mirror of
https://github.com/bitcoin/bips.git
synced 2025-02-23 15:20:50 +01:00
Merge pull request #196 from jonasnick/update-ref
Update reference code and test vectors
This commit is contained in:
commit
f71b5cbb5c
3 changed files with 115 additions and 74 deletions
|
@ -51,7 +51,10 @@ def bytes_from_int(x):
|
|||
def bytes_from_point(P):
|
||||
return bytes_from_int(x(P))
|
||||
|
||||
def point_from_bytes(b):
|
||||
def xor_bytes(b0, b1):
|
||||
return bytes(x ^ y for (x, y) in zip(b0, b1))
|
||||
|
||||
def lift_x_square_y(b):
|
||||
x = int_from_bytes(b)
|
||||
if x >= p:
|
||||
return None
|
||||
|
@ -61,6 +64,13 @@ def point_from_bytes(b):
|
|||
return None
|
||||
return [x, y]
|
||||
|
||||
def lift_x_even_y(b):
|
||||
P = lift_x_square_y(b)
|
||||
if P is None:
|
||||
return None
|
||||
else:
|
||||
return [x(P), y(P) if y(P) % 2 == 0 else p - y(P)]
|
||||
|
||||
def int_from_bytes(b):
|
||||
return int.from_bytes(b, byteorder="big")
|
||||
|
||||
|
@ -73,6 +83,9 @@ def is_square(x):
|
|||
def has_square_y(P):
|
||||
return not is_infinity(P) and is_square(y(P))
|
||||
|
||||
def has_even_y(P):
|
||||
return y(P) % 2 == 0
|
||||
|
||||
def pubkey_gen(seckey):
|
||||
x = int_from_bytes(seckey)
|
||||
if not (1 <= x <= n - 1):
|
||||
|
@ -80,21 +93,27 @@ def pubkey_gen(seckey):
|
|||
P = point_mul(G, x)
|
||||
return bytes_from_point(P)
|
||||
|
||||
def schnorr_sign(msg, seckey0):
|
||||
def schnorr_sign(msg, seckey0, aux_rand):
|
||||
if len(msg) != 32:
|
||||
raise ValueError('The message must be a 32-byte array.')
|
||||
seckey0 = int_from_bytes(seckey0)
|
||||
if not (1 <= seckey0 <= n - 1):
|
||||
raise ValueError('The secret key must be an integer in the range 1..n-1.')
|
||||
if len(aux_rand) != 32:
|
||||
raise ValueError('aux_rand must be 32 bytes instead of %i.' % len(aux_rand))
|
||||
P = point_mul(G, seckey0)
|
||||
seckey = seckey0 if has_square_y(P) else n - seckey0
|
||||
k0 = int_from_bytes(tagged_hash("BIPSchnorrDerive", bytes_from_int(seckey) + msg)) % n
|
||||
seckey = seckey0 if has_even_y(P) else n - seckey0
|
||||
t = xor_bytes(bytes_from_int(seckey), tagged_hash("BIP340/aux", aux_rand))
|
||||
k0 = int_from_bytes(tagged_hash("BIP340/nonce", t + bytes_from_point(P) + msg)) % n
|
||||
if k0 == 0:
|
||||
raise RuntimeError('Failure. This happens only with negligible probability.')
|
||||
R = point_mul(G, k0)
|
||||
k = n - k0 if not has_square_y(R) else k0
|
||||
e = int_from_bytes(tagged_hash("BIPSchnorr", bytes_from_point(R) + bytes_from_point(P) + msg)) % n
|
||||
return bytes_from_point(R) + bytes_from_int((k + e * seckey) % n)
|
||||
e = int_from_bytes(tagged_hash("BIP340/challenge", bytes_from_point(R) + bytes_from_point(P) + msg)) % n
|
||||
sig = bytes_from_point(R) + bytes_from_int((k + e * seckey) % n)
|
||||
if not schnorr_verify(msg, bytes_from_point(P), sig):
|
||||
raise RuntimeError('The signature does not pass verification.')
|
||||
return sig
|
||||
|
||||
def schnorr_verify(msg, pubkey, sig):
|
||||
if len(msg) != 32:
|
||||
|
@ -103,14 +122,14 @@ def schnorr_verify(msg, pubkey, sig):
|
|||
raise ValueError('The public key must be a 32-byte array.')
|
||||
if len(sig) != 64:
|
||||
raise ValueError('The signature must be a 64-byte array.')
|
||||
P = point_from_bytes(pubkey)
|
||||
P = lift_x_even_y(pubkey)
|
||||
if (P is None):
|
||||
return False
|
||||
r = int_from_bytes(sig[0:32])
|
||||
s = int_from_bytes(sig[32:64])
|
||||
if (r >= p or s >= n):
|
||||
return False
|
||||
e = int_from_bytes(tagged_hash("BIPSchnorr", sig[0:32] + pubkey + msg)) % n
|
||||
e = int_from_bytes(tagged_hash("BIP340/challenge", sig[0:32] + pubkey + msg)) % n
|
||||
R = point_add(point_mul(G, s), point_mul(P, n - e))
|
||||
if R is None or not has_square_y(R) or x(R) != r:
|
||||
return False
|
||||
|
@ -127,7 +146,7 @@ def test_vectors():
|
|||
reader = csv.reader(csvfile)
|
||||
reader.__next__()
|
||||
for row in reader:
|
||||
(index, seckey, pubkey, msg, sig, result, comment) = row
|
||||
(index, seckey, pubkey, aux_rand, msg, sig, result, comment) = row
|
||||
pubkey = bytes.fromhex(pubkey)
|
||||
msg = bytes.fromhex(msg)
|
||||
sig = bytes.fromhex(sig)
|
||||
|
@ -140,7 +159,8 @@ def test_vectors():
|
|||
print(' * Failed key generation.')
|
||||
print(' Expected key:', pubkey.hex().upper())
|
||||
print(' Actual key:', pubkey_actual.hex().upper())
|
||||
sig_actual = schnorr_sign(msg, seckey)
|
||||
aux_rand = bytes.fromhex(aux_rand)
|
||||
sig_actual = schnorr_sign(msg, seckey, aux_rand)
|
||||
if sig == sig_actual:
|
||||
print(' * Passed signing test.')
|
||||
else:
|
||||
|
|
|
@ -1,16 +1,16 @@
|
|||
index,secret key,public key,message,signature,verification result,comment
|
||||
0,0000000000000000000000000000000000000000000000000000000000000001,79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798,0000000000000000000000000000000000000000000000000000000000000000,528F745793E8472C0329742A463F59E58F3A3F1A4AC09C28F6F8514D4D0322A258BD08398F82CF67B812AB2C7717CE566F877C2F8795C846146978E8F04782AE,TRUE,
|
||||
1,B7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,667C2F778E0616E611BD0C14B8A600C5884551701A949EF0EBFD72D452D64E844160BCFC3F466ECB8FACD19ADE57D8699D74E7207D78C6AEDC3799B52A8E0598,TRUE,
|
||||
2,C90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B14E5C9,DD308AFEC5777E13121FA72B9CC1B7CC0139715309B086C960E18FD969774EB8,5E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C,2D941B38E32624BF0AC7669C0971B990994AF6F9B18426BF4F4E7EC10E6CDF386CF646C6DDAFCFA7F1993EEB2E4D66416AEAD1DDAE2F22D63CAD901412D116C6,TRUE,
|
||||
3,0B432B2677937381AEF05BB02A66ECD012773062CF3FA2549E44F58ED2401710,25D1DFF95105F5253C4022F628A996AD3A0D95FBF21D468A1B33F8C160D8F517,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,8BD2C11604B0A87A443FCC2E5D90E5328F934161B18864FB48CE10CB59B45FB9B5B2A0F129BD88F5BDC05D5C21E5C57176B913002335784F9777A24BD317CD36,TRUE,test fails if msg is reduced modulo p or n
|
||||
4,,D69C3509BB99E412E68B0FE8544E72837DFA30746D8BE2AA65975F29D22DC7B9,4DF3C3F68FCC83B27E9D42C90431A72499F17875C81A599B566C9889B9696703,00000000000000000000003B78CE563F89A0ED9414F5AA28AD0D96D6795F9C63EE374AC7FAE927D334CCB190F6FB8FD27A2DDC639CCEE46D43F113A4035A2C7F,TRUE,
|
||||
5,,EEFDEA4CDB677750A420FEE807EACF21EB9898AE79B9768766E4FAA04A2D4A34,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,667C2F778E0616E611BD0C14B8A600C5884551701A949EF0EBFD72D452D64E844160BCFC3F466ECB8FACD19ADE57D8699D74E7207D78C6AEDC3799B52A8E0598,FALSE,public key not on the curve
|
||||
6,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,F9308A019258C31049344F85F89D5229B531C845836F99B08601F113BCE036F9935554D1AA5F0374E5CDAACB3925035C7C169B27C4426DF0A6B19AF3BAEAB138,FALSE,has_square_y(R) is false
|
||||
7,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,10AC49A6A2EBF604189C5F40FC75AF2D42D77DE9A2782709B1EB4EAF1CFE9108D7003B703A3499D5E29529D39BA040A44955127140F81A8A89A96F992AC0FE79,FALSE,negated message
|
||||
8,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,667C2F778E0616E611BD0C14B8A600C5884551701A949EF0EBFD72D452D64E84BE9F4303C0B9913470532E6521A827951D39F5C631CFD98CE39AC4D7A5A83BA9,FALSE,negated s value
|
||||
9,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,000000000000000000000000000000000000000000000000000000000000000099D2F0EBC2996808208633CD9926BF7EC3DAB73DAAD36E85B3040A698E6D1CE0,FALSE,sG - eP is infinite. Test fails in single verification if has_square_y(inf) is defined as true and x(inf) as 0
|
||||
10,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,000000000000000000000000000000000000000000000000000000000000000124E81D89F01304695CE943F7D5EBD00EF726A0864B4FF33895B4E86BEADC5456,FALSE,sG - eP is infinite. Test fails in single verification if has_square_y(inf) is defined as true and x(inf) as 1
|
||||
11,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,4A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D4160BCFC3F466ECB8FACD19ADE57D8699D74E7207D78C6AEDC3799B52A8E0598,FALSE,sig[0:32] is not an X coordinate on the curve
|
||||
12,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F4160BCFC3F466ECB8FACD19ADE57D8699D74E7207D78C6AEDC3799B52A8E0598,FALSE,sig[0:32] is equal to field size
|
||||
13,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,667C2F778E0616E611BD0C14B8A600C5884551701A949EF0EBFD72D452D64E84FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141,FALSE,sig[32:64] is equal to curve order
|
||||
14,,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC30,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,667C2F778E0616E611BD0C14B8A600C5884551701A949EF0EBFD72D452D64E844160BCFC3F466ECB8FACD19ADE57D8699D74E7207D78C6AEDC3799B52A8E0598,FALSE,public key is not a valid X coordinate because it exceeds the field size
|
||||
index,secret key,public key,aux_rand,message,signature,verification result,comment
|
||||
0,0000000000000000000000000000000000000000000000000000000000000003,F9308A019258C31049344F85F89D5229B531C845836F99B08601F113BCE036F9,0000000000000000000000000000000000000000000000000000000000000000,0000000000000000000000000000000000000000000000000000000000000000,067E337AD551B2276EC705E43F0920926A9CE08AC68159F9D258C9BBA412781C9F059FCDF4824F13B3D7C1305316F956704BB3FEA2C26142E18ACD90A90C947E,TRUE,
|
||||
1,B7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,0000000000000000000000000000000000000000000000000000000000000001,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,0E12B8C520948A776753A96F21ABD7FDC2D7D0C0DDC90851BE17B04E75EF86A47EF0DA46C4DC4D0D1BCB8668C2CE16C54C7C23A6716EDE303AF86774917CF928,TRUE,
|
||||
2,C90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B14E5C9,DD308AFEC5777E13121FA72B9CC1B7CC0139715309B086C960E18FD969774EB8,C87AA53824B4D7AE2EB035A2B5BBBCCC080E76CDC6D1692C4B0B62D798E6D906,7E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C,FC012F9FB8FE00A358F51EF93DCE0DC0C895F6E9A87C6C4905BC820B0C3677616B8737D14E703AF8E16E22E5B8F26227D41E5128F82D86F747244CC289C74D1D,TRUE,
|
||||
3,0B432B2677937381AEF05BB02A66ECD012773062CF3FA2549E44F58ED2401710,25D1DFF95105F5253C4022F628A996AD3A0D95FBF21D468A1B33F8C160D8F517,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF,FC132D4E426DFF535AEC0FA7083AC5118BC1D5FFFD848ABD8290C23F271CA0DD11AEDCEA3F55DA9BD677FE29C9DDA0CF878BCE43FDE0E313D69D1AF7A5AE8369,TRUE,test fails if msg is reduced modulo p or n
|
||||
4,,D69C3509BB99E412E68B0FE8544E72837DFA30746D8BE2AA65975F29D22DC7B9,,4DF3C3F68FCC83B27E9D42C90431A72499F17875C81A599B566C9889B9696703,00000000000000000000003B78CE563F89A0ED9414F5AA28AD0D96D6795F9C630EC50E5363E227ACAC6F542CE1C0B186657E0E0D1A6FFE283A33438DE4738419,TRUE,
|
||||
5,,EEFDEA4CDB677750A420FEE807EACF21EB9898AE79B9768766E4FAA04A2D4A34,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,7036D6BFE1837AE919631039A2CF652A295DFAC9A8BBB0806014B2F48DD7C807941607B563ABBA414287F374A332BA3636DE009EE1EF551A17796B72B68B8A24,FALSE,public key not on the curve
|
||||
6,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,F9308A019258C31049344F85F89D5229B531C845836F99B08601F113BCE036F995A579DA959FA739FCE39E8BD16FECB5CDCF97060B2C73CDE60E87ABCA1AA5D9,FALSE,has_square_y(R) is false
|
||||
7,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,F8704654F4687B7365ED32E796DE92761390A3BCC495179BFE073817B7ED32824E76B987F7C1F9A751EF5C343F7645D3CFFC7D570B9A7192EBF1898E1344E3BF,FALSE,negated message
|
||||
8,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,7036D6BFE1837AE919631039A2CF652A295DFAC9A8BBB0806014B2F48DD7C8076BE9F84A9C5445BEBD780C8B5CCD45C883D0DC47CD594B21A858F31A19AAB71D,FALSE,negated s value
|
||||
9,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,00000000000000000000000000000000000000000000000000000000000000009915EE59F07F9DBBAEDC31BFCC9B34AD49DE669CD24773BCED77DDA36D073EC8,FALSE,sG - eP is infinite. Test fails in single verification if has_square_y(inf) is defined as true and x(inf) as 0
|
||||
10,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,0000000000000000000000000000000000000000000000000000000000000001C7EC918B2B9CF34071BB54BED7EB4BB6BAB148E9A7E36E6B228F95DFA08B43EC,FALSE,sG - eP is infinite. Test fails in single verification if has_square_y(inf) is defined as true and x(inf) as 1
|
||||
11,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,4A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D941607B563ABBA414287F374A332BA3636DE009EE1EF551A17796B72B68B8A24,FALSE,sig[0:32] is not an X coordinate on the curve
|
||||
12,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F941607B563ABBA414287F374A332BA3636DE009EE1EF551A17796B72B68B8A24,FALSE,sig[0:32] is equal to field size
|
||||
13,,DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,7036D6BFE1837AE919631039A2CF652A295DFAC9A8BBB0806014B2F48DD7C807FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141,FALSE,sig[32:64] is equal to curve order
|
||||
14,,FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC30,,243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89,7036D6BFE1837AE919631039A2CF652A295DFAC9A8BBB0806014B2F48DD7C807941607B563ABBA414287F374A332BA3636DE009EE1EF551A17796B72B68B8A24,FALSE,public key is not a valid X coordinate because it exceeds the field size
|
||||
|
|
|
|
@ -2,46 +2,67 @@ import sys
|
|||
from reference import *
|
||||
|
||||
def vector0():
|
||||
seckey = bytes_from_int(1)
|
||||
seckey = bytes_from_int(3)
|
||||
msg = bytes_from_int(0)
|
||||
sig = schnorr_sign(msg, seckey)
|
||||
aux_rand = bytes_from_int(0)
|
||||
sig = schnorr_sign(msg, seckey, aux_rand)
|
||||
pubkey = pubkey_gen(seckey)
|
||||
|
||||
# The point reconstructed from the public key has an even Y coordinate.
|
||||
pubkey_point = point_from_bytes(pubkey)
|
||||
assert(pubkey_point[1] & 1 == 0)
|
||||
# We should have at least one test vector where the seckey needs to be
|
||||
# negated and one where it doesn't. In this one the seckey doesn't need to
|
||||
# be negated.
|
||||
x = int_from_bytes(seckey)
|
||||
P = point_mul(G, x)
|
||||
assert(y(P) % 2 == 0)
|
||||
|
||||
return (seckey, pubkey, msg, sig, "TRUE", None)
|
||||
# For historic reasons (pubkey tiebreaker was squareness and not evenness)
|
||||
# we should have at least one test vector where the the point reconstructed
|
||||
# from the public key has a square and one where it has a non-square Y
|
||||
# coordinate. In this one Y is non-square.
|
||||
pubkey_point = lift_x_even_y(pubkey)
|
||||
assert(not has_square_y(pubkey_point))
|
||||
|
||||
return (seckey, pubkey, aux_rand, msg, sig, "TRUE", None)
|
||||
|
||||
def vector1():
|
||||
seckey = bytes_from_int(0xB7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF)
|
||||
msg = bytes_from_int(0x243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89)
|
||||
sig = schnorr_sign(msg, seckey)
|
||||
pubkey = pubkey_gen(seckey)
|
||||
aux_rand = bytes_from_int(1)
|
||||
|
||||
# The point reconstructed from the public key has an odd Y coordinate.
|
||||
pubkey_point = point_from_bytes(pubkey)
|
||||
assert(pubkey_point[1] & 1 == 1)
|
||||
|
||||
return (seckey, pubkey, msg, sig, "TRUE", None)
|
||||
sig = schnorr_sign(msg, seckey, aux_rand)
|
||||
return (seckey, pubkey_gen(seckey), aux_rand, msg, sig, "TRUE", None)
|
||||
|
||||
def vector2():
|
||||
seckey = bytes_from_int(0xC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B14E5C9)
|
||||
msg = bytes_from_int(0x5E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C)
|
||||
sig = schnorr_sign(msg, seckey)
|
||||
msg = bytes_from_int(0x7E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C)
|
||||
aux_rand = bytes_from_int(0xC87AA53824B4D7AE2EB035A2B5BBBCCC080E76CDC6D1692C4B0B62D798E6D906)
|
||||
sig = schnorr_sign(msg, seckey, aux_rand)
|
||||
|
||||
# The point reconstructed from the public key has a square Y coordinate.
|
||||
pubkey = pubkey_gen(seckey)
|
||||
pubkey_point = lift_x_even_y(pubkey)
|
||||
assert(has_square_y(pubkey_point))
|
||||
|
||||
# This signature vector would not verify if the implementer checked the
|
||||
# squareness of the X coordinate of R instead of the Y coordinate.
|
||||
R = point_from_bytes(sig[0:32])
|
||||
R = lift_x_square_y(sig[0:32])
|
||||
assert(not is_square(R[0]))
|
||||
|
||||
return (seckey, pubkey_gen(seckey), msg, sig, "TRUE", None)
|
||||
return (seckey, pubkey, aux_rand, msg, sig, "TRUE", None)
|
||||
|
||||
def vector3():
|
||||
seckey = bytes_from_int(0x0B432B2677937381AEF05BB02A66ECD012773062CF3FA2549E44F58ED2401710)
|
||||
|
||||
# Need to negate this seckey before signing
|
||||
x = int_from_bytes(seckey)
|
||||
P = point_mul(G, x)
|
||||
assert(y(P) % 2 != 0)
|
||||
|
||||
msg = bytes_from_int(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
|
||||
sig = schnorr_sign(msg, seckey)
|
||||
return (seckey, pubkey_gen(seckey), msg, sig, "TRUE", "test fails if msg is reduced modulo p or n")
|
||||
aux_rand = bytes_from_int(0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)
|
||||
|
||||
sig = schnorr_sign(msg, seckey, aux_rand)
|
||||
return (seckey, pubkey_gen(seckey), aux_rand, msg, sig, "TRUE", "test fails if msg is reduced modulo p or n")
|
||||
|
||||
# Signs with a given nonce. This can be INSECURE and is only INTENDED FOR
|
||||
# GENERATING TEST VECTORS. Results in an invalid signature if y(kG) is not
|
||||
|
@ -53,9 +74,9 @@ def insecure_schnorr_sign_fixed_nonce(msg, seckey0, k):
|
|||
if not (1 <= seckey0 <= n - 1):
|
||||
raise ValueError('The secret key must be an integer in the range 1..n-1.')
|
||||
P = point_mul(G, seckey0)
|
||||
seckey = seckey0 if has_square_y(P) else n - seckey0
|
||||
seckey = seckey0 if has_even_y(P) else n - seckey0
|
||||
R = point_mul(G, k)
|
||||
e = int_from_bytes(tagged_hash("BIPSchnorr", bytes_from_point(R) + bytes_from_point(P) + msg)) % n
|
||||
e = int_from_bytes(tagged_hash("BIP340/challenge", bytes_from_point(R) + bytes_from_point(P) + msg)) % n
|
||||
return bytes_from_point(R) + bytes_from_int((k + e * seckey) % n)
|
||||
|
||||
# Creates a singature with a small x(R) by using k = 1/2
|
||||
|
@ -64,10 +85,11 @@ def vector4():
|
|||
seckey = bytes_from_int(0x763758E5CBEEDEE4F7D3FC86F531C36578933228998226672F13C4F0EBE855EB)
|
||||
msg = bytes_from_int(0x4DF3C3F68FCC83B27E9D42C90431A72499F17875C81A599B566C9889B9696703)
|
||||
sig = insecure_schnorr_sign_fixed_nonce(msg, seckey, one_half)
|
||||
return (None, pubkey_gen(seckey), msg, sig, "TRUE", None)
|
||||
return (None, pubkey_gen(seckey), None, msg, sig, "TRUE", None)
|
||||
|
||||
default_seckey = bytes_from_int(0xB7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF)
|
||||
default_msg = bytes_from_int(0x243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89)
|
||||
default_aux_rand = bytes_from_int(0xC87AA53824B4D7AE2EB035A2B5BBBCCC080E76CDC6D1692C4B0B62D798E6D906)
|
||||
|
||||
# Public key is not on the curve
|
||||
def vector5():
|
||||
|
@ -75,12 +97,12 @@ def vector5():
|
|||
# public key.
|
||||
seckey = default_seckey
|
||||
msg = default_msg
|
||||
sig = schnorr_sign(msg, seckey)
|
||||
sig = schnorr_sign(msg, seckey, default_aux_rand)
|
||||
|
||||
pubkey = bytes_from_int(0xEEFDEA4CDB677750A420FEE807EACF21EB9898AE79B9768766E4FAA04A2D4A34)
|
||||
assert(point_from_bytes(pubkey) is None)
|
||||
assert(lift_x_even_y(pubkey) is None)
|
||||
|
||||
return (None, pubkey, msg, sig, "FALSE", "public key not on the curve")
|
||||
return (None, pubkey, None, msg, sig, "FALSE", "public key not on the curve")
|
||||
|
||||
def vector6():
|
||||
seckey = default_seckey
|
||||
|
@ -92,21 +114,21 @@ def vector6():
|
|||
R = point_mul(G, k)
|
||||
assert(not has_square_y(R))
|
||||
|
||||
return (None, pubkey_gen(seckey), msg, sig, "FALSE", "has_square_y(R) is false")
|
||||
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "has_square_y(R) is false")
|
||||
|
||||
def vector7():
|
||||
seckey = default_seckey
|
||||
msg = int_from_bytes(default_msg)
|
||||
neg_msg = bytes_from_int(n - msg)
|
||||
sig = schnorr_sign(neg_msg, seckey)
|
||||
return (None, pubkey_gen(seckey), bytes_from_int(msg), sig, "FALSE", "negated message")
|
||||
sig = schnorr_sign(neg_msg, seckey, default_aux_rand)
|
||||
return (None, pubkey_gen(seckey), None, bytes_from_int(msg), sig, "FALSE", "negated message")
|
||||
|
||||
def vector8():
|
||||
seckey = default_seckey
|
||||
msg = default_msg
|
||||
sig = schnorr_sign(msg, seckey)
|
||||
sig = schnorr_sign(msg, seckey, default_aux_rand)
|
||||
sig = sig[0:32] + bytes_from_int(n - int_from_bytes(sig[32:64]))
|
||||
return (None, pubkey_gen(seckey), msg, sig, "FALSE", "negated s value")
|
||||
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "negated s value")
|
||||
|
||||
def bytes_from_point_inf0(P):
|
||||
if P == None:
|
||||
|
@ -125,7 +147,7 @@ def vector9():
|
|||
sig = insecure_schnorr_sign_fixed_nonce(msg, seckey, k)
|
||||
bytes_from_point.__code__ = bytes_from_point_tmp
|
||||
|
||||
return (None, pubkey_gen(seckey), msg, sig, "FALSE", "sG - eP is infinite. Test fails in single verification if has_square_y(inf) is defined as true and x(inf) as 0")
|
||||
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sG - eP is infinite. Test fails in single verification if has_square_y(inf) is defined as true and x(inf) as 0")
|
||||
|
||||
def bytes_from_point_inf1(P):
|
||||
if P == None:
|
||||
|
@ -144,7 +166,7 @@ def vector10():
|
|||
sig = insecure_schnorr_sign_fixed_nonce(msg, seckey, k)
|
||||
bytes_from_point.__code__ = bytes_from_point_tmp
|
||||
|
||||
return (None, pubkey_gen(seckey), msg, sig, "FALSE", "sG - eP is infinite. Test fails in single verification if has_square_y(inf) is defined as true and x(inf) as 1")
|
||||
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sG - eP is infinite. Test fails in single verification if has_square_y(inf) is defined as true and x(inf) as 1")
|
||||
|
||||
# It's cryptographically impossible to create a test vector that fails if run
|
||||
# in an implementation which merely misses the check that sig[0:32] is an X
|
||||
|
@ -152,14 +174,14 @@ def vector10():
|
|||
def vector11():
|
||||
seckey = default_seckey
|
||||
msg = default_msg
|
||||
sig = schnorr_sign(msg, seckey)
|
||||
sig = schnorr_sign(msg, seckey, default_aux_rand)
|
||||
|
||||
# Replace R's X coordinate with an X coordinate that's not on the curve
|
||||
x_not_on_curve = bytes_from_int(0x4A298DACAE57395A15D0795DDBFD1DCB564DA82B0F269BC70A74F8220429BA1D)
|
||||
assert(point_from_bytes(x_not_on_curve) is None)
|
||||
assert(lift_x_square_y(x_not_on_curve) is None)
|
||||
sig = x_not_on_curve + sig[32:64]
|
||||
|
||||
return (None, pubkey_gen(seckey), msg, sig, "FALSE", "sig[0:32] is not an X coordinate on the curve")
|
||||
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sig[0:32] is not an X coordinate on the curve")
|
||||
|
||||
# It's cryptographically impossible to create a test vector that fails if run
|
||||
# in an implementation which merely misses the check that sig[0:32] is smaller
|
||||
|
@ -167,12 +189,12 @@ def vector11():
|
|||
def vector12():
|
||||
seckey = default_seckey
|
||||
msg = default_msg
|
||||
sig = schnorr_sign(msg, seckey)
|
||||
sig = schnorr_sign(msg, seckey, default_aux_rand)
|
||||
|
||||
# Replace R's X coordinate with an X coordinate that's equal to field size
|
||||
sig = bytes_from_int(p) + sig[32:64]
|
||||
|
||||
return (None, pubkey_gen(seckey), msg, sig, "FALSE", "sig[0:32] is equal to field size")
|
||||
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sig[0:32] is equal to field size")
|
||||
|
||||
# It's cryptographically impossible to create a test vector that fails if run
|
||||
# in an implementation which merely misses the check that sig[32:64] is smaller
|
||||
|
@ -180,12 +202,12 @@ def vector12():
|
|||
def vector13():
|
||||
seckey = default_seckey
|
||||
msg = default_msg
|
||||
sig = schnorr_sign(msg, seckey)
|
||||
sig = schnorr_sign(msg, seckey, default_aux_rand)
|
||||
|
||||
# Replace s with a number that's equal to the curve order
|
||||
sig = sig[0:32] + bytes_from_int(n)
|
||||
|
||||
return (None, pubkey_gen(seckey), msg, sig, "FALSE", "sig[32:64] is equal to curve order")
|
||||
return (None, pubkey_gen(seckey), None, msg, sig, "FALSE", "sig[32:64] is equal to curve order")
|
||||
|
||||
# Test out of range pubkey
|
||||
# It's cryptographically impossible to create a test vector that fails if run
|
||||
|
@ -197,16 +219,15 @@ def vector14():
|
|||
# public key.
|
||||
seckey = default_seckey
|
||||
msg = default_msg
|
||||
sig = schnorr_sign(msg, seckey)
|
||||
|
||||
sig = schnorr_sign(msg, seckey, default_aux_rand)
|
||||
pubkey_int = p + 1
|
||||
pubkey = bytes_from_int(pubkey_int)
|
||||
assert(point_from_bytes(pubkey) is None)
|
||||
assert(lift_x_even_y(pubkey) is None)
|
||||
# If an implementation would reduce a given public key modulo p then the
|
||||
# pubkey would be valid
|
||||
assert(point_from_bytes(bytes_from_int(pubkey_int % p)) is not None)
|
||||
assert(lift_x_even_y(bytes_from_int(pubkey_int % p)) is not None)
|
||||
|
||||
return (None, pubkey, msg, sig, "FALSE", "public key is not a valid X coordinate because it exceeds the field size")
|
||||
return (None, pubkey, None, msg, sig, "FALSE", "public key is not a valid X coordinate because it exceeds the field size")
|
||||
|
||||
vectors = [
|
||||
vector0(),
|
||||
|
@ -227,14 +248,14 @@ vectors = [
|
|||
]
|
||||
|
||||
# Converts the byte strings of a test vector into hex strings
|
||||
def bytes_to_hex(seckey, pubkey, msg, sig, result, comment):
|
||||
return (seckey.hex().upper() if seckey is not None else None, pubkey.hex().upper(), msg.hex().upper(), sig.hex().upper(), result, comment)
|
||||
def bytes_to_hex(seckey, pubkey, aux_rand, msg, sig, result, comment):
|
||||
return (seckey.hex().upper() if seckey is not None else None, pubkey.hex().upper(), aux_rand.hex().upper() if aux_rand is not None else None, msg.hex().upper(), sig.hex().upper(), result, comment)
|
||||
|
||||
vectors = list(map(lambda vector: bytes_to_hex(vector[0], vector[1], vector[2], vector[3], vector[4], vector[5]), vectors))
|
||||
vectors = list(map(lambda vector: bytes_to_hex(vector[0], vector[1], vector[2], vector[3], vector[4], vector[5], vector[6]), vectors))
|
||||
|
||||
def print_csv(vectors):
|
||||
writer = csv.writer(sys.stdout)
|
||||
writer.writerow(("index", "secret key", "public key", "message", "signature", "verification result", "comment"))
|
||||
writer.writerow(("index", "secret key", "public key", "aux_rand", "message", "signature", "verification result", "comment"))
|
||||
for (i,v) in enumerate(vectors):
|
||||
writer.writerow((i,)+v)
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue