--- id: node title: Light Client --- Bitcoin-s has node module that allows you to connect to the p2p network. ### Neutrino Node Bitcoin-s has experimental support for neutrino which is a new lite client proposal on the bitcoin p2p network. You can read more about how neutrino works [here](https://suredbits.com/neutrino-what-is-it-and-why-we-need-it/). At this time, bitcoin-s only supports connecting to one trusted peer. #### Limitations Currently, the node does not have an active mempool. It is only aware of transactions it broadcasts and ones confirmed in blocks. #### Callbacks Bitcoin-S support call backs for the following events that happen on the bitcoin p2p network: 1. onTxReceived 2. onBlockReceived 3. onMerkleBlockReceived 4. onCompactFilterReceived That means every time one of these events happens on the p2p network, we will call your callback so that you can be notified of the event. These callbacks will be run after the message has been recieved and will execute sequentially. If any of them fail an error log will be output and the remainder of the callbacks will continue. Let's make an easy one #### Example Here is an example of constructing a neutrino node and registering a callback so you can be notified of an event. To run the example, we need a bitcoind binary that has neutrino support. Bitcoin Core only has p2p neutrino support as of version 0.21.0. You will need to use a version of Bitcoin Core at least as old as 0.21.0. For your node to be able to service these filters you will need set `blockfilterindex=1` and `peerblockfilters=1` in your `bitcoin.conf` file. ```scala mdoc:invisible import org.apache.pekko.actor.ActorSystem import org.bitcoins.chain.config.ChainAppConfig import org.bitcoins.core.api.callback.OnBlockReceived import org.bitcoins.core.protocol.blockchain.Block import org.bitcoins.node._ import org.bitcoins.node.config.NodeAppConfig import org.bitcoins.rpc.client.common.BitcoindVersion import org.bitcoins.testkit.node._ import org.bitcoins.testkit.node.fixture._ import org.bitcoins.testkit.rpc._ import org.bitcoins.server.BitcoinSAppConfig import org.bitcoins.testkit._ import org.bitcoins.testkit.chain._ import scala.concurrent._ import scala.concurrent.duration._ import java.nio.file.Files import com.typesafe.config.ConfigFactory import scala.concurrent.ExecutionContext ``` ```scala mdoc:compile-only implicit val system: ActorSystem = ActorSystem(s"node-example") implicit val ec: ExecutionContext = system.dispatcher //we also require a bitcoind instance to connect to //so let's start one (make sure you ran 'sbt downloadBitcoind') val instance = BitcoindRpcTestUtil.instance(versionOpt = Some(BitcoindVersion.newest)) val p2pPort = instance.p2pPort val bitcoindF = BitcoindRpcTestUtil.startedBitcoindRpcClient(Some(instance), Vector.newBuilder) //contains information on how to connect to bitcoin's p2p info val peerF = bitcoindF.flatMap(b => NodeUnitTest.createPeer(b)) // set a data directory val prefix = s"node-example-${System.currentTimeMillis()}" val datadir = Files.createTempDirectory(prefix) val tmpDir = BitcoinSTestAppConfig.tmpDir() // set the current network to regtest val config = ConfigFactory.parseString { s""" | bitcoin-s { | network = regtest | node { | mode = neutrino # neutrino, spv | | peers = ["127.0.0.1:$p2pPort"] # a list of peer addresses in form "hostname:portnumber" | # (e.g. "neutrino.testnet3.suredbits.com:18333") | # Port number is optional, the default value is 8333 for mainnet, | # 18333 for testnet and 18444 for regtest. | } | } |""".stripMargin } implicit val appConfig: BitcoinSAppConfig = BitcoinSAppConfig(datadir, Vector(config)) implicit val chainConfig: ChainAppConfig = appConfig.chainConf implicit val nodeConfig: NodeAppConfig = appConfig.nodeConf val initNodeF = nodeConfig.start() //yay! All setup done, let's create a node and then start it! val nodeF = for { peer <- peerF } yield { NeutrinoNode( walletCreationTimeOpt = None, //you can set this to only sync compact filters after the timestamp paramPeers = Vector(peer), nodeConfig = nodeConfig, chainConfig = chainConfig, actorSystem = system) } //let's start it val startedNodeF = nodeF.flatMap(_.start()) //let's make a simple callback that print's the //blockhash everytime we receive a block on the network val blockReceivedFunc: OnBlockReceived = { (block: Block) => Future.successful( println(s"Received blockhash=${block.blockHeader.hashBE}")) } // Create callback val nodeCallbacks = NodeCallbacks.onBlockReceived(blockReceivedFunc) // Add call to our node's config nodeConfig.addCallbacks(nodeCallbacks) //let's test it out by generating a block with bitcoind! val genBlockF = for { bitcoind <- bitcoindF addr <- bitcoind.getNewAddress hashes <- bitcoind.generateToAddress(1,addr) } yield hashes //you should see our callback print a block hash //when running this code //cleanup val cleanupF = for { _ <- genBlockF bitcoind <- bitcoindF node <- startedNodeF x = NeutrinoNodeConnectedWithBitcoind(node.asInstanceOf[NeutrinoNode],bitcoind) _ <- NodeUnitTest.destroyNodeConnectedWithBitcoind(x) } yield () Await.result(cleanupF, 60.seconds) ```