mirror of
https://github.com/bitcoin/bips.git
synced 2025-01-19 05:45:07 +01:00
158 lines
4.6 KiB
Python
Executable File
158 lines
4.6 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
######## ENCODING and DECODING ########
|
|
|
|
FIELD_BITS = 32
|
|
FIELD_MODULUS = (1 << FIELD_BITS) + 0b10001101
|
|
|
|
def mul2(x):
|
|
"""Compute 2*x in GF(2^FIELD_BITS)"""
|
|
return (x << 1) ^ (FIELD_MODULUS if x.bit_length() >= FIELD_BITS else 0)
|
|
|
|
def mul(x, y):
|
|
"""Compute x*y in GF(2^FIELD_BITS)"""
|
|
ret = 0
|
|
for bit in [(x >> i) & 1 for i in range(x.bit_length())]:
|
|
ret ^= bit * y
|
|
y = mul2(y)
|
|
return ret
|
|
|
|
######## ENCODING only ########
|
|
|
|
def sketch(shortids, capacity):
|
|
"""Compute the bytes of a sketch for given shortids and given capacity."""
|
|
odd_sums = [0 for _ in range(capacity)]
|
|
for shortid in shortids:
|
|
squared = mul(shortid, shortid)
|
|
for i in range(capacity):
|
|
odd_sums[i] ^= shortid
|
|
shortid = mul(shortid, squared)
|
|
return b''.join(elem.to_bytes(4, 'little') for elem in odd_sums)
|
|
|
|
######## DECODING only ########
|
|
|
|
import random
|
|
|
|
def inv(x):
|
|
"""Compute 1/x in GF(2^FIELD_BITS)"""
|
|
t = x
|
|
for i in range(FIELD_BITS - 2):
|
|
t = mul(mul(t, t), x)
|
|
return mul(t, t)
|
|
|
|
|
|
def berlekamp_massey(s):
|
|
"""Given a sequence of LFSR outputs, find the coefficients of the LFSR."""
|
|
C, B, L, m, b = [1], [1], 0, 1, 1
|
|
for n in range(len(s)):
|
|
d = s[n]
|
|
for i in range(1, L + 1):
|
|
d ^= mul(C[i], s[n - i])
|
|
if d == 0:
|
|
m += 1
|
|
else:
|
|
T = list(C)
|
|
while len(C) <= len(B) + m:
|
|
C += [0]
|
|
t = mul(d, inv(b))
|
|
for i in range(len(B)):
|
|
C[i + m] ^= mul(t, B[i])
|
|
if 2 * L <= n:
|
|
L, B, b, m = n + 1 - L, T, d, 1
|
|
else:
|
|
m += 1
|
|
return C[0:L + 1]
|
|
|
|
def poly_monic(p):
|
|
"""Return the monic multiple of p, or 0 if the input is 0."""
|
|
if len(p) == 0:
|
|
return []
|
|
i = inv(p[-1])
|
|
return [mul(v, i) for v in p]
|
|
|
|
def poly_divmod(m, p):
|
|
"""Compute the polynomial quotient p/m, and replace p with p mod m."""
|
|
assert(len(m) > 0 and m[-1] == 1)
|
|
div = [0 for _ in range(len(p) - len(m) + 1)]
|
|
while len(p) >= len(m):
|
|
div[len(p) - len(m)] = p[-1]
|
|
for i in range(len(m)):
|
|
p[len(p) - len(m) + i] ^= mul(p[-1], m[i])
|
|
assert(p[-1] == 0)
|
|
p.pop()
|
|
while (len(p) > 0 and p[-1] == 0):
|
|
p.pop()
|
|
return div
|
|
|
|
def poly_gcd(a, b):
|
|
"""Compute the GCD of a and b (destroys the inputs)."""
|
|
if len(a) < len(b):
|
|
a, b = b, a
|
|
while len(b):
|
|
if len(b) == 1:
|
|
return [1]
|
|
b = poly_monic(b)
|
|
poly_divmod(b, a)
|
|
a, b = b, a
|
|
return a
|
|
|
|
def poly_sqr(p):
|
|
"""Compute the coefficients of the square of polynomial with coefficients p."""
|
|
return [0 if i & 1 else mul(p[i // 2], p[i // 2]) for i in range(2 * len(p))]
|
|
|
|
def poly_trace(m, a):
|
|
"""Compute the coefficients of the trace polynomial of (a*x) mod m."""
|
|
out = [0, a]
|
|
for i in range(FIELD_BITS - 1):
|
|
out = poly_sqr(out)
|
|
while len(out) < 2:
|
|
out += [0]
|
|
out[1] = a
|
|
poly_divmod(m, out)
|
|
return out
|
|
|
|
def find_roots_inner(p, a):
|
|
"""Recursive helper function for find_roots (destroys p). a is randomizer."""
|
|
# p must be monic
|
|
assert(len(p) > 0 and p[-1] == 1)
|
|
# Deal with degree 0 and degree 1 inputs
|
|
if len(p) == 1:
|
|
return []
|
|
elif len(p) == 2:
|
|
return [p[0]]
|
|
# Otherwise, split p in left*right using paramater a_vals[0].
|
|
t = poly_monic(poly_trace(p, a))
|
|
left = poly_gcd(list(p), t)
|
|
right = poly_divmod(list(left), p)
|
|
# Invoke recursion with the remaining a_vals.
|
|
ret_right = find_roots_inner(right, mul2(a))
|
|
ret_left = find_roots_inner(left, mul2(a))
|
|
# Concatenate roots
|
|
return ret_left + ret_right
|
|
|
|
def find_roots(p):
|
|
"""Find the roots of polynomial with coefficients p."""
|
|
# Compute x^(2^FIELD_BITS)+x mod p in a roundabout way.
|
|
t = poly_trace(p, 1)
|
|
t2 = poly_sqr(t)
|
|
for i in range(len(t)):
|
|
t2[i] ^= t[i]
|
|
poly_divmod(p, t2)
|
|
# If distinct from 0, p is not fully factorizable into non-repeating roots.
|
|
if len(t2):
|
|
return None
|
|
# Invoke the recursive splitting algorithm
|
|
return find_roots_inner(list(p), random.randrange(1, 2**32-1))
|
|
|
|
def decode(sketch):
|
|
"""Recover the shortids from a sketch."""
|
|
odd_sums = [int.from_bytes(sketch[i*4:(i+1)*4], 'little') for i in range(len(sketch) // 4)]
|
|
sums = []
|
|
for i in range(len(odd_sums) * 2):
|
|
if i & 1:
|
|
sums.append(mul(sums[(i-1)//2], sums[(i-1)//2]))
|
|
else:
|
|
sums.append(odd_sums[(i+1)//2])
|
|
return find_roots(list(reversed(berlekamp_massey(sums))))
|
|
|