mirror of
https://github.com/bitcoin/bips.git
synced 2024-11-19 01:40:05 +01:00
136 lines
5.0 KiB
Python
Executable File
136 lines
5.0 KiB
Python
Executable File
#!/usr/bin/python3
|
|
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
PHASES = 15
|
|
PHASE_LENGTH = 144
|
|
SAMPLES = PHASE_LENGTH * PHASES
|
|
AVG_TX = 235
|
|
COMPRESSED_NODE_SIZE = 4 + 1 + 1 + 4 + 32 + 4 + 4 + 8 + 8 + 34 + 34 + 33 + 32 + 34
|
|
print(COMPRESSED_NODE_SIZE)
|
|
MAX_BLOCK_SIZE = 1e6
|
|
AVG_INTERVAL = 10*60
|
|
TXNS_PER_SEC = 0.5*MAX_BLOCK_SIZE/AVG_TX/AVG_INTERVAL
|
|
MAX_MEMPOOL = MAX_BLOCK_SIZE * 100
|
|
COMPRESSABLE = 0.05
|
|
|
|
|
|
|
|
|
|
|
|
def get_rate(phase):
|
|
if phase > PHASES/3:
|
|
return 1.25**(2*PHASES/3 - phase) *TXNS_PER_SEC
|
|
else:
|
|
return 1.25**(phase)*TXNS_PER_SEC
|
|
|
|
def normal():
|
|
np.random.seed(0)
|
|
print("Max Txns Per Sec %f"%TXNS_PER_SEC)
|
|
backlog = 0
|
|
results_unconfirmed = [0]*SAMPLES
|
|
total_time = [0]*SAMPLES
|
|
for phase in range(PHASES):
|
|
for i in range(PHASE_LENGTH*phase, PHASE_LENGTH*(1+phase)):
|
|
block_time = np.random.exponential(AVG_INTERVAL)
|
|
total_time[i] = block_time
|
|
# Equivalent to the sum of one poisson per block time
|
|
# I.E., \sum_1_n Pois(a) = Pois(a*n)
|
|
txns = np.random.poisson(get_rate(phase)* block_time)
|
|
weight = txns*AVG_TX + backlog
|
|
if weight > MAX_BLOCK_SIZE:
|
|
backlog = weight - MAX_BLOCK_SIZE
|
|
else:
|
|
backlog = 0
|
|
results_unconfirmed[i] = backlog/AVG_TX
|
|
return results_unconfirmed, np.cumsum(total_time)/(60*60*24.0)
|
|
def compressed(rate_multiplier = 1):
|
|
np.random.seed(0)
|
|
print("Max Txns Per Sec %f"%TXNS_PER_SEC)
|
|
backlog = 0
|
|
secondary_backlog = 0
|
|
results = [0]*SAMPLES
|
|
results_lo_priority = [0]*SAMPLES
|
|
results_confirmed = [0]*SAMPLES
|
|
results_unconfirmed = [0]*SAMPLES
|
|
results_yet_to_spend = [0]*SAMPLES
|
|
total_time = [0]*(SAMPLES)
|
|
for phase in range(PHASES):
|
|
for i in range(PHASE_LENGTH*phase, PHASE_LENGTH*(1+phase)):
|
|
block_time = np.random.exponential(AVG_INTERVAL)
|
|
total_time[i] = block_time
|
|
txns = np.random.poisson(rate_multiplier*get_rate(phase)*block_time)
|
|
postponed = txns * COMPRESSABLE
|
|
weight = (txns-postponed)*AVG_TX + backlog
|
|
secondary_backlog += postponed*133 + postponed*34 # Total extra work
|
|
if weight > MAX_BLOCK_SIZE:
|
|
results_confirmed[i] += MAX_BLOCK_SIZE - AVG_TX
|
|
backlog = weight - MAX_BLOCK_SIZE
|
|
else:
|
|
space = MAX_BLOCK_SIZE - weight
|
|
secondary_backlog = max(secondary_backlog-space, 0)
|
|
backlog = 0
|
|
results_unconfirmed[i] = float(backlog)/AVG_TX
|
|
results_yet_to_spend[i] = secondary_backlog/2/AVG_TX
|
|
|
|
return results_unconfirmed, results_yet_to_spend, np.cumsum(total_time)/(60*60*24.0)
|
|
|
|
DAYS = np.array(range(SAMPLES))/144
|
|
|
|
def make_patch_spines_invisible(ax):
|
|
ax.set_frame_on(True)
|
|
ax.patch.set_visible(False)
|
|
for sp in ax.spines.values():
|
|
sp.set_visible(False)
|
|
|
|
if __name__ == "__main__":
|
|
normal_txs, blocktimes_n = normal()
|
|
compressed_txs, unspendable, blocktimes_c1 = compressed()
|
|
compressed_txs2, unspendable2, blocktimes_c2 = compressed(2)
|
|
|
|
fig, host = plt.subplots()
|
|
host.set_title("Transaction Compression Performance with %d%% Adoption During Spike"%(100*COMPRESSABLE))
|
|
fig.subplots_adjust(right=0.75)
|
|
par1 = host.twinx()
|
|
par2 = host.twinx()
|
|
par3 = host.twinx()
|
|
|
|
par2.spines["right"].set_position(("axes", 1.2))
|
|
make_patch_spines_invisible(par2)
|
|
par2.spines["right"].set_visible(True)
|
|
|
|
par3.spines["right"].set_position(("axes", 1.4))
|
|
make_patch_spines_invisible(par3)
|
|
par3.spines["right"].set_visible(True)
|
|
|
|
host.set_xlabel("Block Days")
|
|
|
|
host.set_ylabel("Transactions per Second")
|
|
p5, = host.plot(range(PHASES), [get_rate(p) for p in range(PHASES)], "k-", label="Transactions Per Second (1x Rate)")
|
|
p6, = host.plot(range(PHASES), [2*get_rate(p) for p in range(PHASES)], "k:", label="Transactions Per Second (2x Rate)")
|
|
|
|
host.yaxis.label.set_color(p5.get_color())
|
|
|
|
|
|
par2.set_ylabel("Unconfirmed Transactions")
|
|
#p1, = par2.plot(DAYS, (-np.array(compressed_txs) + np.array(normal_txs)), "b-.", label = "Mempool Delta")
|
|
p1, = par2.plot(blocktimes_n, normal_txs, "g", label="Mempool without Congestion Control")
|
|
p2, = par2.plot(blocktimes_c1, compressed_txs,"y", label="Mempool with Congestion Control (1x Rate)")
|
|
p3, = par2.plot(blocktimes_c2, compressed_txs2,"m", label="Mempool with Congestion Control (2x Rate)")
|
|
p_full_block, = par2.plot([DAYS[0], DAYS[-1]], [MAX_BLOCK_SIZE/AVG_TX]*2, "b.-", label="Maximum Average Transactions Per Block")
|
|
|
|
par2.yaxis.label.set_color(p2.get_color())
|
|
|
|
|
|
par1.set_ylabel("Confirmed but Pending Transactions")
|
|
p4, = par1.plot(blocktimes_c1, unspendable2, "c", label="Congestion Control Pending (2x Rate)")
|
|
p4, = par1.plot(blocktimes_c2, unspendable, "r", label="Congestion Control Pending (1x Rate)")
|
|
par1.yaxis.label.set_color(p4.get_color())
|
|
|
|
|
|
|
|
|
|
lines = [p1, p2, p3, p4, p5, p6, p_full_block]
|
|
host.legend(lines, [l.get_label() for l in lines])
|
|
|
|
plt.show()
|