1
0
mirror of https://github.com/bitcoin/bips.git synced 2024-11-19 09:50:06 +01:00
bitcoin-bips/bip-0119/simulation.py

136 lines
5.0 KiB
Python
Executable File

#!/usr/bin/python3
import numpy as np
import matplotlib.pyplot as plt
PHASES = 15
PHASE_LENGTH = 144
SAMPLES = PHASE_LENGTH * PHASES
AVG_TX = 235
COMPRESSED_NODE_SIZE = 4 + 1 + 1 + 4 + 32 + 4 + 4 + 8 + 8 + 34 + 34 + 33 + 32 + 34
print(COMPRESSED_NODE_SIZE)
MAX_BLOCK_SIZE = 1e6
AVG_INTERVAL = 10*60
TXNS_PER_SEC = 0.5*MAX_BLOCK_SIZE/AVG_TX/AVG_INTERVAL
MAX_MEMPOOL = MAX_BLOCK_SIZE * 100
COMPRESSABLE = 0.05
def get_rate(phase):
if phase > PHASES/3:
return 1.25**(2*PHASES/3 - phase) *TXNS_PER_SEC
else:
return 1.25**(phase)*TXNS_PER_SEC
def normal():
np.random.seed(0)
print("Max Txns Per Sec %f"%TXNS_PER_SEC)
backlog = 0
results_unconfirmed = [0]*SAMPLES
total_time = [0]*SAMPLES
for phase in range(PHASES):
for i in range(PHASE_LENGTH*phase, PHASE_LENGTH*(1+phase)):
block_time = np.random.exponential(AVG_INTERVAL)
total_time[i] = block_time
# Equivalent to the sum of one poisson per block time
# I.E., \sum_1_n Pois(a) = Pois(a*n)
txns = np.random.poisson(get_rate(phase)* block_time)
weight = txns*AVG_TX + backlog
if weight > MAX_BLOCK_SIZE:
backlog = weight - MAX_BLOCK_SIZE
else:
backlog = 0
results_unconfirmed[i] = backlog/AVG_TX
return results_unconfirmed, np.cumsum(total_time)/(60*60*24.0)
def compressed(rate_multiplier = 1):
np.random.seed(0)
print("Max Txns Per Sec %f"%TXNS_PER_SEC)
backlog = 0
secondary_backlog = 0
results = [0]*SAMPLES
results_lo_priority = [0]*SAMPLES
results_confirmed = [0]*SAMPLES
results_unconfirmed = [0]*SAMPLES
results_yet_to_spend = [0]*SAMPLES
total_time = [0]*(SAMPLES)
for phase in range(PHASES):
for i in range(PHASE_LENGTH*phase, PHASE_LENGTH*(1+phase)):
block_time = np.random.exponential(AVG_INTERVAL)
total_time[i] = block_time
txns = np.random.poisson(rate_multiplier*get_rate(phase)*block_time)
postponed = txns * COMPRESSABLE
weight = (txns-postponed)*AVG_TX + backlog
secondary_backlog += postponed*133 + postponed*34 # Total extra work
if weight > MAX_BLOCK_SIZE:
results_confirmed[i] += MAX_BLOCK_SIZE - AVG_TX
backlog = weight - MAX_BLOCK_SIZE
else:
space = MAX_BLOCK_SIZE - weight
secondary_backlog = max(secondary_backlog-space, 0)
backlog = 0
results_unconfirmed[i] = float(backlog)/AVG_TX
results_yet_to_spend[i] = secondary_backlog/2/AVG_TX
return results_unconfirmed, results_yet_to_spend, np.cumsum(total_time)/(60*60*24.0)
DAYS = np.array(range(SAMPLES))/144
def make_patch_spines_invisible(ax):
ax.set_frame_on(True)
ax.patch.set_visible(False)
for sp in ax.spines.values():
sp.set_visible(False)
if __name__ == "__main__":
normal_txs, blocktimes_n = normal()
compressed_txs, unspendable, blocktimes_c1 = compressed()
compressed_txs2, unspendable2, blocktimes_c2 = compressed(2)
fig, host = plt.subplots()
host.set_title("Transaction Compression Performance with %d%% Adoption During Spike"%(100*COMPRESSABLE))
fig.subplots_adjust(right=0.75)
par1 = host.twinx()
par2 = host.twinx()
par3 = host.twinx()
par2.spines["right"].set_position(("axes", 1.2))
make_patch_spines_invisible(par2)
par2.spines["right"].set_visible(True)
par3.spines["right"].set_position(("axes", 1.4))
make_patch_spines_invisible(par3)
par3.spines["right"].set_visible(True)
host.set_xlabel("Block Days")
host.set_ylabel("Transactions per Second")
p5, = host.plot(range(PHASES), [get_rate(p) for p in range(PHASES)], "k-", label="Transactions Per Second (1x Rate)")
p6, = host.plot(range(PHASES), [2*get_rate(p) for p in range(PHASES)], "k:", label="Transactions Per Second (2x Rate)")
host.yaxis.label.set_color(p5.get_color())
par2.set_ylabel("Unconfirmed Transactions")
#p1, = par2.plot(DAYS, (-np.array(compressed_txs) + np.array(normal_txs)), "b-.", label = "Mempool Delta")
p1, = par2.plot(blocktimes_n, normal_txs, "g", label="Mempool without Congestion Control")
p2, = par2.plot(blocktimes_c1, compressed_txs,"y", label="Mempool with Congestion Control (1x Rate)")
p3, = par2.plot(blocktimes_c2, compressed_txs2,"m", label="Mempool with Congestion Control (2x Rate)")
p_full_block, = par2.plot([DAYS[0], DAYS[-1]], [MAX_BLOCK_SIZE/AVG_TX]*2, "b.-", label="Maximum Average Transactions Per Block")
par2.yaxis.label.set_color(p2.get_color())
par1.set_ylabel("Confirmed but Pending Transactions")
p4, = par1.plot(blocktimes_c1, unspendable2, "c", label="Congestion Control Pending (2x Rate)")
p4, = par1.plot(blocktimes_c2, unspendable, "r", label="Congestion Control Pending (1x Rate)")
par1.yaxis.label.set_color(p4.get_color())
lines = [p1, p2, p3, p4, p5, p6, p_full_block]
host.legend(lines, [l.get_label() for l in lines])
plt.show()