1
0
mirror of https://github.com/bitcoin/bips.git synced 2025-01-19 05:45:07 +01:00
bitcoin-bips/bip-schnorr/test-vectors.py

216 lines
8.1 KiB
Python

import sys
from reference import *
def vector0():
seckey = 1
msg = bytes_from_int(0)
sig = schnorr_sign(msg, seckey)
pubkey = pubkey_gen(seckey)
# The point reconstructed from the public key has an even Y coordinate.
pubkey_point = point_from_bytes(pubkey)
assert(pubkey_point[1] & 1 == 0)
return (bytes_from_int(seckey), pubkey, msg, sig, "TRUE", None)
def vector1():
seckey = 0xB7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF
msg = bytes_from_int(0x243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89)
sig = schnorr_sign(msg, seckey)
pubkey = pubkey_gen(seckey)
# The point reconstructed from the public key has an odd Y coordinate.
pubkey_point = point_from_bytes(pubkey)
assert(pubkey_point[1] & 1 == 1)
return (bytes_from_int(seckey), pubkey, msg, sig, "TRUE", None)
def vector2():
seckey = 0xC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B14E5C9
msg = bytes_from_int(0x5E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C)
sig = schnorr_sign(msg, seckey)
# This singature vector would not verify if the implementer checked the
# jacobi symbol of the X coordinate of R instead of the Y coordinate.
R = point_from_bytes(sig[0:32])
assert(jacobi(R[0]) != 1)
return (bytes_from_int(seckey), pubkey_gen(seckey), msg, sig, "TRUE", None)
def vector3():
seckey = 0x0B432B2677937381AEF05BB02A66ECD012773062CF3FA2549E44F58ED2401710
msg = bytes_from_int(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
sig = schnorr_sign(msg, seckey)
return (bytes_from_int(seckey), pubkey_gen(seckey), msg, sig, "TRUE", "test fails if msg is reduced modulo p or n")
# Signs with a given nonce. Results in an invalid signature if y(kG) is not a
# quadratic residue.
def schnorr_sign_fixed_nonce(msg, seckey0, k):
if len(msg) != 32:
raise ValueError('The message must be a 32-byte array.')
if not (1 <= seckey0 <= n - 1):
raise ValueError('The secret key must be an integer in the range 1..n-1.')
P = point_mul(G, seckey0)
seckey = seckey0 if (jacobi(P[1]) == 1) else n - seckey0
R = point_mul(G, k)
e = int_from_bytes(tagged_hash("BIPSchnorr", bytes_from_point(R) + bytes_from_point(P) + msg)) % n
return bytes_from_point(R) + bytes_from_int((k + e * seckey) % n)
# Creates a singature with a small x(R) by using k = 1/2
def vector4():
one_half = 0x7fffffffffffffffffffffffffffffff5d576e7357a4501ddfe92f46681b20a0
seckey = 0x763758E5CBEEDEE4F7D3FC86F531C36578933228998226672F13C4F0EBE855EB
msg = bytes_from_int(0x4DF3C3F68FCC83B27E9D42C90431A72499F17875C81A599B566C9889B9696703)
sig = schnorr_sign_fixed_nonce(msg, seckey, one_half)
return (None, pubkey_gen(seckey), msg, sig, "TRUE", None)
default_seckey = 0xB7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF
default_msg = bytes_from_int(0x243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89)
def vector5():
seckey = default_seckey
msg = default_msg
sig = schnorr_sign(msg, seckey)
# Public key is not on the curve
pubkey = bytes_from_int(0xEEFDEA4CDB677750A420FEE807EACF21EB9898AE79B9768766E4FAA04A2D4A34)
assert(point_from_bytes(pubkey) is None)
return (None, pubkey, msg, sig, "FALSE", "public key not on the curve")
def vector6():
seckey = default_seckey
msg = default_msg
k = 3
sig = schnorr_sign_fixed_nonce(msg, seckey, k)
# Y coordinate of R is not a quadratic residue
R = point_mul(G, k)
assert(jacobi(R[1]) != 1)
return (None, pubkey_gen(seckey), msg, sig, "FALSE", "incorrect R residuosity")
def vector7():
seckey = default_seckey
msg = int_from_bytes(default_msg)
neg_msg = bytes_from_int(n - msg)
sig = schnorr_sign(neg_msg, seckey)
return (None, pubkey_gen(seckey), bytes_from_int(msg), sig, "FALSE", "negated message")
def vector8():
seckey = default_seckey
msg = default_msg
sig = schnorr_sign(msg, seckey)
sig = sig[0:32] + bytes_from_int(n - int_from_bytes(sig[32:64]))
return (None, pubkey_gen(seckey), msg, sig, "FALSE", "negated s value")
def bytes_from_point_inf0(P):
if P == None:
return bytes_from_int(0)
return bytes_from_int(P[0])
def vector9():
seckey = default_seckey
msg = default_msg
# Override bytes_from_point in schnorr_sign to allow creating a signature
# with k = 0.
k = 0
bytes_from_point_tmp = bytes_from_point.__code__
bytes_from_point.__code__ = bytes_from_point_inf0.__code__
sig = schnorr_sign_fixed_nonce(msg, seckey, k)
bytes_from_point.__code__ = bytes_from_point_tmp
return (None, pubkey_gen(seckey), msg, sig, "FALSE", "sG - eP is infinite. Test fails in single verification if jacobi(y(inf)) is defined as 1 and x(inf) as 0")
def bytes_from_point_inf1(P):
if P == None:
return bytes_from_int(1)
return bytes_from_int(P[0])
def vector10():
seckey = default_seckey
msg = default_msg
# Override bytes_from_point in schnorr_sign to allow creating a signature
# with k = 0.
k = 0
bytes_from_point_tmp = bytes_from_point.__code__
bytes_from_point.__code__ = bytes_from_point_inf1.__code__
sig = schnorr_sign_fixed_nonce(msg, seckey, k)
bytes_from_point.__code__ = bytes_from_point_tmp
return (None, pubkey_gen(seckey), msg, sig, "FALSE", "sG - eP is infinite. Test fails in single verification if jacobi(y(inf)) is defined as 1 and x(inf) as 1")
# It's cryptographically impossible to create a test vector that fails if run
# in an implementation which merely misses the check that sig[0:32] is an X
# coordinate on the curve. This test vector just increases test coverage.
def vector11():
seckey = default_seckey
msg = default_msg
sig = schnorr_sign(msg, seckey)
# Replace R's X coordinate with an X coordinate that's not on the curve
x_not_on_curve = bytes_from_int(0x4A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D)
assert(point_from_bytes(x_not_on_curve) is None)
sig = x_not_on_curve + sig[32:64]
return (None, pubkey_gen(seckey), msg, sig, "FALSE", "sig[0:32] is not an X coordinate on the curve")
# It's cryptographically impossible to create a test vector that fails if run
# in an implementation which merely misses the check that sig[0:32] is smaller
# than the field size. This test vector just increases test coverage.
def vector12():
seckey = default_seckey
msg = default_msg
sig = schnorr_sign(msg, seckey)
# Replace R's X coordinate with an X coordinate that's equal to field size
sig = bytes_from_int(p) + sig[32:64]
return (None, pubkey_gen(seckey), msg, sig, "FALSE", "sig[0:32] is equal to field size")
# It's cryptographically impossible to create a test vector that fails if run
# in an implementation which merely misses the check that sig[32:64] is smaller
# than the curve order. This test vector just increases test coverage.
def vector13():
seckey = default_seckey
msg = default_msg
sig = schnorr_sign(msg, seckey)
# Replace s with a number that's equal to the curve order
sig = sig[0:32] + bytes_from_int(n)
return (None, pubkey_gen(seckey), msg, sig, "FALSE", "sig[32:64] is equal to curve order")
vectors = [
vector0(),
vector1(),
vector2(),
vector3(),
vector4(),
vector5(),
vector6(),
vector7(),
vector8(),
vector9(),
vector10(),
vector11(),
vector12(),
vector13(),
]
# Converts the byte strings of a test vector into hex strings
def bytes_to_hex(seckey, pubkey, msg, sig, result, comment):
return (seckey.hex().upper() if seckey is not None else None, pubkey.hex().upper(), msg.hex().upper(), sig.hex().upper(), result, comment)
vectors = list(map(lambda vector: bytes_to_hex(vector[0], vector[1], vector[2], vector[3], vector[4], vector[5]), vectors))
def print_csv(vectors):
writer = csv.writer(sys.stdout)
writer.writerow(("index", "secret key", "public key", "message", "signature", "verification result", "comment"))
for (i,v) in enumerate(vectors):
writer.writerow((i,)+v)
print_csv(vectors)