a helper function used to calculate the input age of
// a transaction. The input age for a txin is the number of confirmations
// since the referenced txout multiplied by its output value. The total input
// age is the sum of this value for each txin. Any inputs to the transaction
// which are currently in the mempool and hence not mined into a block yet,
// contribute no additional input age to the transaction.
func calcInputValueAge(txDesc *TxDesc, txStore blockchain.TxStore, nextBlockHeight int32) float64 {
var totalInputAge float64
for _, txIn := range txDesc.Tx.MsgTx().TxIn {
originHash := &txIn.PreviousOutPoint.Hash
originIndex := txIn.PreviousOutPoint.Index
// Don't attempt to accumulate the total input age if the txIn
// in question doesn't exist.
if txData, exists := txStore[*originHash]; exists && txData.Tx != nil {
// Inputs with dependencies currently in the mempool
// have their block height set to a special constant.
// Their input age should computed as zero since their
// parent hasn't made it into a block yet.
var inputAge int32
if txData.BlockHeight == mempoolHeight {
inputAge = 0
} else {
inputAge = nextBlockHeight - txData.BlockHeight
}
// Sum the input value times age.
originTxOut := txData.Tx.MsgTx().TxOut[originIndex]
inputValue := originTxOut.Value
totalInputAge += float64(inputValue * int64(inputAge))
}
}
return totalInputAge
}
// minInt is a helper function to return the minimum of two ints. This avoids
// a math import and the need to cast to floats.
func minInt(a, b int) int {
if a < b {
return a
}
return b
}
// calcPriority returns a transaction priority given a transaction and the sum
// of each of its input values multiplied by their age (# of confirmations).
// Thus, the final formula for the priority is:
// sum(inputValue * inputAge) / adjustedTxSize
func calcPriority(tx *btcutil.Tx, inputValueAge float64) float64 {
// In order to encourage spending multiple old unspent transaction
// outputs thereby reducing the total set, don't count the constant
// overhead for each input as well as enough bytes of the signature
// script to cover a pay-to-script-hash redemption with a compressed
// pubkey. This makes additional inputs free by boosting the priority
// of the transaction accordingly. No more incentive is given to avoid
// encouraging gaming future transactions through the use of junk
// outputs. This is the same logic used in the reference
// implementation.
//
// The constant overhead for a txin is 41 bytes since the previous
// outpoint is 36 bytes + 4 bytes for the sequence + 1 byte the
// signature script length.
//
// A compressed pubkey pay-to-script-hash redemption with a maximum len
// signature is of the form:
// [OP_DATA_73 <73-byte sig> + OP_DATA_35 + {OP_DATA_33
// <33 byte compresed pubkey> + OP_CHECKSIG}]
//
// Thus 1 + 73 + 1 + 1 + 33 + 1 = 110
overhead := 0
for _, txIn := range tx.MsgTx().TxIn {
// Max inputs + size can't possibly overflow here.
overhead += 41 + minInt(110, len(txIn.SignatureScript))
}
serializedTxSize := tx.MsgTx().SerializeSize()
if overhead >= serializedTxSize {
return 0.0
}
return inputValueAge / float64(serializedTxSize-overhead)
}
// StartingPriority calculates the priority of this tx descriptor's underlying
// transaction relative to when it was first added to the mempool. The result
// is lazily computed and then cached for subsequent function calls.
func (txD *TxDesc) StartingPriority(txStore blockchain.TxStore) float64 {
// Return our cached result.
if txD.startingPriority != float64(0) {
return txD.startingPriority
}
// Compute our starting priority caching the result.
inputAge := calcInputValueAge(txD, txStore, txD.Height)
txD.startingPriority = calcPriority(txD.Tx, inputAge)
return txD.startingPriority
}
// CurrentPriority calculates the current priority of this tx descriptor's
// underlying transaction relative to the next block height.
func (txD *TxDesc) CurrentPriority(txStore blockchain.TxStore, nextBlockHeight int32) float64 {
inputAge := calcInputValueAge(txD, txStore, nextBlockHeight)
return calcPriority(txD.Tx, inputAge)
}
// checkPoolDoubleSpend checks whether or not the passed transaction is
// attempting to spend coins already spent by other transactions in the pool.
// Note it does not check for double spends against transactions already in the
// main chain.
//
// This function MUST be called with the mempool lock held (for reads).
func (mp *txMemPool) checkPoolDoubleSpend(tx *btcutil.Tx) error {
for _, txIn := range tx.MsgTx().TxIn {
if txR, exists := mp.outpoints[txIn.PreviousOutPoint]; exists {
str := fmt.Sprintf("output %v already spent by "+
"transaction %v in the memory pool",
txIn.PreviousOutPoint, txR.Sha())
return txRuleError(wire.RejectDuplicate, str)
}
}
return nil
}
// fetchInputTransactions fetches the input transactions referenced by the
// passed transaction. First, it fetches from the main chain, then it tries to
// fetch any missing inputs from the transaction pool.
//
// This function MUST be called with the mempool lock held (for reads).
func (mp *txMemPool) fetchInputTransactions(tx *btcutil.Tx, includeSpent bool) (blockchain.TxStore, error) {
txStore, err := mp.server.blockManager.blockChain.FetchTransactionStore(tx, includeSpent)
if err != nil {
return nil, err
}
// Attempt to populate any missing inputs from the transaction pool.
for _, txD := range txStore {
if txD.Err == database.ErrTxShaMissing || txD.Tx == nil {
if poolTxDesc, exists := mp.pool[*txD.Hash]; exists {
poolTx := poolTxDesc.Tx
txD.Tx = poolTx
txD.BlockHeight = mempoolHeight
txD.Spent = make([]bool, len(poolTx.MsgTx().TxOut))
txD.Err = nil
}
}
}
return txStore, nil
}
// FetchTransaction returns the requested transaction from the transaction pool.
// This only fetches from the main transaction pool and does not include
// orphans.
//
// This function is safe for concurrent access.
func (mp *txMemPool) FetchTransaction(txHash *wire.ShaHash) (*btcutil.Tx, error) {
// Protect concurrent access.
mp.RLock()
defer mp.RUnlock()
if txDesc, exists := mp.pool[*txHash]; exists {
return txDesc.Tx, nil
}
return nil, fmt.Errorf("transaction is not in the pool")
}
// FilterTransactionsByAddress returns all transactions currently in the
// mempool that either create an output to the passed address or spend a
// previously created ouput to the address.
func (mp *txMemPool) FilterTransactionsByAddress(addr btcutil.Address) ([]*btcutil.Tx, error) {
// Protect concurrent access.
mp.RLock()
defer mp.RUnlock()
if txs, exists := mp.addrindex[addr.EncodeAddress()]; exists {
addressTxs := make([]*btcutil.Tx, 0, len(txs))
for txHash := range txs {
if tx, exists := mp.pool[txHash]; exists {
addressTxs = append(addressTxs, tx.Tx)
}
}
return addressTxs, nil
}
return nil, fmt.Errorf("address does not have any transactions in the pool")
}
// maybeAcceptTransaction is the internal function which implements the public
// MaybeAcceptTransaction. See the comment for MaybeAcceptTransaction for
// more details.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *txMemPool) maybeAcceptTransaction(tx *btcutil.Tx, isNew, rateLimit bool) ([]*wire.ShaHash, error) {
txHash := tx.Sha()
// Don't accept the transaction if it already exists in the pool. This
// applies to orphan transactions as well. This check is intended to
// be a quick check to weed out duplicates.
if mp.haveTransaction(txHash) {
str := fmt.Sprintf("already have transaction %v", txHash)
return nil, txRuleError(wire.RejectDuplicate, str)
}
// Perform preliminary sanity checks on the transaction. This makes
// use of btcchain which contains the invariant rules for what
// transactions are allowed into blocks.
err := blockchain.CheckTransactionSanity(tx)
if err != nil {
if cerr, ok := err.(blockchain.RuleError); ok {
return nil, chainRuleError(cerr)
}
return nil, err
}
// A standalone transaction must not be a coinbase transaction.
if blockchain.IsCoinBase(tx) {
str := fmt.Sprintf("transaction %v is an individual coinbase",
txHash)
return nil, txRuleError(wire.RejectInvalid, str)
}
// Don't accept transactions with a lock time after the maximum int32
// value for now. This is an artifact of older bitcoind clients which
// treated this field as an int32 and would treat anything larger
// incorrectly (as negative).
if tx.MsgTx().LockTime > math.MaxInt32 {
2014-06-12 20:04:05 +02:00
str := fmt.Sprintf("transaction %v has a lock time after "+
"2038 which is not accepted yet", txHash)
return nil, txRuleError(wire.RejectNonstandard, str)
}
// Get the current height of the main chain. A standalone transaction
// will be mined into the next block at best, so it's height is at least
// one more than the current height.
_, curHeight, err := mp.server.db.NewestSha()
if err != nil {
// This is an unexpected error so don't turn it into a rule
// error.
return nil, err
}
nextBlockHeight := curHeight + 1
// Don't allow non-standard transactions if the network parameters
// forbid their relaying.
if !activeNetParams.RelayNonStdTxs {
err := mp.checkTransactionStandard(tx, nextBlockHeight)
if err != nil {
// Attempt to extract a reject code from the error so
// it can be retained. When not possible, fall back to
// a non standard error.
rejectCode, found := extractRejectCode(err)
if !found {
rejectCode = wire.RejectNonstandard
}
str := fmt.Sprintf("transaction %v is not standard: %v",
txHash, err)
return nil, txRuleError(rejectCode, str)
}
}
// The transaction may not use any of the same outputs as other
// transactions already in the pool as that would ultimately result in a
// double spend. This check is intended to be quick and therefore only
// detects double spends within the transaction pool itself. The
// transaction could still be double spending coins from the main chain
// at this point. There is a more in-depth check that happens later
// after fetching the referenced transaction inputs from the main chain
// which examines the actual spend data and prevents double spends.
err = mp.checkPoolDoubleSpend(tx)
if err != nil {
return nil, err
}
// Fetch all of the transactions referenced by the inputs to this
// transaction. This function also attempts to fetch the transaction
// itself to be used for detecting a duplicate transaction without
// needing to do a separate lookup.
txStore, err := mp.fetchInputTransactions(tx, false)
if err != nil {
if cerr, ok := err.(blockchain.RuleError); ok {
return nil, chainRuleError(cerr)
}
return nil, err
}
// Don't allow the transaction if it exists in the main chain and is not
// not already fully spent.
if txD, exists := txStore[*txHash]; exists && txD.Err == nil {
for _, isOutputSpent := range txD.Spent {
if !isOutputSpent {
return nil, txRuleError(wire.RejectDuplicate,
"transaction already exists")
}
}
}
delete(txStore, *txHash)
// Transaction is an orphan if any of the referenced input transactions
// don't exist. Adding orphans to the orphan pool is not handled by
// this function, and the caller should use maybeAddOrphan if this
// behavior is desired.
var missingParents []*wire.ShaHash
for _, txD := range txStore {
if txD.Err == database.ErrTxShaMissing {
missingParents = append(missingParents, txD.Hash)
}
}
if len(missingParents) != 0 {
return missingParents, nil
}
// Perform several checks on the transaction inputs using the invariant
// rules in btcchain for what transactions are allowed into blocks.
// Also returns the fees associated with the transaction which will be
// used later.
txFee, err := blockchain.CheckTransactionInputs(tx, nextBlockHeight, txStore)
if err != nil {
if cerr, ok := err.(blockchain.RuleError); ok {
return nil, chainRuleError(cerr)
}
return nil, err
}
// Don't allow transactions with non-standard inputs if the network
// parameters forbid their relaying.
if !activeNetParams.RelayNonStdTxs {
err := checkInputsStandard(tx, txStore)
if err != nil {
// Attempt to extract a reject code from the error so
// it can be retained. When not possible, fall back to
// a non standard error.
rejectCode, found := extractRejectCode(err)
if !found {
rejectCode = wire.RejectNonstandard
}
str := fmt.Sprintf("transaction %v has a non-standard "+
"input: %v", txHash, err)
return nil, txRuleError(rejectCode, str)
}
}
// NOTE: if you modify this code to accept non-standard transactions,
// you should add code here to check that the transaction does a
// reasonable number of ECDSA signature verifications.
// Don't allow transactions with an excessive number of signature
// operations which would result in making it impossible to mine. Since
// the coinbase address itself can contain signature operations, the
// maximum allowed signature operations per transaction is less than
// the maximum allowed signature operations per block.
numSigOps, err := blockchain.CountP2SHSigOps(tx, false, txStore)
if err != nil {
if cerr, ok := err.(blockchain.RuleError); ok {
return nil, chainRuleError(cerr)
}
return nil, err
}
numSigOps += blockchain.CountSigOps(tx)
if numSigOps > maxSigOpsPerTx {
str := fmt.Sprintf("transaction %v has too many sigops: %d > %d",
txHash, numSigOps, maxSigOpsPerTx)
return nil, txRuleError(wire.RejectNonstandard, str)
}
// Don't allow transactions with fees too low to get into a mined block.
//
// Most miners allow a free transaction area in blocks they mine to go
// alongside the area used for high-priority transactions as well as
// transactions with fees. A transaction size of up to 1000 bytes is
// considered safe to go into this section. Further, the minimum fee
// calculated below on its own would encourage several small
// transactions to avoid fees rather than one single larger transaction
// which is more desirable. Therefore, as long as the size of the
// transaction does not exceeed 1000 less than the reserved space for
// high-priority transactions, don't require a fee for it.
serializedSize := int64(tx.MsgTx().SerializeSize())
minFee := calcMinRequiredTxRelayFee(serializedSize)
if serializedSize >= (defaultBlockPrioritySize-1000) && txFee < minFee {
str := fmt.Sprintf("transaction %v has %d fees which is under "+
"the required amount of %d", txHash, txFee,
minFee)
return nil, txRuleError(wire.RejectInsufficientFee, str)
}
// Require that free transactions have sufficient priority to be mined
// in the next block. Transactions which are being added back to the
// memory pool from blocks that have been disconnected during a reorg
// are exempted.
if isNew && !cfg.NoRelayPriority && txFee < minFee {
txD := &TxDesc{
Tx: tx,
Added: time.Now(),
Height: curHeight,
Fee: txFee,
}
currentPriority := txD.CurrentPriority(txStore, nextBlockHeight)
if currentPriority <= minHighPriority {
str := fmt.Sprintf("transaction %v has insufficient "+
"priority (%g <= %g)", txHash,
currentPriority, minHighPriority)
return nil, txRuleError(wire.RejectInsufficientFee, str)
}
}
// Free-to-relay transactions are rate limited here to prevent
// penny-flooding with tiny transactions as a form of attack.
if rateLimit && txFee < minFee {
nowUnix := time.Now().Unix()
// we decay passed data with an exponentially decaying ~10
// minutes window - matches bitcoind handling.
mp.pennyTotal *= math.Pow(1.0-1.0/600.0,
float64(nowUnix-mp.lastPennyUnix))
mp.lastPennyUnix = nowUnix
// Are we still over the limit?
if mp.pennyTotal >= cfg.FreeTxRelayLimit*10*1000 {
str := fmt.Sprintf("transaction %v has been rejected "+
"by the rate limiter due to low fees", txHash)
return nil, txRuleError(wire.RejectInsufficientFee, str)
}
oldTotal := mp.pennyTotal
mp.pennyTotal += float64(serializedSize)
txmpLog.Tracef("rate limit: curTotal %v, nextTotal: %v, "+
"limit %v", oldTotal, mp.pennyTotal,
cfg.FreeTxRelayLimit*10*1000)
}
// Verify crypto signatures for each input and reject the transaction if
// any don't verify.
err = blockchain.ValidateTransactionScripts(tx, txStore,
Integrate a valid ECDSA signature cache into btcd Introduce an ECDSA signature verification into btcd in order to mitigate a certain DoS attack and as a performance optimization. The benefits of SigCache are two fold. Firstly, usage of SigCache mitigates a DoS attack wherein an attacker causes a victim's client to hang due to worst-case behavior triggered while processing attacker crafted invalid transactions. A detailed description of the mitigated DoS attack can be found here: https://bitslog.wordpress.com/2013/01/23/fixed-bitcoin-vulnerability-explanation-why-the-signature-cache-is-a-dos-protection/ Secondly, usage of the SigCache introduces a signature verification optimization which speeds up the validation of transactions within a block, if they've already been seen and verified within the mempool. The server itself manages the sigCache instance. The blockManager and txMempool respectively now receive pointers to the created sigCache instance. All read (sig triplet existence) operations on the sigCache will not block unless a separate goroutine is adding an entry (writing) to the sigCache. GetBlockTemplate generation now also utilizes the sigCache in order to avoid unnecessarily double checking signatures when generating a template after previously accepting a txn to the mempool. Consequently, the CPU miner now also employs the same optimization. The maximum number of entries for the sigCache has been introduced as a config parameter in order to allow users to configure the amount of memory consumed by this new additional caching.
2015-09-25 01:22:00 +02:00
txscript.StandardVerifyFlags, mp.server.sigCache)
if err != nil {
if cerr, ok := err.(blockchain.RuleError); ok {
return nil, chainRuleError(cerr)
}
return nil, err
}
// Add to transaction pool.
mp.addTransaction(tx, curHeight, txFee)
txmpLog.Debugf("Accepted transaction %v (pool size: %v)", txHash,
len(mp.pool))
if mp.server.rpcServer != nil {
// Notify websocket clients about mempool transactions.
mp.server.rpcServer.ntfnMgr.NotifyMempoolTx(tx, isNew)
// Potentially notify any getblocktemplate long poll clients
// about stale block templates due to the new transaction.
mp.server.rpcServer.gbtWorkState.NotifyMempoolTx(mp.lastUpdated)
}
return nil, nil
}
// MaybeAcceptTransaction is the main workhorse for handling insertion of new
// free-standing transactions into a memory pool. It includes functionality
// such as rejecting duplicate transactions, ensuring transactions follow all
// rules, detecting orphan transactions, and insertion into the memory pool.
//
// If the transaction is an orphan (missing parent transactions), the
// transaction is NOT added to the orphan pool, but each unknown referenced
// parent is returned. Use ProcessTransaction instead if new orphans should
// be added to the orphan pool.
//
// This function is safe for concurrent access.
func (mp *txMemPool) MaybeAcceptTransaction(tx *btcutil.Tx, isNew, rateLimit bool) ([]*wire.ShaHash, error) {
// Protect concurrent access.
mp.Lock()
defer mp.Unlock()
return mp.maybeAcceptTransaction(tx, isNew, rateLimit)
}
// processOrphans is the internal function which implements the public
// ProcessOrphans. See the comment for ProcessOrphans for more details.
//
// This function MUST be called with the mempool lock held (for writes).
func (mp *txMemPool) processOrphans(hash *wire.ShaHash) error {
// Start with processing at least the passed hash.
processHashes := list.New()
processHashes.PushBack(hash)
for processHashes.Len() > 0 {
// Pop the first hash to process.
firstElement := processHashes.Remove(processHashes.Front())
processHash := firstElement.(*wire.ShaHash)
// Look up all orphans that are referenced by the transaction we
// just accepted. This will typically only be one, but it could
// be multiple if the referenced transaction contains multiple
// outputs. Skip to the next item on the list of hashes to
// process if there are none.
orphans, exists := mp.orphansByPrev[*processHash]
if !exists || orphans == nil {
continue
}
var enext *list.Element
for e := orphans.Front(); e != nil; e = enext {
enext = e.Next()
tx := e.Value.(*btcutil.Tx)
// Remove the orphan from the orphan pool. Current
// behavior requires that all saved orphans with
// a newly accepted parent are removed from the orphan
// pool and potentially added to the memory pool, but
// transactions which cannot be added to memory pool
// (including due to still being orphans) are expunged
// from the orphan pool.
//
// TODO(jrick): The above described behavior sounds
// like a bug, and I think we should investigate
// potentially moving orphans to the memory pool, but
// leaving them in the orphan pool if not all parent
// transactions are known yet.
orphanHash := tx.Sha()
mp.removeOrphan(orphanHash)
// Potentially accept the transaction into the
// transaction pool.
missingParents, err := mp.maybeAcceptTransaction(tx,
true, true)
if err != nil {
return err
}
if len(missingParents) == 0 {
// Generate and relay the inventory vector for the
// newly accepted transaction.
iv := wire.NewInvVect(wire.InvTypeTx, tx.Sha())
mp.server.RelayInventory(iv, tx)
} else {
// Transaction is still an orphan.
// TODO(jrick): This removeOrphan call is
// likely unnecessary as it was unconditionally
// removed above and maybeAcceptTransaction won't
// add it back.
mp.removeOrphan(orphanHash)
}
// Add this transaction to the list of transactions to
// process so any orphans that depend on this one are
// handled too.
//
// TODO(jrick): In the case that this is still an orphan,
// we know that any other transactions in the orphan
// pool with this orphan as their parent are still
// orphans as well, and should be removed. While
// recursively calling removeOrphan and
// maybeAcceptTransaction on these transactions is not
// wrong per se, it is overkill if all we care about is
// recursively removing child transactions of this
// orphan.
processHashes.PushBack(orphanHash)
}
}
return nil
}
// ProcessOrphans determines if there are any orphans which depend on the passed
// transaction hash (it is possible that they are no longer orphans) and
// potentially accepts them to the memory pool. It repeats the process for the
// newly accepted transactions (to detect further orphans which may no longer be
// orphans) until there are no more.
//
// This function is safe for concurrent access.
func (mp *txMemPool) ProcessOrphans(hash *wire.ShaHash) error {
mp.Lock()
defer mp.Unlock()
return mp.processOrphans(hash)
}
// ProcessTransaction is the main workhorse for handling insertion of new
// free-standing transactions into the memory pool. It includes functionality
// such as rejecting duplicate transactions, ensuring transactions follow all
// rules, orphan transaction handling, and insertion into the memory pool.
//
// This function is safe for concurrent access.
func (mp *txMemPool) ProcessTransaction(tx *btcutil.Tx, allowOrphan, rateLimit bool) error {
// Protect concurrent access.
mp.Lock()
defer mp.Unlock()
txmpLog.Tracef("Processing transaction %v", tx.Sha())
// Potentially accept the transaction to the memory pool.
missingParents, err := mp.maybeAcceptTransaction(tx, true, rateLimit)
if err != nil {
return err
}
if len(missingParents) == 0 {
// Generate the inventory vector and relay it.
iv := wire.NewInvVect(wire.InvTypeTx, tx.Sha())
mp.server.RelayInventory(iv, tx)
// Accept any orphan transactions that depend on this
// transaction (they may no longer be orphans if all inputs
// are now available) and repeat for those accepted
// transactions until there are no more.
err := mp.processOrphans(tx.Sha())
if err != nil {
return err
}
} else {
// The transaction is an orphan (has inputs missing). Reject
// it if the flag to allow orphans is not set.
if !allowOrphan {
// Only use the first missing parent transaction in
// the error message.
//
// NOTE: RejectDuplicate is really not an accurate
// reject code here, but it matches the reference
// implementation and there isn't a better choice due
// to the limited number of reject codes. Missing
// inputs is assumed to mean they are already spent
// which is not really always the case.
str := fmt.Sprintf("orphan transaction %v references "+
"outputs of unknown or fully-spent "+
"transaction %v", tx.Sha(), missingParents[0])
return txRuleError(wire.RejectDuplicate, str)
}
// Potentially add the orphan transaction to the orphan pool.
err := mp.maybeAddOrphan(tx)
if err != nil {
return err
}
}
return nil
}
// Count returns the number of transactions in the main pool. It does not
// include the orphan pool.
//
// This function is safe for concurrent access.
func (mp *txMemPool) Count() int {
mp.RLock()
defer mp.RUnlock()
return len(mp.pool)
}
2013-10-08 20:34:04 +02:00
// TxShas returns a slice of hashes for all of the transactions in the memory
// pool.
//
// This function is safe for concurrent access.
func (mp *txMemPool) TxShas() []*wire.ShaHash {
mp.RLock()
defer mp.RUnlock()
2013-10-08 07:04:51 +02:00
hashes := make([]*wire.ShaHash, len(mp.pool))
2013-10-08 07:04:51 +02:00
i := 0
for hash := range mp.pool {
hashCopy := hash
hashes[i] = &hashCopy
i++
}
return hashes
}
// TxDescs returns a slice of descriptors for all the transactions in the pool.
// The descriptors are to be treated as read only.
//
// This function is safe for concurrent access.
func (mp *txMemPool) TxDescs() []*TxDesc {
mp.RLock()
defer mp.RUnlock()
descs := make([]*TxDesc, len(mp.pool))
i := 0
for _, desc := range mp.pool {
descs[i] = desc
i++
}
return descs
}
// LastUpdated returns the last time a transaction was added to or removed from
// the main pool. It does not include the orphan pool.
//
// This function is safe for concurrent access.
func (mp *txMemPool) LastUpdated() time.Time {
mp.RLock()
defer mp.RUnlock()
return mp.lastUpdated
}
// newTxMemPool returns a new memory pool for validating and storing standalone
// transactions until they are mined into a block.
func newTxMemPool(server *server) *txMemPool {
memPool := &txMemPool{
server: server,
pool: make(map[wire.ShaHash]*TxDesc),
orphans: make(map[wire.ShaHash]*btcutil.Tx),
orphansByPrev: make(map[wire.ShaHash]*list.List),
outpoints: make(map[wire.OutPoint]*btcutil.Tx),
}
if cfg.AddrIndex {
memPool.addrindex = make(map[string]map[wire.ShaHash]struct{})
}
return memPool
}